1 // SPDX-License-Identifier: MIT 2 3 #include <drm/drm_exec.h> 4 5 #include "nouveau_drv.h" 6 #include "nouveau_gem.h" 7 #include "nouveau_mem.h" 8 #include "nouveau_dma.h" 9 #include "nouveau_exec.h" 10 #include "nouveau_abi16.h" 11 #include "nouveau_chan.h" 12 #include "nouveau_sched.h" 13 #include "nouveau_uvmm.h" 14 15 /** 16 * DOC: Overview 17 * 18 * Nouveau's VM_BIND / EXEC UAPI consists of three ioctls: DRM_NOUVEAU_VM_INIT, 19 * DRM_NOUVEAU_VM_BIND and DRM_NOUVEAU_EXEC. 20 * 21 * In order to use the UAPI firstly a user client must initialize the VA space 22 * using the DRM_NOUVEAU_VM_INIT ioctl specifying which region of the VA space 23 * should be managed by the kernel and which by the UMD. 24 * 25 * The DRM_NOUVEAU_VM_BIND ioctl provides clients an interface to manage the 26 * userspace-managable portion of the VA space. It provides operations to map 27 * and unmap memory. Mappings may be flagged as sparse. Sparse mappings are not 28 * backed by a GEM object and the kernel will ignore GEM handles provided 29 * alongside a sparse mapping. 30 * 31 * Userspace may request memory backed mappings either within or outside of the 32 * bounds (but not crossing those bounds) of a previously mapped sparse 33 * mapping. Subsequently requested memory backed mappings within a sparse 34 * mapping will take precedence over the corresponding range of the sparse 35 * mapping. If such memory backed mappings are unmapped the kernel will make 36 * sure that the corresponding sparse mapping will take their place again. 37 * Requests to unmap a sparse mapping that still contains memory backed mappings 38 * will result in those memory backed mappings being unmapped first. 39 * 40 * Unmap requests are not bound to the range of existing mappings and can even 41 * overlap the bounds of sparse mappings. For such a request the kernel will 42 * make sure to unmap all memory backed mappings within the given range, 43 * splitting up memory backed mappings which are only partially contained 44 * within the given range. Unmap requests with the sparse flag set must match 45 * the range of a previously mapped sparse mapping exactly though. 46 * 47 * While the kernel generally permits arbitrary sequences and ranges of memory 48 * backed mappings being mapped and unmapped, either within a single or multiple 49 * VM_BIND ioctl calls, there are some restrictions for sparse mappings. 50 * 51 * The kernel does not permit to: 52 * - unmap non-existent sparse mappings 53 * - unmap a sparse mapping and map a new sparse mapping overlapping the range 54 * of the previously unmapped sparse mapping within the same VM_BIND ioctl 55 * - unmap a sparse mapping and map new memory backed mappings overlapping the 56 * range of the previously unmapped sparse mapping within the same VM_BIND 57 * ioctl 58 * 59 * When using the VM_BIND ioctl to request the kernel to map memory to a given 60 * virtual address in the GPU's VA space there is no guarantee that the actual 61 * mappings are created in the GPU's MMU. If the given memory is swapped out 62 * at the time the bind operation is executed the kernel will stash the mapping 63 * details into it's internal alloctor and create the actual MMU mappings once 64 * the memory is swapped back in. While this is transparent for userspace, it is 65 * guaranteed that all the backing memory is swapped back in and all the memory 66 * mappings, as requested by userspace previously, are actually mapped once the 67 * DRM_NOUVEAU_EXEC ioctl is called to submit an exec job. 68 * 69 * A VM_BIND job can be executed either synchronously or asynchronously. If 70 * exectued asynchronously, userspace may provide a list of syncobjs this job 71 * will wait for and/or a list of syncobj the kernel will signal once the 72 * VM_BIND job finished execution. If executed synchronously the ioctl will 73 * block until the bind job is finished. For synchronous jobs the kernel will 74 * not permit any syncobjs submitted to the kernel. 75 * 76 * To execute a push buffer the UAPI provides the DRM_NOUVEAU_EXEC ioctl. EXEC 77 * jobs are always executed asynchronously, and, equal to VM_BIND jobs, provide 78 * the option to synchronize them with syncobjs. 79 * 80 * Besides that, EXEC jobs can be scheduled for a specified channel to execute on. 81 * 82 * Since VM_BIND jobs update the GPU's VA space on job submit, EXEC jobs do have 83 * an up to date view of the VA space. However, the actual mappings might still 84 * be pending. Hence, EXEC jobs require to have the particular fences - of 85 * the corresponding VM_BIND jobs they depent on - attached to them. 86 */ 87 88 static int 89 nouveau_exec_job_submit(struct nouveau_job *job) 90 { 91 struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job); 92 struct nouveau_cli *cli = job->cli; 93 struct nouveau_uvmm *uvmm = nouveau_cli_uvmm(cli); 94 struct drm_exec *exec = &job->exec; 95 struct drm_gem_object *obj; 96 unsigned long index; 97 int ret; 98 99 /* Create a new fence, but do not emit yet. */ 100 ret = nouveau_fence_create(&exec_job->fence, exec_job->chan); 101 if (ret) 102 return ret; 103 104 nouveau_uvmm_lock(uvmm); 105 drm_exec_init(exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 106 DRM_EXEC_IGNORE_DUPLICATES); 107 drm_exec_until_all_locked(exec) { 108 struct drm_gpuva *va; 109 110 drm_gpuva_for_each_va(va, &uvmm->umgr) { 111 if (unlikely(va == &uvmm->umgr.kernel_alloc_node)) 112 continue; 113 114 ret = drm_exec_prepare_obj(exec, va->gem.obj, 1); 115 drm_exec_retry_on_contention(exec); 116 if (ret) 117 goto err_uvmm_unlock; 118 } 119 } 120 nouveau_uvmm_unlock(uvmm); 121 122 drm_exec_for_each_locked_object(exec, index, obj) { 123 struct nouveau_bo *nvbo = nouveau_gem_object(obj); 124 125 ret = nouveau_bo_validate(nvbo, true, false); 126 if (ret) 127 goto err_exec_fini; 128 } 129 130 return 0; 131 132 err_uvmm_unlock: 133 nouveau_uvmm_unlock(uvmm); 134 err_exec_fini: 135 drm_exec_fini(exec); 136 return ret; 137 138 } 139 140 static void 141 nouveau_exec_job_armed_submit(struct nouveau_job *job) 142 { 143 struct drm_exec *exec = &job->exec; 144 struct drm_gem_object *obj; 145 unsigned long index; 146 147 drm_exec_for_each_locked_object(exec, index, obj) 148 dma_resv_add_fence(obj->resv, job->done_fence, job->resv_usage); 149 150 drm_exec_fini(exec); 151 } 152 153 static struct dma_fence * 154 nouveau_exec_job_run(struct nouveau_job *job) 155 { 156 struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job); 157 struct nouveau_channel *chan = exec_job->chan; 158 struct nouveau_fence *fence = exec_job->fence; 159 int i, ret; 160 161 ret = nouveau_dma_wait(chan, exec_job->push.count + 1, 16); 162 if (ret) { 163 NV_PRINTK(err, job->cli, "nv50cal_space: %d\n", ret); 164 return ERR_PTR(ret); 165 } 166 167 for (i = 0; i < exec_job->push.count; i++) { 168 struct drm_nouveau_exec_push *p = &exec_job->push.s[i]; 169 bool no_prefetch = p->flags & DRM_NOUVEAU_EXEC_PUSH_NO_PREFETCH; 170 171 nv50_dma_push(chan, p->va, p->va_len, no_prefetch); 172 } 173 174 ret = nouveau_fence_emit(fence); 175 if (ret) { 176 nouveau_fence_unref(&exec_job->fence); 177 NV_PRINTK(err, job->cli, "error fencing pushbuf: %d\n", ret); 178 WIND_RING(chan); 179 return ERR_PTR(ret); 180 } 181 182 /* The fence was emitted successfully, set the job's fence pointer to 183 * NULL in order to avoid freeing it up when the job is cleaned up. 184 */ 185 exec_job->fence = NULL; 186 187 return &fence->base; 188 } 189 190 static void 191 nouveau_exec_job_free(struct nouveau_job *job) 192 { 193 struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job); 194 195 nouveau_job_free(job); 196 197 kfree(exec_job->fence); 198 kfree(exec_job->push.s); 199 kfree(exec_job); 200 } 201 202 static enum drm_gpu_sched_stat 203 nouveau_exec_job_timeout(struct nouveau_job *job) 204 { 205 struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job); 206 struct nouveau_channel *chan = exec_job->chan; 207 208 if (unlikely(!atomic_read(&chan->killed))) 209 nouveau_channel_kill(chan); 210 211 NV_PRINTK(warn, job->cli, "job timeout, channel %d killed!\n", 212 chan->chid); 213 214 nouveau_sched_entity_fini(job->entity); 215 216 return DRM_GPU_SCHED_STAT_NOMINAL; 217 } 218 219 static struct nouveau_job_ops nouveau_exec_job_ops = { 220 .submit = nouveau_exec_job_submit, 221 .armed_submit = nouveau_exec_job_armed_submit, 222 .run = nouveau_exec_job_run, 223 .free = nouveau_exec_job_free, 224 .timeout = nouveau_exec_job_timeout, 225 }; 226 227 int 228 nouveau_exec_job_init(struct nouveau_exec_job **pjob, 229 struct nouveau_exec_job_args *__args) 230 { 231 struct nouveau_exec_job *job; 232 struct nouveau_job_args args = {}; 233 int i, ret; 234 235 for (i = 0; i < __args->push.count; i++) { 236 struct drm_nouveau_exec_push *p = &__args->push.s[i]; 237 238 if (unlikely(p->va_len > NV50_DMA_PUSH_MAX_LENGTH)) { 239 NV_PRINTK(err, nouveau_cli(__args->file_priv), 240 "pushbuf size exceeds limit: 0x%x max 0x%x\n", 241 p->va_len, NV50_DMA_PUSH_MAX_LENGTH); 242 return -EINVAL; 243 } 244 } 245 246 job = *pjob = kzalloc(sizeof(*job), GFP_KERNEL); 247 if (!job) 248 return -ENOMEM; 249 250 job->push.count = __args->push.count; 251 if (__args->push.count) { 252 job->push.s = kmemdup(__args->push.s, 253 sizeof(*__args->push.s) * 254 __args->push.count, 255 GFP_KERNEL); 256 if (!job->push.s) { 257 ret = -ENOMEM; 258 goto err_free_job; 259 } 260 } 261 262 job->chan = __args->chan; 263 264 args.sched_entity = __args->sched_entity; 265 args.file_priv = __args->file_priv; 266 267 args.in_sync.count = __args->in_sync.count; 268 args.in_sync.s = __args->in_sync.s; 269 270 args.out_sync.count = __args->out_sync.count; 271 args.out_sync.s = __args->out_sync.s; 272 273 args.ops = &nouveau_exec_job_ops; 274 args.resv_usage = DMA_RESV_USAGE_WRITE; 275 276 ret = nouveau_job_init(&job->base, &args); 277 if (ret) 278 goto err_free_pushs; 279 280 return 0; 281 282 err_free_pushs: 283 kfree(job->push.s); 284 err_free_job: 285 kfree(job); 286 *pjob = NULL; 287 288 return ret; 289 } 290 291 static int 292 nouveau_exec(struct nouveau_exec_job_args *args) 293 { 294 struct nouveau_exec_job *job; 295 int ret; 296 297 ret = nouveau_exec_job_init(&job, args); 298 if (ret) 299 return ret; 300 301 ret = nouveau_job_submit(&job->base); 302 if (ret) 303 goto err_job_fini; 304 305 return 0; 306 307 err_job_fini: 308 nouveau_job_fini(&job->base); 309 return ret; 310 } 311 312 static int 313 nouveau_exec_ucopy(struct nouveau_exec_job_args *args, 314 struct drm_nouveau_exec *req) 315 { 316 struct drm_nouveau_sync **s; 317 u32 inc = req->wait_count; 318 u64 ins = req->wait_ptr; 319 u32 outc = req->sig_count; 320 u64 outs = req->sig_ptr; 321 u32 pushc = req->push_count; 322 u64 pushs = req->push_ptr; 323 int ret; 324 325 if (pushc) { 326 args->push.count = pushc; 327 args->push.s = u_memcpya(pushs, pushc, sizeof(*args->push.s)); 328 if (IS_ERR(args->push.s)) 329 return PTR_ERR(args->push.s); 330 } 331 332 if (inc) { 333 s = &args->in_sync.s; 334 335 args->in_sync.count = inc; 336 *s = u_memcpya(ins, inc, sizeof(**s)); 337 if (IS_ERR(*s)) { 338 ret = PTR_ERR(*s); 339 goto err_free_pushs; 340 } 341 } 342 343 if (outc) { 344 s = &args->out_sync.s; 345 346 args->out_sync.count = outc; 347 *s = u_memcpya(outs, outc, sizeof(**s)); 348 if (IS_ERR(*s)) { 349 ret = PTR_ERR(*s); 350 goto err_free_ins; 351 } 352 } 353 354 return 0; 355 356 err_free_pushs: 357 u_free(args->push.s); 358 err_free_ins: 359 u_free(args->in_sync.s); 360 return ret; 361 } 362 363 static void 364 nouveau_exec_ufree(struct nouveau_exec_job_args *args) 365 { 366 u_free(args->push.s); 367 u_free(args->in_sync.s); 368 u_free(args->out_sync.s); 369 } 370 371 int 372 nouveau_exec_ioctl_exec(struct drm_device *dev, 373 void *data, 374 struct drm_file *file_priv) 375 { 376 struct nouveau_abi16 *abi16 = nouveau_abi16_get(file_priv); 377 struct nouveau_cli *cli = nouveau_cli(file_priv); 378 struct nouveau_abi16_chan *chan16; 379 struct nouveau_channel *chan = NULL; 380 struct nouveau_exec_job_args args = {}; 381 struct drm_nouveau_exec *req = data; 382 int push_max, ret = 0; 383 384 if (unlikely(!abi16)) 385 return -ENOMEM; 386 387 /* abi16 locks already */ 388 if (unlikely(!nouveau_cli_uvmm(cli))) 389 return nouveau_abi16_put(abi16, -ENOSYS); 390 391 list_for_each_entry(chan16, &abi16->channels, head) { 392 if (chan16->chan->chid == req->channel) { 393 chan = chan16->chan; 394 break; 395 } 396 } 397 398 if (!chan) 399 return nouveau_abi16_put(abi16, -ENOENT); 400 401 if (unlikely(atomic_read(&chan->killed))) 402 return nouveau_abi16_put(abi16, -ENODEV); 403 404 if (!chan->dma.ib_max) 405 return nouveau_abi16_put(abi16, -ENOSYS); 406 407 push_max = nouveau_exec_push_max_from_ib_max(chan->dma.ib_max); 408 if (unlikely(req->push_count > push_max)) { 409 NV_PRINTK(err, cli, "pushbuf push count exceeds limit: %d max %d\n", 410 req->push_count, push_max); 411 return nouveau_abi16_put(abi16, -EINVAL); 412 } 413 414 ret = nouveau_exec_ucopy(&args, req); 415 if (ret) 416 goto out; 417 418 args.sched_entity = &chan16->sched_entity; 419 args.file_priv = file_priv; 420 args.chan = chan; 421 422 ret = nouveau_exec(&args); 423 if (ret) 424 goto out_free_args; 425 426 out_free_args: 427 nouveau_exec_ufree(&args); 428 out: 429 return nouveau_abi16_put(abi16, ret); 430 } 431