1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28 #include "nouveau_svm.h"
29 
30 #include <nvif/class.h>
31 #include <nvif/object.h>
32 #include <nvif/push906f.h>
33 #include <nvif/if000c.h>
34 #include <nvif/if500b.h>
35 #include <nvif/if900b.h>
36 
37 #include <nvhw/class/cla0b5.h>
38 
39 #include <linux/sched/mm.h>
40 #include <linux/hmm.h>
41 #include <linux/memremap.h>
42 #include <linux/migrate.h>
43 
44 /*
45  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
46  * it in vram while in use. We likely want to overhaul memory management for
47  * nouveau to be more page like (not necessarily with system page size but a
48  * bigger page size) at lowest level and have some shim layer on top that would
49  * provide the same functionality as TTM.
50  */
51 #define DMEM_CHUNK_SIZE (2UL << 20)
52 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
53 
54 enum nouveau_aper {
55 	NOUVEAU_APER_VIRT,
56 	NOUVEAU_APER_VRAM,
57 	NOUVEAU_APER_HOST,
58 };
59 
60 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
61 				      enum nouveau_aper, u64 dst_addr,
62 				      enum nouveau_aper, u64 src_addr);
63 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
64 				      enum nouveau_aper, u64 dst_addr);
65 
66 struct nouveau_dmem_chunk {
67 	struct list_head list;
68 	struct nouveau_bo *bo;
69 	struct nouveau_drm *drm;
70 	unsigned long callocated;
71 	struct dev_pagemap pagemap;
72 };
73 
74 struct nouveau_dmem_migrate {
75 	nouveau_migrate_copy_t copy_func;
76 	nouveau_clear_page_t clear_func;
77 	struct nouveau_channel *chan;
78 };
79 
80 struct nouveau_dmem {
81 	struct nouveau_drm *drm;
82 	struct nouveau_dmem_migrate migrate;
83 	struct list_head chunks;
84 	struct mutex mutex;
85 	struct page *free_pages;
86 	spinlock_t lock;
87 };
88 
89 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
90 {
91 	return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
92 }
93 
94 static struct nouveau_drm *page_to_drm(struct page *page)
95 {
96 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
97 
98 	return chunk->drm;
99 }
100 
101 unsigned long nouveau_dmem_page_addr(struct page *page)
102 {
103 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
104 	unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
105 				chunk->pagemap.range.start;
106 
107 	return chunk->bo->offset + off;
108 }
109 
110 static void nouveau_dmem_page_free(struct page *page)
111 {
112 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
113 	struct nouveau_dmem *dmem = chunk->drm->dmem;
114 
115 	spin_lock(&dmem->lock);
116 	page->zone_device_data = dmem->free_pages;
117 	dmem->free_pages = page;
118 
119 	WARN_ON(!chunk->callocated);
120 	chunk->callocated--;
121 	/*
122 	 * FIXME when chunk->callocated reach 0 we should add the chunk to
123 	 * a reclaim list so that it can be freed in case of memory pressure.
124 	 */
125 	spin_unlock(&dmem->lock);
126 }
127 
128 static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
129 {
130 	if (fence) {
131 		nouveau_fence_wait(*fence, true, false);
132 		nouveau_fence_unref(fence);
133 	} else {
134 		/*
135 		 * FIXME wait for channel to be IDLE before calling finalizing
136 		 * the hmem object.
137 		 */
138 	}
139 }
140 
141 static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage,
142 				struct page *dpage, dma_addr_t *dma_addr)
143 {
144 	struct device *dev = drm->dev->dev;
145 
146 	lock_page(dpage);
147 
148 	*dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
149 	if (dma_mapping_error(dev, *dma_addr))
150 		return -EIO;
151 
152 	if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
153 					 NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) {
154 		dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
155 		return -EIO;
156 	}
157 
158 	return 0;
159 }
160 
161 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
162 {
163 	struct nouveau_drm *drm = page_to_drm(vmf->page);
164 	struct nouveau_dmem *dmem = drm->dmem;
165 	struct nouveau_fence *fence;
166 	struct nouveau_svmm *svmm;
167 	struct page *spage, *dpage;
168 	unsigned long src = 0, dst = 0;
169 	dma_addr_t dma_addr = 0;
170 	vm_fault_t ret = 0;
171 	struct migrate_vma args = {
172 		.vma		= vmf->vma,
173 		.start		= vmf->address,
174 		.end		= vmf->address + PAGE_SIZE,
175 		.src		= &src,
176 		.dst		= &dst,
177 		.pgmap_owner	= drm->dev,
178 		.fault_page	= vmf->page,
179 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE,
180 	};
181 
182 	/*
183 	 * FIXME what we really want is to find some heuristic to migrate more
184 	 * than just one page on CPU fault. When such fault happens it is very
185 	 * likely that more surrounding page will CPU fault too.
186 	 */
187 	if (migrate_vma_setup(&args) < 0)
188 		return VM_FAULT_SIGBUS;
189 	if (!args.cpages)
190 		return 0;
191 
192 	spage = migrate_pfn_to_page(src);
193 	if (!spage || !(src & MIGRATE_PFN_MIGRATE))
194 		goto done;
195 
196 	dpage = alloc_page_vma(GFP_HIGHUSER | __GFP_ZERO, vmf->vma, vmf->address);
197 	if (!dpage)
198 		goto done;
199 
200 	dst = migrate_pfn(page_to_pfn(dpage));
201 
202 	svmm = spage->zone_device_data;
203 	mutex_lock(&svmm->mutex);
204 	nouveau_svmm_invalidate(svmm, args.start, args.end);
205 	ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr);
206 	mutex_unlock(&svmm->mutex);
207 	if (ret) {
208 		ret = VM_FAULT_SIGBUS;
209 		goto done;
210 	}
211 
212 	nouveau_fence_new(&fence, dmem->migrate.chan);
213 	migrate_vma_pages(&args);
214 	nouveau_dmem_fence_done(&fence);
215 	dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
216 done:
217 	migrate_vma_finalize(&args);
218 	return ret;
219 }
220 
221 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
222 	.page_free		= nouveau_dmem_page_free,
223 	.migrate_to_ram		= nouveau_dmem_migrate_to_ram,
224 };
225 
226 static int
227 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
228 {
229 	struct nouveau_dmem_chunk *chunk;
230 	struct resource *res;
231 	struct page *page;
232 	void *ptr;
233 	unsigned long i, pfn_first;
234 	int ret;
235 
236 	chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
237 	if (chunk == NULL) {
238 		ret = -ENOMEM;
239 		goto out;
240 	}
241 
242 	/* Allocate unused physical address space for device private pages. */
243 	res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
244 				      "nouveau_dmem");
245 	if (IS_ERR(res)) {
246 		ret = PTR_ERR(res);
247 		goto out_free;
248 	}
249 
250 	chunk->drm = drm;
251 	chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
252 	chunk->pagemap.range.start = res->start;
253 	chunk->pagemap.range.end = res->end;
254 	chunk->pagemap.nr_range = 1;
255 	chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
256 	chunk->pagemap.owner = drm->dev;
257 
258 	ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
259 			     NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL,
260 			     &chunk->bo);
261 	if (ret)
262 		goto out_release;
263 
264 	ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
265 	if (ret)
266 		goto out_bo_free;
267 
268 	ptr = memremap_pages(&chunk->pagemap, numa_node_id());
269 	if (IS_ERR(ptr)) {
270 		ret = PTR_ERR(ptr);
271 		goto out_bo_unpin;
272 	}
273 
274 	mutex_lock(&drm->dmem->mutex);
275 	list_add(&chunk->list, &drm->dmem->chunks);
276 	mutex_unlock(&drm->dmem->mutex);
277 
278 	pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT;
279 	page = pfn_to_page(pfn_first);
280 	spin_lock(&drm->dmem->lock);
281 	for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
282 		page->zone_device_data = drm->dmem->free_pages;
283 		drm->dmem->free_pages = page;
284 	}
285 	*ppage = page;
286 	chunk->callocated++;
287 	spin_unlock(&drm->dmem->lock);
288 
289 	NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
290 		DMEM_CHUNK_SIZE >> 20);
291 
292 	return 0;
293 
294 out_bo_unpin:
295 	nouveau_bo_unpin(chunk->bo);
296 out_bo_free:
297 	nouveau_bo_ref(NULL, &chunk->bo);
298 out_release:
299 	release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range));
300 out_free:
301 	kfree(chunk);
302 out:
303 	return ret;
304 }
305 
306 static struct page *
307 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
308 {
309 	struct nouveau_dmem_chunk *chunk;
310 	struct page *page = NULL;
311 	int ret;
312 
313 	spin_lock(&drm->dmem->lock);
314 	if (drm->dmem->free_pages) {
315 		page = drm->dmem->free_pages;
316 		drm->dmem->free_pages = page->zone_device_data;
317 		chunk = nouveau_page_to_chunk(page);
318 		chunk->callocated++;
319 		spin_unlock(&drm->dmem->lock);
320 	} else {
321 		spin_unlock(&drm->dmem->lock);
322 		ret = nouveau_dmem_chunk_alloc(drm, &page);
323 		if (ret)
324 			return NULL;
325 	}
326 
327 	zone_device_page_init(page);
328 	return page;
329 }
330 
331 static void
332 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
333 {
334 	unlock_page(page);
335 	put_page(page);
336 }
337 
338 void
339 nouveau_dmem_resume(struct nouveau_drm *drm)
340 {
341 	struct nouveau_dmem_chunk *chunk;
342 	int ret;
343 
344 	if (drm->dmem == NULL)
345 		return;
346 
347 	mutex_lock(&drm->dmem->mutex);
348 	list_for_each_entry(chunk, &drm->dmem->chunks, list) {
349 		ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
350 		/* FIXME handle pin failure */
351 		WARN_ON(ret);
352 	}
353 	mutex_unlock(&drm->dmem->mutex);
354 }
355 
356 void
357 nouveau_dmem_suspend(struct nouveau_drm *drm)
358 {
359 	struct nouveau_dmem_chunk *chunk;
360 
361 	if (drm->dmem == NULL)
362 		return;
363 
364 	mutex_lock(&drm->dmem->mutex);
365 	list_for_each_entry(chunk, &drm->dmem->chunks, list)
366 		nouveau_bo_unpin(chunk->bo);
367 	mutex_unlock(&drm->dmem->mutex);
368 }
369 
370 /*
371  * Evict all pages mapping a chunk.
372  */
373 static void
374 nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk)
375 {
376 	unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT;
377 	unsigned long *src_pfns, *dst_pfns;
378 	dma_addr_t *dma_addrs;
379 	struct nouveau_fence *fence;
380 
381 	src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
382 	dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
383 	dma_addrs = kvcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL | __GFP_NOFAIL);
384 
385 	migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT,
386 			npages);
387 
388 	for (i = 0; i < npages; i++) {
389 		if (src_pfns[i] & MIGRATE_PFN_MIGRATE) {
390 			struct page *dpage;
391 
392 			/*
393 			 * _GFP_NOFAIL because the GPU is going away and there
394 			 * is nothing sensible we can do if we can't copy the
395 			 * data back.
396 			 */
397 			dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL);
398 			dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
399 			nouveau_dmem_copy_one(chunk->drm,
400 					migrate_pfn_to_page(src_pfns[i]), dpage,
401 					&dma_addrs[i]);
402 		}
403 	}
404 
405 	nouveau_fence_new(&fence, chunk->drm->dmem->migrate.chan);
406 	migrate_device_pages(src_pfns, dst_pfns, npages);
407 	nouveau_dmem_fence_done(&fence);
408 	migrate_device_finalize(src_pfns, dst_pfns, npages);
409 	kvfree(src_pfns);
410 	kvfree(dst_pfns);
411 	for (i = 0; i < npages; i++)
412 		dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL);
413 	kvfree(dma_addrs);
414 }
415 
416 void
417 nouveau_dmem_fini(struct nouveau_drm *drm)
418 {
419 	struct nouveau_dmem_chunk *chunk, *tmp;
420 
421 	if (drm->dmem == NULL)
422 		return;
423 
424 	mutex_lock(&drm->dmem->mutex);
425 
426 	list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
427 		nouveau_dmem_evict_chunk(chunk);
428 		nouveau_bo_unpin(chunk->bo);
429 		nouveau_bo_ref(NULL, &chunk->bo);
430 		WARN_ON(chunk->callocated);
431 		list_del(&chunk->list);
432 		memunmap_pages(&chunk->pagemap);
433 		release_mem_region(chunk->pagemap.range.start,
434 				   range_len(&chunk->pagemap.range));
435 		kfree(chunk);
436 	}
437 
438 	mutex_unlock(&drm->dmem->mutex);
439 }
440 
441 static int
442 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
443 		    enum nouveau_aper dst_aper, u64 dst_addr,
444 		    enum nouveau_aper src_aper, u64 src_addr)
445 {
446 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
447 	u32 launch_dma = 0;
448 	int ret;
449 
450 	ret = PUSH_WAIT(push, 13);
451 	if (ret)
452 		return ret;
453 
454 	if (src_aper != NOUVEAU_APER_VIRT) {
455 		switch (src_aper) {
456 		case NOUVEAU_APER_VRAM:
457 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
458 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB));
459 			break;
460 		case NOUVEAU_APER_HOST:
461 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
462 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM));
463 			break;
464 		default:
465 			return -EINVAL;
466 		}
467 
468 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL);
469 	}
470 
471 	if (dst_aper != NOUVEAU_APER_VIRT) {
472 		switch (dst_aper) {
473 		case NOUVEAU_APER_VRAM:
474 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
475 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
476 			break;
477 		case NOUVEAU_APER_HOST:
478 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
479 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
480 			break;
481 		default:
482 			return -EINVAL;
483 		}
484 
485 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
486 	}
487 
488 	PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER,
489 		  NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)),
490 
491 				OFFSET_IN_LOWER, lower_32_bits(src_addr),
492 
493 				OFFSET_OUT_UPPER,
494 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
495 
496 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr),
497 				PITCH_IN, PAGE_SIZE,
498 				PITCH_OUT, PAGE_SIZE,
499 				LINE_LENGTH_IN, PAGE_SIZE,
500 				LINE_COUNT, npages);
501 
502 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
503 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
504 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
505 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
506 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
507 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
508 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
509 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) |
510 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
511 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
512 	return 0;
513 }
514 
515 static int
516 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
517 		     enum nouveau_aper dst_aper, u64 dst_addr)
518 {
519 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
520 	u32 launch_dma = 0;
521 	int ret;
522 
523 	ret = PUSH_WAIT(push, 12);
524 	if (ret)
525 		return ret;
526 
527 	switch (dst_aper) {
528 	case NOUVEAU_APER_VRAM:
529 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
530 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
531 		break;
532 	case NOUVEAU_APER_HOST:
533 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
534 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
535 		break;
536 	default:
537 		return -EINVAL;
538 	}
539 
540 	launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
541 
542 	PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0,
543 				SET_REMAP_CONST_B, 0,
544 
545 				SET_REMAP_COMPONENTS,
546 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
547 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
548 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
549 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
550 
551 	PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER,
552 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
553 
554 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr));
555 
556 	PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3);
557 
558 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
559 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
560 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
561 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
562 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
563 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
564 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
565 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
566 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) |
567 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
568 	return 0;
569 }
570 
571 static int
572 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
573 {
574 	switch (drm->ttm.copy.oclass) {
575 	case PASCAL_DMA_COPY_A:
576 	case PASCAL_DMA_COPY_B:
577 	case  VOLTA_DMA_COPY_A:
578 	case TURING_DMA_COPY_A:
579 		drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
580 		drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
581 		drm->dmem->migrate.chan = drm->ttm.chan;
582 		return 0;
583 	default:
584 		break;
585 	}
586 	return -ENODEV;
587 }
588 
589 void
590 nouveau_dmem_init(struct nouveau_drm *drm)
591 {
592 	int ret;
593 
594 	/* This only make sense on PASCAL or newer */
595 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
596 		return;
597 
598 	if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
599 		return;
600 
601 	drm->dmem->drm = drm;
602 	mutex_init(&drm->dmem->mutex);
603 	INIT_LIST_HEAD(&drm->dmem->chunks);
604 	mutex_init(&drm->dmem->mutex);
605 	spin_lock_init(&drm->dmem->lock);
606 
607 	/* Initialize migration dma helpers before registering memory */
608 	ret = nouveau_dmem_migrate_init(drm);
609 	if (ret) {
610 		kfree(drm->dmem);
611 		drm->dmem = NULL;
612 	}
613 }
614 
615 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
616 		struct nouveau_svmm *svmm, unsigned long src,
617 		dma_addr_t *dma_addr, u64 *pfn)
618 {
619 	struct device *dev = drm->dev->dev;
620 	struct page *dpage, *spage;
621 	unsigned long paddr;
622 
623 	spage = migrate_pfn_to_page(src);
624 	if (!(src & MIGRATE_PFN_MIGRATE))
625 		goto out;
626 
627 	dpage = nouveau_dmem_page_alloc_locked(drm);
628 	if (!dpage)
629 		goto out;
630 
631 	paddr = nouveau_dmem_page_addr(dpage);
632 	if (spage) {
633 		*dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
634 					 DMA_BIDIRECTIONAL);
635 		if (dma_mapping_error(dev, *dma_addr))
636 			goto out_free_page;
637 		if (drm->dmem->migrate.copy_func(drm, 1,
638 			NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
639 			goto out_dma_unmap;
640 	} else {
641 		*dma_addr = DMA_MAPPING_ERROR;
642 		if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
643 			NOUVEAU_APER_VRAM, paddr))
644 			goto out_free_page;
645 	}
646 
647 	dpage->zone_device_data = svmm;
648 	*pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
649 		((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
650 	if (src & MIGRATE_PFN_WRITE)
651 		*pfn |= NVIF_VMM_PFNMAP_V0_W;
652 	return migrate_pfn(page_to_pfn(dpage));
653 
654 out_dma_unmap:
655 	dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
656 out_free_page:
657 	nouveau_dmem_page_free_locked(drm, dpage);
658 out:
659 	*pfn = NVIF_VMM_PFNMAP_V0_NONE;
660 	return 0;
661 }
662 
663 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
664 		struct nouveau_svmm *svmm, struct migrate_vma *args,
665 		dma_addr_t *dma_addrs, u64 *pfns)
666 {
667 	struct nouveau_fence *fence;
668 	unsigned long addr = args->start, nr_dma = 0, i;
669 
670 	for (i = 0; addr < args->end; i++) {
671 		args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm,
672 				args->src[i], dma_addrs + nr_dma, pfns + i);
673 		if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
674 			nr_dma++;
675 		addr += PAGE_SIZE;
676 	}
677 
678 	nouveau_fence_new(&fence, drm->dmem->migrate.chan);
679 	migrate_vma_pages(args);
680 	nouveau_dmem_fence_done(&fence);
681 	nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
682 
683 	while (nr_dma--) {
684 		dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
685 				DMA_BIDIRECTIONAL);
686 	}
687 	migrate_vma_finalize(args);
688 }
689 
690 int
691 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
692 			 struct nouveau_svmm *svmm,
693 			 struct vm_area_struct *vma,
694 			 unsigned long start,
695 			 unsigned long end)
696 {
697 	unsigned long npages = (end - start) >> PAGE_SHIFT;
698 	unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
699 	dma_addr_t *dma_addrs;
700 	struct migrate_vma args = {
701 		.vma		= vma,
702 		.start		= start,
703 		.pgmap_owner	= drm->dev,
704 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
705 	};
706 	unsigned long i;
707 	u64 *pfns;
708 	int ret = -ENOMEM;
709 
710 	if (drm->dmem == NULL)
711 		return -ENODEV;
712 
713 	args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
714 	if (!args.src)
715 		goto out;
716 	args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
717 	if (!args.dst)
718 		goto out_free_src;
719 
720 	dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
721 	if (!dma_addrs)
722 		goto out_free_dst;
723 
724 	pfns = nouveau_pfns_alloc(max);
725 	if (!pfns)
726 		goto out_free_dma;
727 
728 	for (i = 0; i < npages; i += max) {
729 		if (args.start + (max << PAGE_SHIFT) > end)
730 			args.end = end;
731 		else
732 			args.end = args.start + (max << PAGE_SHIFT);
733 
734 		ret = migrate_vma_setup(&args);
735 		if (ret)
736 			goto out_free_pfns;
737 
738 		if (args.cpages)
739 			nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
740 						   pfns);
741 		args.start = args.end;
742 	}
743 
744 	ret = 0;
745 out_free_pfns:
746 	nouveau_pfns_free(pfns);
747 out_free_dma:
748 	kfree(dma_addrs);
749 out_free_dst:
750 	kfree(args.dst);
751 out_free_src:
752 	kfree(args.src);
753 out:
754 	return ret;
755 }
756