1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "nouveau_dmem.h" 23 #include "nouveau_drv.h" 24 #include "nouveau_chan.h" 25 #include "nouveau_dma.h" 26 #include "nouveau_mem.h" 27 #include "nouveau_bo.h" 28 #include "nouveau_svm.h" 29 30 #include <nvif/class.h> 31 #include <nvif/object.h> 32 #include <nvif/push906f.h> 33 #include <nvif/if000c.h> 34 #include <nvif/if500b.h> 35 #include <nvif/if900b.h> 36 #include <nvif/if000c.h> 37 38 #include <nvhw/class/cla0b5.h> 39 40 #include <linux/sched/mm.h> 41 #include <linux/hmm.h> 42 #include <linux/memremap.h> 43 #include <linux/migrate.h> 44 45 /* 46 * FIXME: this is ugly right now we are using TTM to allocate vram and we pin 47 * it in vram while in use. We likely want to overhaul memory management for 48 * nouveau to be more page like (not necessarily with system page size but a 49 * bigger page size) at lowest level and have some shim layer on top that would 50 * provide the same functionality as TTM. 51 */ 52 #define DMEM_CHUNK_SIZE (2UL << 20) 53 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) 54 55 enum nouveau_aper { 56 NOUVEAU_APER_VIRT, 57 NOUVEAU_APER_VRAM, 58 NOUVEAU_APER_HOST, 59 }; 60 61 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, 62 enum nouveau_aper, u64 dst_addr, 63 enum nouveau_aper, u64 src_addr); 64 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, 65 enum nouveau_aper, u64 dst_addr); 66 67 struct nouveau_dmem_chunk { 68 struct list_head list; 69 struct nouveau_bo *bo; 70 struct nouveau_drm *drm; 71 unsigned long callocated; 72 struct dev_pagemap pagemap; 73 }; 74 75 struct nouveau_dmem_migrate { 76 nouveau_migrate_copy_t copy_func; 77 nouveau_clear_page_t clear_func; 78 struct nouveau_channel *chan; 79 }; 80 81 struct nouveau_dmem { 82 struct nouveau_drm *drm; 83 struct nouveau_dmem_migrate migrate; 84 struct list_head chunks; 85 struct mutex mutex; 86 struct page *free_pages; 87 spinlock_t lock; 88 }; 89 90 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) 91 { 92 return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); 93 } 94 95 static struct nouveau_drm *page_to_drm(struct page *page) 96 { 97 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 98 99 return chunk->drm; 100 } 101 102 unsigned long nouveau_dmem_page_addr(struct page *page) 103 { 104 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 105 unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - 106 chunk->pagemap.range.start; 107 108 return chunk->bo->offset + off; 109 } 110 111 static void nouveau_dmem_page_free(struct page *page) 112 { 113 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 114 struct nouveau_dmem *dmem = chunk->drm->dmem; 115 116 spin_lock(&dmem->lock); 117 page->zone_device_data = dmem->free_pages; 118 dmem->free_pages = page; 119 120 WARN_ON(!chunk->callocated); 121 chunk->callocated--; 122 /* 123 * FIXME when chunk->callocated reach 0 we should add the chunk to 124 * a reclaim list so that it can be freed in case of memory pressure. 125 */ 126 spin_unlock(&dmem->lock); 127 } 128 129 static void nouveau_dmem_fence_done(struct nouveau_fence **fence) 130 { 131 if (fence) { 132 nouveau_fence_wait(*fence, true, false); 133 nouveau_fence_unref(fence); 134 } else { 135 /* 136 * FIXME wait for channel to be IDLE before calling finalizing 137 * the hmem object. 138 */ 139 } 140 } 141 142 static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm, 143 struct vm_fault *vmf, struct migrate_vma *args, 144 dma_addr_t *dma_addr) 145 { 146 struct device *dev = drm->dev->dev; 147 struct page *dpage, *spage; 148 struct nouveau_svmm *svmm; 149 150 spage = migrate_pfn_to_page(args->src[0]); 151 if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE)) 152 return 0; 153 154 dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address); 155 if (!dpage) 156 return VM_FAULT_SIGBUS; 157 lock_page(dpage); 158 159 *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 160 if (dma_mapping_error(dev, *dma_addr)) 161 goto error_free_page; 162 163 svmm = spage->zone_device_data; 164 mutex_lock(&svmm->mutex); 165 nouveau_svmm_invalidate(svmm, args->start, args->end); 166 if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, 167 NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) 168 goto error_dma_unmap; 169 mutex_unlock(&svmm->mutex); 170 171 args->dst[0] = migrate_pfn(page_to_pfn(dpage)); 172 return 0; 173 174 error_dma_unmap: 175 mutex_unlock(&svmm->mutex); 176 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 177 error_free_page: 178 __free_page(dpage); 179 return VM_FAULT_SIGBUS; 180 } 181 182 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) 183 { 184 struct nouveau_drm *drm = page_to_drm(vmf->page); 185 struct nouveau_dmem *dmem = drm->dmem; 186 struct nouveau_fence *fence; 187 unsigned long src = 0, dst = 0; 188 dma_addr_t dma_addr = 0; 189 vm_fault_t ret; 190 struct migrate_vma args = { 191 .vma = vmf->vma, 192 .start = vmf->address, 193 .end = vmf->address + PAGE_SIZE, 194 .src = &src, 195 .dst = &dst, 196 .pgmap_owner = drm->dev, 197 .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, 198 }; 199 200 /* 201 * FIXME what we really want is to find some heuristic to migrate more 202 * than just one page on CPU fault. When such fault happens it is very 203 * likely that more surrounding page will CPU fault too. 204 */ 205 if (migrate_vma_setup(&args) < 0) 206 return VM_FAULT_SIGBUS; 207 if (!args.cpages) 208 return 0; 209 210 ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr); 211 if (ret || dst == 0) 212 goto done; 213 214 nouveau_fence_new(dmem->migrate.chan, false, &fence); 215 migrate_vma_pages(&args); 216 nouveau_dmem_fence_done(&fence); 217 dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 218 done: 219 migrate_vma_finalize(&args); 220 return ret; 221 } 222 223 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { 224 .page_free = nouveau_dmem_page_free, 225 .migrate_to_ram = nouveau_dmem_migrate_to_ram, 226 }; 227 228 static int 229 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) 230 { 231 struct nouveau_dmem_chunk *chunk; 232 struct resource *res; 233 struct page *page; 234 void *ptr; 235 unsigned long i, pfn_first; 236 int ret; 237 238 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 239 if (chunk == NULL) { 240 ret = -ENOMEM; 241 goto out; 242 } 243 244 /* Allocate unused physical address space for device private pages. */ 245 res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, 246 "nouveau_dmem"); 247 if (IS_ERR(res)) { 248 ret = PTR_ERR(res); 249 goto out_free; 250 } 251 252 chunk->drm = drm; 253 chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; 254 chunk->pagemap.range.start = res->start; 255 chunk->pagemap.range.end = res->end; 256 chunk->pagemap.nr_range = 1; 257 chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; 258 chunk->pagemap.owner = drm->dev; 259 260 ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, 261 NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL, 262 &chunk->bo); 263 if (ret) 264 goto out_release; 265 266 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 267 if (ret) 268 goto out_bo_free; 269 270 ptr = memremap_pages(&chunk->pagemap, numa_node_id()); 271 if (IS_ERR(ptr)) { 272 ret = PTR_ERR(ptr); 273 goto out_bo_unpin; 274 } 275 276 mutex_lock(&drm->dmem->mutex); 277 list_add(&chunk->list, &drm->dmem->chunks); 278 mutex_unlock(&drm->dmem->mutex); 279 280 pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; 281 page = pfn_to_page(pfn_first); 282 spin_lock(&drm->dmem->lock); 283 for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { 284 page->zone_device_data = drm->dmem->free_pages; 285 drm->dmem->free_pages = page; 286 } 287 *ppage = page; 288 chunk->callocated++; 289 spin_unlock(&drm->dmem->lock); 290 291 NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", 292 DMEM_CHUNK_SIZE >> 20); 293 294 return 0; 295 296 out_bo_unpin: 297 nouveau_bo_unpin(chunk->bo); 298 out_bo_free: 299 nouveau_bo_ref(NULL, &chunk->bo); 300 out_release: 301 release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); 302 out_free: 303 kfree(chunk); 304 out: 305 return ret; 306 } 307 308 static struct page * 309 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) 310 { 311 struct nouveau_dmem_chunk *chunk; 312 struct page *page = NULL; 313 int ret; 314 315 spin_lock(&drm->dmem->lock); 316 if (drm->dmem->free_pages) { 317 page = drm->dmem->free_pages; 318 drm->dmem->free_pages = page->zone_device_data; 319 chunk = nouveau_page_to_chunk(page); 320 chunk->callocated++; 321 spin_unlock(&drm->dmem->lock); 322 } else { 323 spin_unlock(&drm->dmem->lock); 324 ret = nouveau_dmem_chunk_alloc(drm, &page); 325 if (ret) 326 return NULL; 327 } 328 329 lock_page(page); 330 return page; 331 } 332 333 static void 334 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) 335 { 336 unlock_page(page); 337 put_page(page); 338 } 339 340 void 341 nouveau_dmem_resume(struct nouveau_drm *drm) 342 { 343 struct nouveau_dmem_chunk *chunk; 344 int ret; 345 346 if (drm->dmem == NULL) 347 return; 348 349 mutex_lock(&drm->dmem->mutex); 350 list_for_each_entry(chunk, &drm->dmem->chunks, list) { 351 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 352 /* FIXME handle pin failure */ 353 WARN_ON(ret); 354 } 355 mutex_unlock(&drm->dmem->mutex); 356 } 357 358 void 359 nouveau_dmem_suspend(struct nouveau_drm *drm) 360 { 361 struct nouveau_dmem_chunk *chunk; 362 363 if (drm->dmem == NULL) 364 return; 365 366 mutex_lock(&drm->dmem->mutex); 367 list_for_each_entry(chunk, &drm->dmem->chunks, list) 368 nouveau_bo_unpin(chunk->bo); 369 mutex_unlock(&drm->dmem->mutex); 370 } 371 372 void 373 nouveau_dmem_fini(struct nouveau_drm *drm) 374 { 375 struct nouveau_dmem_chunk *chunk, *tmp; 376 377 if (drm->dmem == NULL) 378 return; 379 380 mutex_lock(&drm->dmem->mutex); 381 382 list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { 383 nouveau_bo_unpin(chunk->bo); 384 nouveau_bo_ref(NULL, &chunk->bo); 385 list_del(&chunk->list); 386 memunmap_pages(&chunk->pagemap); 387 release_mem_region(chunk->pagemap.range.start, 388 range_len(&chunk->pagemap.range)); 389 kfree(chunk); 390 } 391 392 mutex_unlock(&drm->dmem->mutex); 393 } 394 395 static int 396 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, 397 enum nouveau_aper dst_aper, u64 dst_addr, 398 enum nouveau_aper src_aper, u64 src_addr) 399 { 400 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 401 u32 launch_dma = 0; 402 int ret; 403 404 ret = PUSH_WAIT(push, 13); 405 if (ret) 406 return ret; 407 408 if (src_aper != NOUVEAU_APER_VIRT) { 409 switch (src_aper) { 410 case NOUVEAU_APER_VRAM: 411 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 412 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); 413 break; 414 case NOUVEAU_APER_HOST: 415 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 416 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 417 break; 418 default: 419 return -EINVAL; 420 } 421 422 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); 423 } 424 425 if (dst_aper != NOUVEAU_APER_VIRT) { 426 switch (dst_aper) { 427 case NOUVEAU_APER_VRAM: 428 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 429 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 430 break; 431 case NOUVEAU_APER_HOST: 432 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 433 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 434 break; 435 default: 436 return -EINVAL; 437 } 438 439 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 440 } 441 442 PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, 443 NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), 444 445 OFFSET_IN_LOWER, lower_32_bits(src_addr), 446 447 OFFSET_OUT_UPPER, 448 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 449 450 OFFSET_OUT_LOWER, lower_32_bits(dst_addr), 451 PITCH_IN, PAGE_SIZE, 452 PITCH_OUT, PAGE_SIZE, 453 LINE_LENGTH_IN, PAGE_SIZE, 454 LINE_COUNT, npages); 455 456 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 457 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 458 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 459 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 460 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 461 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 462 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 463 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | 464 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | 465 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 466 return 0; 467 } 468 469 static int 470 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, 471 enum nouveau_aper dst_aper, u64 dst_addr) 472 { 473 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 474 u32 launch_dma = 0; 475 int ret; 476 477 ret = PUSH_WAIT(push, 12); 478 if (ret) 479 return ret; 480 481 switch (dst_aper) { 482 case NOUVEAU_APER_VRAM: 483 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 484 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 485 break; 486 case NOUVEAU_APER_HOST: 487 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 488 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 489 break; 490 default: 491 return -EINVAL; 492 } 493 494 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 495 496 PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, 497 SET_REMAP_CONST_B, 0, 498 499 SET_REMAP_COMPONENTS, 500 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | 501 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | 502 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | 503 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); 504 505 PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, 506 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 507 508 OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); 509 510 PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); 511 512 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 513 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 514 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 515 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 516 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 517 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 518 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 519 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | 520 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | 521 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 522 return 0; 523 } 524 525 static int 526 nouveau_dmem_migrate_init(struct nouveau_drm *drm) 527 { 528 switch (drm->ttm.copy.oclass) { 529 case PASCAL_DMA_COPY_A: 530 case PASCAL_DMA_COPY_B: 531 case VOLTA_DMA_COPY_A: 532 case TURING_DMA_COPY_A: 533 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; 534 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; 535 drm->dmem->migrate.chan = drm->ttm.chan; 536 return 0; 537 default: 538 break; 539 } 540 return -ENODEV; 541 } 542 543 void 544 nouveau_dmem_init(struct nouveau_drm *drm) 545 { 546 int ret; 547 548 /* This only make sense on PASCAL or newer */ 549 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) 550 return; 551 552 if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) 553 return; 554 555 drm->dmem->drm = drm; 556 mutex_init(&drm->dmem->mutex); 557 INIT_LIST_HEAD(&drm->dmem->chunks); 558 mutex_init(&drm->dmem->mutex); 559 spin_lock_init(&drm->dmem->lock); 560 561 /* Initialize migration dma helpers before registering memory */ 562 ret = nouveau_dmem_migrate_init(drm); 563 if (ret) { 564 kfree(drm->dmem); 565 drm->dmem = NULL; 566 } 567 } 568 569 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, 570 struct nouveau_svmm *svmm, unsigned long src, 571 dma_addr_t *dma_addr, u64 *pfn) 572 { 573 struct device *dev = drm->dev->dev; 574 struct page *dpage, *spage; 575 unsigned long paddr; 576 577 spage = migrate_pfn_to_page(src); 578 if (!(src & MIGRATE_PFN_MIGRATE)) 579 goto out; 580 581 dpage = nouveau_dmem_page_alloc_locked(drm); 582 if (!dpage) 583 goto out; 584 585 paddr = nouveau_dmem_page_addr(dpage); 586 if (spage) { 587 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), 588 DMA_BIDIRECTIONAL); 589 if (dma_mapping_error(dev, *dma_addr)) 590 goto out_free_page; 591 if (drm->dmem->migrate.copy_func(drm, 1, 592 NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) 593 goto out_dma_unmap; 594 } else { 595 *dma_addr = DMA_MAPPING_ERROR; 596 if (drm->dmem->migrate.clear_func(drm, page_size(dpage), 597 NOUVEAU_APER_VRAM, paddr)) 598 goto out_free_page; 599 } 600 601 dpage->zone_device_data = svmm; 602 *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | 603 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); 604 if (src & MIGRATE_PFN_WRITE) 605 *pfn |= NVIF_VMM_PFNMAP_V0_W; 606 return migrate_pfn(page_to_pfn(dpage)); 607 608 out_dma_unmap: 609 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 610 out_free_page: 611 nouveau_dmem_page_free_locked(drm, dpage); 612 out: 613 *pfn = NVIF_VMM_PFNMAP_V0_NONE; 614 return 0; 615 } 616 617 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, 618 struct nouveau_svmm *svmm, struct migrate_vma *args, 619 dma_addr_t *dma_addrs, u64 *pfns) 620 { 621 struct nouveau_fence *fence; 622 unsigned long addr = args->start, nr_dma = 0, i; 623 624 for (i = 0; addr < args->end; i++) { 625 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, 626 args->src[i], dma_addrs + nr_dma, pfns + i); 627 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) 628 nr_dma++; 629 addr += PAGE_SIZE; 630 } 631 632 nouveau_fence_new(drm->dmem->migrate.chan, false, &fence); 633 migrate_vma_pages(args); 634 nouveau_dmem_fence_done(&fence); 635 nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); 636 637 while (nr_dma--) { 638 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, 639 DMA_BIDIRECTIONAL); 640 } 641 migrate_vma_finalize(args); 642 } 643 644 int 645 nouveau_dmem_migrate_vma(struct nouveau_drm *drm, 646 struct nouveau_svmm *svmm, 647 struct vm_area_struct *vma, 648 unsigned long start, 649 unsigned long end) 650 { 651 unsigned long npages = (end - start) >> PAGE_SHIFT; 652 unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); 653 dma_addr_t *dma_addrs; 654 struct migrate_vma args = { 655 .vma = vma, 656 .start = start, 657 .pgmap_owner = drm->dev, 658 .flags = MIGRATE_VMA_SELECT_SYSTEM, 659 }; 660 unsigned long i; 661 u64 *pfns; 662 int ret = -ENOMEM; 663 664 if (drm->dmem == NULL) 665 return -ENODEV; 666 667 args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); 668 if (!args.src) 669 goto out; 670 args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); 671 if (!args.dst) 672 goto out_free_src; 673 674 dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); 675 if (!dma_addrs) 676 goto out_free_dst; 677 678 pfns = nouveau_pfns_alloc(max); 679 if (!pfns) 680 goto out_free_dma; 681 682 for (i = 0; i < npages; i += max) { 683 if (args.start + (max << PAGE_SHIFT) > end) 684 args.end = end; 685 else 686 args.end = args.start + (max << PAGE_SHIFT); 687 688 ret = migrate_vma_setup(&args); 689 if (ret) 690 goto out_free_pfns; 691 692 if (args.cpages) 693 nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, 694 pfns); 695 args.start = args.end; 696 } 697 698 ret = 0; 699 out_free_pfns: 700 nouveau_pfns_free(pfns); 701 out_free_dma: 702 kfree(dma_addrs); 703 out_free_dst: 704 kfree(args.dst); 705 out_free_src: 706 kfree(args.src); 707 out: 708 return ret; 709 } 710