1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "nouveau_dmem.h" 23 #include "nouveau_drv.h" 24 #include "nouveau_chan.h" 25 #include "nouveau_dma.h" 26 #include "nouveau_mem.h" 27 #include "nouveau_bo.h" 28 #include "nouveau_svm.h" 29 30 #include <nvif/class.h> 31 #include <nvif/object.h> 32 #include <nvif/push906f.h> 33 #include <nvif/if000c.h> 34 #include <nvif/if500b.h> 35 #include <nvif/if900b.h> 36 #include <nvif/if000c.h> 37 38 #include <nvhw/class/cla0b5.h> 39 40 #include <linux/sched/mm.h> 41 #include <linux/hmm.h> 42 #include <linux/memremap.h> 43 #include <linux/migrate.h> 44 45 /* 46 * FIXME: this is ugly right now we are using TTM to allocate vram and we pin 47 * it in vram while in use. We likely want to overhaul memory management for 48 * nouveau to be more page like (not necessarily with system page size but a 49 * bigger page size) at lowest level and have some shim layer on top that would 50 * provide the same functionality as TTM. 51 */ 52 #define DMEM_CHUNK_SIZE (2UL << 20) 53 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) 54 55 enum nouveau_aper { 56 NOUVEAU_APER_VIRT, 57 NOUVEAU_APER_VRAM, 58 NOUVEAU_APER_HOST, 59 }; 60 61 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, 62 enum nouveau_aper, u64 dst_addr, 63 enum nouveau_aper, u64 src_addr); 64 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, 65 enum nouveau_aper, u64 dst_addr); 66 67 struct nouveau_dmem_chunk { 68 struct list_head list; 69 struct nouveau_bo *bo; 70 struct nouveau_drm *drm; 71 unsigned long callocated; 72 struct dev_pagemap pagemap; 73 }; 74 75 struct nouveau_dmem_migrate { 76 nouveau_migrate_copy_t copy_func; 77 nouveau_clear_page_t clear_func; 78 struct nouveau_channel *chan; 79 }; 80 81 struct nouveau_dmem { 82 struct nouveau_drm *drm; 83 struct nouveau_dmem_migrate migrate; 84 struct list_head chunks; 85 struct mutex mutex; 86 struct page *free_pages; 87 spinlock_t lock; 88 }; 89 90 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) 91 { 92 return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); 93 } 94 95 static struct nouveau_drm *page_to_drm(struct page *page) 96 { 97 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 98 99 return chunk->drm; 100 } 101 102 unsigned long nouveau_dmem_page_addr(struct page *page) 103 { 104 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 105 unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - 106 chunk->pagemap.range.start; 107 108 return chunk->bo->offset + off; 109 } 110 111 static void nouveau_dmem_page_free(struct page *page) 112 { 113 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 114 struct nouveau_dmem *dmem = chunk->drm->dmem; 115 116 spin_lock(&dmem->lock); 117 page->zone_device_data = dmem->free_pages; 118 dmem->free_pages = page; 119 120 WARN_ON(!chunk->callocated); 121 chunk->callocated--; 122 /* 123 * FIXME when chunk->callocated reach 0 we should add the chunk to 124 * a reclaim list so that it can be freed in case of memory pressure. 125 */ 126 spin_unlock(&dmem->lock); 127 } 128 129 static void nouveau_dmem_fence_done(struct nouveau_fence **fence) 130 { 131 if (fence) { 132 nouveau_fence_wait(*fence, true, false); 133 nouveau_fence_unref(fence); 134 } else { 135 /* 136 * FIXME wait for channel to be IDLE before calling finalizing 137 * the hmem object. 138 */ 139 } 140 } 141 142 static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage, 143 struct page *dpage, dma_addr_t *dma_addr) 144 { 145 struct device *dev = drm->dev->dev; 146 147 lock_page(dpage); 148 149 *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 150 if (dma_mapping_error(dev, *dma_addr)) 151 return -EIO; 152 153 if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, 154 NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) { 155 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 156 return -EIO; 157 } 158 159 return 0; 160 } 161 162 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) 163 { 164 struct nouveau_drm *drm = page_to_drm(vmf->page); 165 struct nouveau_dmem *dmem = drm->dmem; 166 struct nouveau_fence *fence; 167 struct nouveau_svmm *svmm; 168 struct page *spage, *dpage; 169 unsigned long src = 0, dst = 0; 170 dma_addr_t dma_addr = 0; 171 vm_fault_t ret = 0; 172 struct migrate_vma args = { 173 .vma = vmf->vma, 174 .start = vmf->address, 175 .end = vmf->address + PAGE_SIZE, 176 .src = &src, 177 .dst = &dst, 178 .pgmap_owner = drm->dev, 179 .fault_page = vmf->page, 180 .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, 181 }; 182 183 /* 184 * FIXME what we really want is to find some heuristic to migrate more 185 * than just one page on CPU fault. When such fault happens it is very 186 * likely that more surrounding page will CPU fault too. 187 */ 188 if (migrate_vma_setup(&args) < 0) 189 return VM_FAULT_SIGBUS; 190 if (!args.cpages) 191 return 0; 192 193 spage = migrate_pfn_to_page(src); 194 if (!spage || !(src & MIGRATE_PFN_MIGRATE)) 195 goto done; 196 197 dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address); 198 if (!dpage) 199 goto done; 200 201 dst = migrate_pfn(page_to_pfn(dpage)); 202 203 svmm = spage->zone_device_data; 204 mutex_lock(&svmm->mutex); 205 nouveau_svmm_invalidate(svmm, args.start, args.end); 206 ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr); 207 mutex_unlock(&svmm->mutex); 208 if (ret) { 209 ret = VM_FAULT_SIGBUS; 210 goto done; 211 } 212 213 nouveau_fence_new(dmem->migrate.chan, false, &fence); 214 migrate_vma_pages(&args); 215 nouveau_dmem_fence_done(&fence); 216 dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 217 done: 218 migrate_vma_finalize(&args); 219 return ret; 220 } 221 222 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { 223 .page_free = nouveau_dmem_page_free, 224 .migrate_to_ram = nouveau_dmem_migrate_to_ram, 225 }; 226 227 static int 228 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) 229 { 230 struct nouveau_dmem_chunk *chunk; 231 struct resource *res; 232 struct page *page; 233 void *ptr; 234 unsigned long i, pfn_first; 235 int ret; 236 237 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 238 if (chunk == NULL) { 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 /* Allocate unused physical address space for device private pages. */ 244 res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, 245 "nouveau_dmem"); 246 if (IS_ERR(res)) { 247 ret = PTR_ERR(res); 248 goto out_free; 249 } 250 251 chunk->drm = drm; 252 chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; 253 chunk->pagemap.range.start = res->start; 254 chunk->pagemap.range.end = res->end; 255 chunk->pagemap.nr_range = 1; 256 chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; 257 chunk->pagemap.owner = drm->dev; 258 259 ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, 260 NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL, 261 &chunk->bo); 262 if (ret) 263 goto out_release; 264 265 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 266 if (ret) 267 goto out_bo_free; 268 269 ptr = memremap_pages(&chunk->pagemap, numa_node_id()); 270 if (IS_ERR(ptr)) { 271 ret = PTR_ERR(ptr); 272 goto out_bo_unpin; 273 } 274 275 mutex_lock(&drm->dmem->mutex); 276 list_add(&chunk->list, &drm->dmem->chunks); 277 mutex_unlock(&drm->dmem->mutex); 278 279 pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; 280 page = pfn_to_page(pfn_first); 281 spin_lock(&drm->dmem->lock); 282 for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { 283 page->zone_device_data = drm->dmem->free_pages; 284 drm->dmem->free_pages = page; 285 } 286 *ppage = page; 287 chunk->callocated++; 288 spin_unlock(&drm->dmem->lock); 289 290 NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", 291 DMEM_CHUNK_SIZE >> 20); 292 293 return 0; 294 295 out_bo_unpin: 296 nouveau_bo_unpin(chunk->bo); 297 out_bo_free: 298 nouveau_bo_ref(NULL, &chunk->bo); 299 out_release: 300 release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); 301 out_free: 302 kfree(chunk); 303 out: 304 return ret; 305 } 306 307 static struct page * 308 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) 309 { 310 struct nouveau_dmem_chunk *chunk; 311 struct page *page = NULL; 312 int ret; 313 314 spin_lock(&drm->dmem->lock); 315 if (drm->dmem->free_pages) { 316 page = drm->dmem->free_pages; 317 drm->dmem->free_pages = page->zone_device_data; 318 chunk = nouveau_page_to_chunk(page); 319 chunk->callocated++; 320 spin_unlock(&drm->dmem->lock); 321 } else { 322 spin_unlock(&drm->dmem->lock); 323 ret = nouveau_dmem_chunk_alloc(drm, &page); 324 if (ret) 325 return NULL; 326 } 327 328 zone_device_page_init(page); 329 return page; 330 } 331 332 static void 333 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) 334 { 335 unlock_page(page); 336 put_page(page); 337 } 338 339 void 340 nouveau_dmem_resume(struct nouveau_drm *drm) 341 { 342 struct nouveau_dmem_chunk *chunk; 343 int ret; 344 345 if (drm->dmem == NULL) 346 return; 347 348 mutex_lock(&drm->dmem->mutex); 349 list_for_each_entry(chunk, &drm->dmem->chunks, list) { 350 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 351 /* FIXME handle pin failure */ 352 WARN_ON(ret); 353 } 354 mutex_unlock(&drm->dmem->mutex); 355 } 356 357 void 358 nouveau_dmem_suspend(struct nouveau_drm *drm) 359 { 360 struct nouveau_dmem_chunk *chunk; 361 362 if (drm->dmem == NULL) 363 return; 364 365 mutex_lock(&drm->dmem->mutex); 366 list_for_each_entry(chunk, &drm->dmem->chunks, list) 367 nouveau_bo_unpin(chunk->bo); 368 mutex_unlock(&drm->dmem->mutex); 369 } 370 371 /* 372 * Evict all pages mapping a chunk. 373 */ 374 static void 375 nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk) 376 { 377 unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT; 378 unsigned long *src_pfns, *dst_pfns; 379 dma_addr_t *dma_addrs; 380 struct nouveau_fence *fence; 381 382 src_pfns = kcalloc(npages, sizeof(*src_pfns), GFP_KERNEL); 383 dst_pfns = kcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL); 384 dma_addrs = kcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL); 385 386 migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT, 387 npages); 388 389 for (i = 0; i < npages; i++) { 390 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) { 391 struct page *dpage; 392 393 /* 394 * _GFP_NOFAIL because the GPU is going away and there 395 * is nothing sensible we can do if we can't copy the 396 * data back. 397 */ 398 dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL); 399 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)); 400 nouveau_dmem_copy_one(chunk->drm, 401 migrate_pfn_to_page(src_pfns[i]), dpage, 402 &dma_addrs[i]); 403 } 404 } 405 406 nouveau_fence_new(chunk->drm->dmem->migrate.chan, false, &fence); 407 migrate_device_pages(src_pfns, dst_pfns, npages); 408 nouveau_dmem_fence_done(&fence); 409 migrate_device_finalize(src_pfns, dst_pfns, npages); 410 kfree(src_pfns); 411 kfree(dst_pfns); 412 for (i = 0; i < npages; i++) 413 dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); 414 kfree(dma_addrs); 415 } 416 417 void 418 nouveau_dmem_fini(struct nouveau_drm *drm) 419 { 420 struct nouveau_dmem_chunk *chunk, *tmp; 421 422 if (drm->dmem == NULL) 423 return; 424 425 mutex_lock(&drm->dmem->mutex); 426 427 list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { 428 nouveau_dmem_evict_chunk(chunk); 429 nouveau_bo_unpin(chunk->bo); 430 nouveau_bo_ref(NULL, &chunk->bo); 431 WARN_ON(chunk->callocated); 432 list_del(&chunk->list); 433 memunmap_pages(&chunk->pagemap); 434 release_mem_region(chunk->pagemap.range.start, 435 range_len(&chunk->pagemap.range)); 436 kfree(chunk); 437 } 438 439 mutex_unlock(&drm->dmem->mutex); 440 } 441 442 static int 443 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, 444 enum nouveau_aper dst_aper, u64 dst_addr, 445 enum nouveau_aper src_aper, u64 src_addr) 446 { 447 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 448 u32 launch_dma = 0; 449 int ret; 450 451 ret = PUSH_WAIT(push, 13); 452 if (ret) 453 return ret; 454 455 if (src_aper != NOUVEAU_APER_VIRT) { 456 switch (src_aper) { 457 case NOUVEAU_APER_VRAM: 458 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 459 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); 460 break; 461 case NOUVEAU_APER_HOST: 462 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 463 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 464 break; 465 default: 466 return -EINVAL; 467 } 468 469 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); 470 } 471 472 if (dst_aper != NOUVEAU_APER_VIRT) { 473 switch (dst_aper) { 474 case NOUVEAU_APER_VRAM: 475 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 476 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 477 break; 478 case NOUVEAU_APER_HOST: 479 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 480 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 481 break; 482 default: 483 return -EINVAL; 484 } 485 486 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 487 } 488 489 PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, 490 NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), 491 492 OFFSET_IN_LOWER, lower_32_bits(src_addr), 493 494 OFFSET_OUT_UPPER, 495 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 496 497 OFFSET_OUT_LOWER, lower_32_bits(dst_addr), 498 PITCH_IN, PAGE_SIZE, 499 PITCH_OUT, PAGE_SIZE, 500 LINE_LENGTH_IN, PAGE_SIZE, 501 LINE_COUNT, npages); 502 503 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 504 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 505 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 506 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 507 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 508 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 509 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 510 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | 511 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | 512 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 513 return 0; 514 } 515 516 static int 517 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, 518 enum nouveau_aper dst_aper, u64 dst_addr) 519 { 520 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 521 u32 launch_dma = 0; 522 int ret; 523 524 ret = PUSH_WAIT(push, 12); 525 if (ret) 526 return ret; 527 528 switch (dst_aper) { 529 case NOUVEAU_APER_VRAM: 530 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 531 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 532 break; 533 case NOUVEAU_APER_HOST: 534 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 535 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 536 break; 537 default: 538 return -EINVAL; 539 } 540 541 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 542 543 PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, 544 SET_REMAP_CONST_B, 0, 545 546 SET_REMAP_COMPONENTS, 547 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | 548 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | 549 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | 550 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); 551 552 PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, 553 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 554 555 OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); 556 557 PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); 558 559 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 560 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 561 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 562 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 563 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 564 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 565 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 566 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | 567 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | 568 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 569 return 0; 570 } 571 572 static int 573 nouveau_dmem_migrate_init(struct nouveau_drm *drm) 574 { 575 switch (drm->ttm.copy.oclass) { 576 case PASCAL_DMA_COPY_A: 577 case PASCAL_DMA_COPY_B: 578 case VOLTA_DMA_COPY_A: 579 case TURING_DMA_COPY_A: 580 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; 581 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; 582 drm->dmem->migrate.chan = drm->ttm.chan; 583 return 0; 584 default: 585 break; 586 } 587 return -ENODEV; 588 } 589 590 void 591 nouveau_dmem_init(struct nouveau_drm *drm) 592 { 593 int ret; 594 595 /* This only make sense on PASCAL or newer */ 596 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) 597 return; 598 599 if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) 600 return; 601 602 drm->dmem->drm = drm; 603 mutex_init(&drm->dmem->mutex); 604 INIT_LIST_HEAD(&drm->dmem->chunks); 605 mutex_init(&drm->dmem->mutex); 606 spin_lock_init(&drm->dmem->lock); 607 608 /* Initialize migration dma helpers before registering memory */ 609 ret = nouveau_dmem_migrate_init(drm); 610 if (ret) { 611 kfree(drm->dmem); 612 drm->dmem = NULL; 613 } 614 } 615 616 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, 617 struct nouveau_svmm *svmm, unsigned long src, 618 dma_addr_t *dma_addr, u64 *pfn) 619 { 620 struct device *dev = drm->dev->dev; 621 struct page *dpage, *spage; 622 unsigned long paddr; 623 624 spage = migrate_pfn_to_page(src); 625 if (!(src & MIGRATE_PFN_MIGRATE)) 626 goto out; 627 628 dpage = nouveau_dmem_page_alloc_locked(drm); 629 if (!dpage) 630 goto out; 631 632 paddr = nouveau_dmem_page_addr(dpage); 633 if (spage) { 634 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), 635 DMA_BIDIRECTIONAL); 636 if (dma_mapping_error(dev, *dma_addr)) 637 goto out_free_page; 638 if (drm->dmem->migrate.copy_func(drm, 1, 639 NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) 640 goto out_dma_unmap; 641 } else { 642 *dma_addr = DMA_MAPPING_ERROR; 643 if (drm->dmem->migrate.clear_func(drm, page_size(dpage), 644 NOUVEAU_APER_VRAM, paddr)) 645 goto out_free_page; 646 } 647 648 dpage->zone_device_data = svmm; 649 *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | 650 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); 651 if (src & MIGRATE_PFN_WRITE) 652 *pfn |= NVIF_VMM_PFNMAP_V0_W; 653 return migrate_pfn(page_to_pfn(dpage)); 654 655 out_dma_unmap: 656 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 657 out_free_page: 658 nouveau_dmem_page_free_locked(drm, dpage); 659 out: 660 *pfn = NVIF_VMM_PFNMAP_V0_NONE; 661 return 0; 662 } 663 664 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, 665 struct nouveau_svmm *svmm, struct migrate_vma *args, 666 dma_addr_t *dma_addrs, u64 *pfns) 667 { 668 struct nouveau_fence *fence; 669 unsigned long addr = args->start, nr_dma = 0, i; 670 671 for (i = 0; addr < args->end; i++) { 672 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, 673 args->src[i], dma_addrs + nr_dma, pfns + i); 674 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) 675 nr_dma++; 676 addr += PAGE_SIZE; 677 } 678 679 nouveau_fence_new(drm->dmem->migrate.chan, false, &fence); 680 migrate_vma_pages(args); 681 nouveau_dmem_fence_done(&fence); 682 nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); 683 684 while (nr_dma--) { 685 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, 686 DMA_BIDIRECTIONAL); 687 } 688 migrate_vma_finalize(args); 689 } 690 691 int 692 nouveau_dmem_migrate_vma(struct nouveau_drm *drm, 693 struct nouveau_svmm *svmm, 694 struct vm_area_struct *vma, 695 unsigned long start, 696 unsigned long end) 697 { 698 unsigned long npages = (end - start) >> PAGE_SHIFT; 699 unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); 700 dma_addr_t *dma_addrs; 701 struct migrate_vma args = { 702 .vma = vma, 703 .start = start, 704 .pgmap_owner = drm->dev, 705 .flags = MIGRATE_VMA_SELECT_SYSTEM, 706 }; 707 unsigned long i; 708 u64 *pfns; 709 int ret = -ENOMEM; 710 711 if (drm->dmem == NULL) 712 return -ENODEV; 713 714 args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); 715 if (!args.src) 716 goto out; 717 args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); 718 if (!args.dst) 719 goto out_free_src; 720 721 dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); 722 if (!dma_addrs) 723 goto out_free_dst; 724 725 pfns = nouveau_pfns_alloc(max); 726 if (!pfns) 727 goto out_free_dma; 728 729 for (i = 0; i < npages; i += max) { 730 if (args.start + (max << PAGE_SHIFT) > end) 731 args.end = end; 732 else 733 args.end = args.start + (max << PAGE_SHIFT); 734 735 ret = migrate_vma_setup(&args); 736 if (ret) 737 goto out_free_pfns; 738 739 if (args.cpages) 740 nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, 741 pfns); 742 args.start = args.end; 743 } 744 745 ret = 0; 746 out_free_pfns: 747 nouveau_pfns_free(pfns); 748 out_free_dma: 749 kfree(dma_addrs); 750 out_free_dst: 751 kfree(args.dst); 752 out_free_src: 753 kfree(args.src); 754 out: 755 return ret; 756 } 757