xref: /openbmc/linux/drivers/gpu/drm/nouveau/nouveau_chan.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <nvif/push006c.h>
25 
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/cl006b.h>
29 #include <nvif/cl506f.h>
30 #include <nvif/cl906f.h>
31 #include <nvif/cla06f.h>
32 #include <nvif/clc36f.h>
33 #include <nvif/ioctl.h>
34 
35 #include "nouveau_drv.h"
36 #include "nouveau_dma.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_chan.h"
39 #include "nouveau_fence.h"
40 #include "nouveau_abi16.h"
41 #include "nouveau_vmm.h"
42 #include "nouveau_svm.h"
43 
44 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
45 int nouveau_vram_pushbuf;
46 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
47 
48 static int
49 nouveau_channel_killed(struct nvif_notify *ntfy)
50 {
51 	struct nouveau_channel *chan = container_of(ntfy, typeof(*chan), kill);
52 	struct nouveau_cli *cli = (void *)chan->user.client;
53 	NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
54 	atomic_set(&chan->killed, 1);
55 	if (chan->fence)
56 		nouveau_fence_context_kill(chan->fence, -ENODEV);
57 	return NVIF_NOTIFY_DROP;
58 }
59 
60 int
61 nouveau_channel_idle(struct nouveau_channel *chan)
62 {
63 	if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
64 		struct nouveau_cli *cli = (void *)chan->user.client;
65 		struct nouveau_fence *fence = NULL;
66 		int ret;
67 
68 		ret = nouveau_fence_new(chan, false, &fence);
69 		if (!ret) {
70 			ret = nouveau_fence_wait(fence, false, false);
71 			nouveau_fence_unref(&fence);
72 		}
73 
74 		if (ret) {
75 			NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
76 				  chan->chid, nvxx_client(&cli->base)->name);
77 			return ret;
78 		}
79 	}
80 	return 0;
81 }
82 
83 void
84 nouveau_channel_del(struct nouveau_channel **pchan)
85 {
86 	struct nouveau_channel *chan = *pchan;
87 	if (chan) {
88 		struct nouveau_cli *cli = (void *)chan->user.client;
89 
90 		if (chan->fence)
91 			nouveau_fence(chan->drm)->context_del(chan);
92 
93 		if (cli)
94 			nouveau_svmm_part(chan->vmm->svmm, chan->inst);
95 
96 		nvif_object_dtor(&chan->nvsw);
97 		nvif_object_dtor(&chan->gart);
98 		nvif_object_dtor(&chan->vram);
99 		nvif_notify_dtor(&chan->kill);
100 		nvif_object_dtor(&chan->user);
101 		nvif_object_dtor(&chan->push.ctxdma);
102 		nouveau_vma_del(&chan->push.vma);
103 		nouveau_bo_unmap(chan->push.buffer);
104 		if (chan->push.buffer && chan->push.buffer->bo.pin_count)
105 			nouveau_bo_unpin(chan->push.buffer);
106 		nouveau_bo_ref(NULL, &chan->push.buffer);
107 		kfree(chan);
108 	}
109 	*pchan = NULL;
110 }
111 
112 static void
113 nouveau_channel_kick(struct nvif_push *push)
114 {
115 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
116 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
117 	FIRE_RING(chan);
118 	chan->chan._push.bgn = chan->chan._push.cur;
119 }
120 
121 static int
122 nouveau_channel_wait(struct nvif_push *push, u32 size)
123 {
124 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
125 	int ret;
126 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
127 	ret = RING_SPACE(chan, size);
128 	if (ret == 0) {
129 		chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
130 		chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
131 		chan->chan._push.cur = chan->chan._push.bgn;
132 		chan->chan._push.end = chan->chan._push.bgn + size;
133 	}
134 	return ret;
135 }
136 
137 static int
138 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
139 		     u32 size, struct nouveau_channel **pchan)
140 {
141 	struct nouveau_cli *cli = (void *)device->object.client;
142 	struct nv_dma_v0 args = {};
143 	struct nouveau_channel *chan;
144 	u32 target;
145 	int ret;
146 
147 	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
148 	if (!chan)
149 		return -ENOMEM;
150 
151 	chan->device = device;
152 	chan->drm = drm;
153 	chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm;
154 	atomic_set(&chan->killed, 0);
155 
156 	/* allocate memory for dma push buffer */
157 	target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
158 	if (nouveau_vram_pushbuf)
159 		target = NOUVEAU_GEM_DOMAIN_VRAM;
160 
161 	ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
162 			    &chan->push.buffer);
163 	if (ret == 0) {
164 		ret = nouveau_bo_pin(chan->push.buffer, target, false);
165 		if (ret == 0)
166 			ret = nouveau_bo_map(chan->push.buffer);
167 	}
168 
169 	if (ret) {
170 		nouveau_channel_del(pchan);
171 		return ret;
172 	}
173 
174 	chan->chan._push.mem.object.parent = cli->base.object.parent;
175 	chan->chan._push.mem.object.client = &cli->base;
176 	chan->chan._push.mem.object.name = "chanPush";
177 	chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
178 	chan->chan._push.wait = nouveau_channel_wait;
179 	chan->chan._push.kick = nouveau_channel_kick;
180 	chan->chan.push = &chan->chan._push;
181 
182 	/* create dma object covering the *entire* memory space that the
183 	 * pushbuf lives in, this is because the GEM code requires that
184 	 * we be able to call out to other (indirect) push buffers
185 	 */
186 	chan->push.addr = chan->push.buffer->offset;
187 
188 	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
189 		ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
190 				      &chan->push.vma);
191 		if (ret) {
192 			nouveau_channel_del(pchan);
193 			return ret;
194 		}
195 
196 		chan->push.addr = chan->push.vma->addr;
197 
198 		if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
199 			return 0;
200 
201 		args.target = NV_DMA_V0_TARGET_VM;
202 		args.access = NV_DMA_V0_ACCESS_VM;
203 		args.start = 0;
204 		args.limit = chan->vmm->vmm.limit - 1;
205 	} else
206 	if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
207 		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
208 			/* nv04 vram pushbuf hack, retarget to its location in
209 			 * the framebuffer bar rather than direct vram access..
210 			 * nfi why this exists, it came from the -nv ddx.
211 			 */
212 			args.target = NV_DMA_V0_TARGET_PCI;
213 			args.access = NV_DMA_V0_ACCESS_RDWR;
214 			args.start = nvxx_device(device)->func->
215 				resource_addr(nvxx_device(device), 1);
216 			args.limit = args.start + device->info.ram_user - 1;
217 		} else {
218 			args.target = NV_DMA_V0_TARGET_VRAM;
219 			args.access = NV_DMA_V0_ACCESS_RDWR;
220 			args.start = 0;
221 			args.limit = device->info.ram_user - 1;
222 		}
223 	} else {
224 		if (chan->drm->agp.bridge) {
225 			args.target = NV_DMA_V0_TARGET_AGP;
226 			args.access = NV_DMA_V0_ACCESS_RDWR;
227 			args.start = chan->drm->agp.base;
228 			args.limit = chan->drm->agp.base +
229 				     chan->drm->agp.size - 1;
230 		} else {
231 			args.target = NV_DMA_V0_TARGET_VM;
232 			args.access = NV_DMA_V0_ACCESS_RDWR;
233 			args.start = 0;
234 			args.limit = chan->vmm->vmm.limit - 1;
235 		}
236 	}
237 
238 	ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
239 			       NV_DMA_FROM_MEMORY, &args, sizeof(args),
240 			       &chan->push.ctxdma);
241 	if (ret) {
242 		nouveau_channel_del(pchan);
243 		return ret;
244 	}
245 
246 	return 0;
247 }
248 
249 static int
250 nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
251 		    u64 runlist, bool priv, struct nouveau_channel **pchan)
252 {
253 	static const u16 oclasses[] = { AMPERE_CHANNEL_GPFIFO_B,
254 					TURING_CHANNEL_GPFIFO_A,
255 					VOLTA_CHANNEL_GPFIFO_A,
256 					PASCAL_CHANNEL_GPFIFO_A,
257 					MAXWELL_CHANNEL_GPFIFO_A,
258 					KEPLER_CHANNEL_GPFIFO_B,
259 					KEPLER_CHANNEL_GPFIFO_A,
260 					FERMI_CHANNEL_GPFIFO,
261 					G82_CHANNEL_GPFIFO,
262 					NV50_CHANNEL_GPFIFO,
263 					0 };
264 	const u16 *oclass = oclasses;
265 	union {
266 		struct nv50_channel_gpfifo_v0 nv50;
267 		struct fermi_channel_gpfifo_v0 fermi;
268 		struct kepler_channel_gpfifo_a_v0 kepler;
269 		struct volta_channel_gpfifo_a_v0 volta;
270 	} args;
271 	struct nouveau_channel *chan;
272 	u32 size;
273 	int ret;
274 
275 	/* allocate dma push buffer */
276 	ret = nouveau_channel_prep(drm, device, 0x12000, &chan);
277 	*pchan = chan;
278 	if (ret)
279 		return ret;
280 
281 	/* create channel object */
282 	do {
283 		if (oclass[0] >= VOLTA_CHANNEL_GPFIFO_A) {
284 			args.volta.version = 0;
285 			args.volta.ilength = 0x02000;
286 			args.volta.ioffset = 0x10000 + chan->push.addr;
287 			args.volta.runlist = runlist;
288 			args.volta.vmm = nvif_handle(&chan->vmm->vmm.object);
289 			args.volta.priv = priv;
290 			size = sizeof(args.volta);
291 		} else
292 		if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
293 			args.kepler.version = 0;
294 			args.kepler.ilength = 0x02000;
295 			args.kepler.ioffset = 0x10000 + chan->push.addr;
296 			args.kepler.runlist = runlist;
297 			args.kepler.vmm = nvif_handle(&chan->vmm->vmm.object);
298 			args.kepler.priv = priv;
299 			size = sizeof(args.kepler);
300 		} else
301 		if (oclass[0] >= FERMI_CHANNEL_GPFIFO) {
302 			args.fermi.version = 0;
303 			args.fermi.ilength = 0x02000;
304 			args.fermi.ioffset = 0x10000 + chan->push.addr;
305 			args.fermi.vmm = nvif_handle(&chan->vmm->vmm.object);
306 			size = sizeof(args.fermi);
307 		} else {
308 			args.nv50.version = 0;
309 			args.nv50.ilength = 0x02000;
310 			args.nv50.ioffset = 0x10000 + chan->push.addr;
311 			args.nv50.pushbuf = nvif_handle(&chan->push.ctxdma);
312 			args.nv50.vmm = nvif_handle(&chan->vmm->vmm.object);
313 			size = sizeof(args.nv50);
314 		}
315 
316 		ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
317 				       *oclass++, &args, size, &chan->user);
318 		if (ret == 0) {
319 			if (chan->user.oclass >= VOLTA_CHANNEL_GPFIFO_A) {
320 				chan->chid = args.volta.chid;
321 				chan->inst = args.volta.inst;
322 				chan->token = args.volta.token;
323 			} else
324 			if (chan->user.oclass >= KEPLER_CHANNEL_GPFIFO_A) {
325 				chan->chid = args.kepler.chid;
326 				chan->inst = args.kepler.inst;
327 			} else
328 			if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
329 				chan->chid = args.fermi.chid;
330 			} else {
331 				chan->chid = args.nv50.chid;
332 			}
333 			return ret;
334 		}
335 	} while (*oclass);
336 
337 	nouveau_channel_del(pchan);
338 	return ret;
339 }
340 
341 static int
342 nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
343 		    struct nouveau_channel **pchan)
344 {
345 	static const u16 oclasses[] = { NV40_CHANNEL_DMA,
346 					NV17_CHANNEL_DMA,
347 					NV10_CHANNEL_DMA,
348 					NV03_CHANNEL_DMA,
349 					0 };
350 	const u16 *oclass = oclasses;
351 	struct nv03_channel_dma_v0 args;
352 	struct nouveau_channel *chan;
353 	int ret;
354 
355 	/* allocate dma push buffer */
356 	ret = nouveau_channel_prep(drm, device, 0x10000, &chan);
357 	*pchan = chan;
358 	if (ret)
359 		return ret;
360 
361 	/* create channel object */
362 	args.version = 0;
363 	args.pushbuf = nvif_handle(&chan->push.ctxdma);
364 	args.offset = chan->push.addr;
365 
366 	do {
367 		ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
368 				       *oclass++, &args, sizeof(args),
369 				       &chan->user);
370 		if (ret == 0) {
371 			chan->chid = args.chid;
372 			return ret;
373 		}
374 	} while (ret && *oclass);
375 
376 	nouveau_channel_del(pchan);
377 	return ret;
378 }
379 
380 static int
381 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
382 {
383 	struct nvif_device *device = chan->device;
384 	struct nouveau_drm *drm = chan->drm;
385 	struct nv_dma_v0 args = {};
386 	int ret, i;
387 
388 	nvif_object_map(&chan->user, NULL, 0);
389 
390 	if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO &&
391 	    chan->user.oclass < AMPERE_CHANNEL_GPFIFO_B) {
392 		ret = nvif_notify_ctor(&chan->user, "abi16ChanKilled",
393 				       nouveau_channel_killed,
394 				       true, NV906F_V0_NTFY_KILLED,
395 				       NULL, 0, 0, &chan->kill);
396 		if (ret == 0)
397 			ret = nvif_notify_get(&chan->kill);
398 		if (ret) {
399 			NV_ERROR(drm, "Failed to request channel kill "
400 				      "notification: %d\n", ret);
401 			return ret;
402 		}
403 	}
404 
405 	/* allocate dma objects to cover all allowed vram, and gart */
406 	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
407 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
408 			args.target = NV_DMA_V0_TARGET_VM;
409 			args.access = NV_DMA_V0_ACCESS_VM;
410 			args.start = 0;
411 			args.limit = chan->vmm->vmm.limit - 1;
412 		} else {
413 			args.target = NV_DMA_V0_TARGET_VRAM;
414 			args.access = NV_DMA_V0_ACCESS_RDWR;
415 			args.start = 0;
416 			args.limit = device->info.ram_user - 1;
417 		}
418 
419 		ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
420 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
421 				       &chan->vram);
422 		if (ret)
423 			return ret;
424 
425 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
426 			args.target = NV_DMA_V0_TARGET_VM;
427 			args.access = NV_DMA_V0_ACCESS_VM;
428 			args.start = 0;
429 			args.limit = chan->vmm->vmm.limit - 1;
430 		} else
431 		if (chan->drm->agp.bridge) {
432 			args.target = NV_DMA_V0_TARGET_AGP;
433 			args.access = NV_DMA_V0_ACCESS_RDWR;
434 			args.start = chan->drm->agp.base;
435 			args.limit = chan->drm->agp.base +
436 				     chan->drm->agp.size - 1;
437 		} else {
438 			args.target = NV_DMA_V0_TARGET_VM;
439 			args.access = NV_DMA_V0_ACCESS_RDWR;
440 			args.start = 0;
441 			args.limit = chan->vmm->vmm.limit - 1;
442 		}
443 
444 		ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
445 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
446 				       &chan->gart);
447 		if (ret)
448 			return ret;
449 	}
450 
451 	/* initialise dma tracking parameters */
452 	switch (chan->user.oclass & 0x00ff) {
453 	case 0x006b:
454 	case 0x006e:
455 		chan->user_put = 0x40;
456 		chan->user_get = 0x44;
457 		chan->dma.max = (0x10000 / 4) - 2;
458 		break;
459 	default:
460 		chan->user_put = 0x40;
461 		chan->user_get = 0x44;
462 		chan->user_get_hi = 0x60;
463 		chan->dma.ib_base =  0x10000 / 4;
464 		chan->dma.ib_max  = (0x02000 / 8) - 1;
465 		chan->dma.ib_put  = 0;
466 		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
467 		chan->dma.max = chan->dma.ib_base;
468 		break;
469 	}
470 
471 	chan->dma.put = 0;
472 	chan->dma.cur = chan->dma.put;
473 	chan->dma.free = chan->dma.max - chan->dma.cur;
474 
475 	ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
476 	if (ret)
477 		return ret;
478 
479 	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
480 		PUSH_DATA(chan->chan.push, 0x00000000);
481 
482 	/* allocate software object class (used for fences on <= nv05) */
483 	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
484 		ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
485 				       NVIF_CLASS_SW_NV04,
486 				       NULL, 0, &chan->nvsw);
487 		if (ret)
488 			return ret;
489 
490 		ret = PUSH_WAIT(chan->chan.push, 2);
491 		if (ret)
492 			return ret;
493 
494 		PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
495 		PUSH_KICK(chan->chan.push);
496 	}
497 
498 	/* initialise synchronisation */
499 	return nouveau_fence(chan->drm)->context_new(chan);
500 }
501 
502 int
503 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
504 		    u32 arg0, u32 arg1, bool priv,
505 		    struct nouveau_channel **pchan)
506 {
507 	struct nouveau_cli *cli = (void *)device->object.client;
508 	int ret;
509 
510 	/* hack until fencenv50 is fixed, and agp access relaxed */
511 	ret = nouveau_channel_ind(drm, device, arg0, priv, pchan);
512 	if (ret) {
513 		NV_PRINTK(dbg, cli, "ib channel create, %d\n", ret);
514 		ret = nouveau_channel_dma(drm, device, pchan);
515 		if (ret) {
516 			NV_PRINTK(dbg, cli, "dma channel create, %d\n", ret);
517 			return ret;
518 		}
519 	}
520 
521 	ret = nouveau_channel_init(*pchan, arg0, arg1);
522 	if (ret) {
523 		NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
524 		nouveau_channel_del(pchan);
525 		return ret;
526 	}
527 
528 	ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
529 	if (ret)
530 		nouveau_channel_del(pchan);
531 
532 	return ret;
533 }
534 
535 int
536 nouveau_channels_init(struct nouveau_drm *drm)
537 {
538 	struct {
539 		struct nv_device_info_v1 m;
540 		struct {
541 			struct nv_device_info_v1_data channels;
542 		} v;
543 	} args = {
544 		.m.version = 1,
545 		.m.count = sizeof(args.v) / sizeof(args.v.channels),
546 		.v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
547 	};
548 	struct nvif_object *device = &drm->client.device.object;
549 	int ret;
550 
551 	ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
552 	if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
553 		return -ENODEV;
554 
555 	drm->chan.nr = args.v.channels.data;
556 	drm->chan.context_base = dma_fence_context_alloc(drm->chan.nr);
557 	return 0;
558 }
559