1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 25 #include <core/object.h> 26 #include <core/client.h> 27 #include <core/device.h> 28 #include <core/class.h> 29 30 #include <subdev/fb.h> 31 #include <subdev/vm.h> 32 #include <subdev/instmem.h> 33 34 #include <engine/software.h> 35 36 #include "nouveau_drm.h" 37 #include "nouveau_dma.h" 38 #include "nouveau_bo.h" 39 #include "nouveau_chan.h" 40 #include "nouveau_fence.h" 41 #include "nouveau_abi16.h" 42 43 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM"); 44 static int nouveau_vram_pushbuf; 45 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400); 46 47 int 48 nouveau_channel_idle(struct nouveau_channel *chan) 49 { 50 struct nouveau_cli *cli = chan->cli; 51 struct nouveau_fence *fence = NULL; 52 int ret; 53 54 ret = nouveau_fence_new(chan, false, &fence); 55 if (!ret) { 56 ret = nouveau_fence_wait(fence, false, false); 57 nouveau_fence_unref(&fence); 58 } 59 60 if (ret) 61 NV_ERROR(cli, "failed to idle channel 0x%08x [%s]\n", 62 chan->handle, cli->base.name); 63 return ret; 64 } 65 66 void 67 nouveau_channel_del(struct nouveau_channel **pchan) 68 { 69 struct nouveau_channel *chan = *pchan; 70 if (chan) { 71 struct nouveau_object *client = nv_object(chan->cli); 72 if (chan->fence) { 73 nouveau_channel_idle(chan); 74 nouveau_fence(chan->drm)->context_del(chan); 75 } 76 nouveau_object_del(client, NVDRM_DEVICE, chan->handle); 77 nouveau_object_del(client, NVDRM_DEVICE, chan->push.handle); 78 nouveau_bo_vma_del(chan->push.buffer, &chan->push.vma); 79 nouveau_bo_unmap(chan->push.buffer); 80 if (chan->push.buffer && chan->push.buffer->pin_refcnt) 81 nouveau_bo_unpin(chan->push.buffer); 82 nouveau_bo_ref(NULL, &chan->push.buffer); 83 kfree(chan); 84 } 85 *pchan = NULL; 86 } 87 88 static int 89 nouveau_channel_prep(struct nouveau_drm *drm, struct nouveau_cli *cli, 90 u32 parent, u32 handle, u32 size, 91 struct nouveau_channel **pchan) 92 { 93 struct nouveau_device *device = nv_device(drm->device); 94 struct nouveau_instmem *imem = nouveau_instmem(device); 95 struct nouveau_vmmgr *vmm = nouveau_vmmgr(device); 96 struct nouveau_fb *pfb = nouveau_fb(device); 97 struct nouveau_client *client = &cli->base; 98 struct nv_dma_class args = {}; 99 struct nouveau_channel *chan; 100 struct nouveau_object *push; 101 u32 target; 102 int ret; 103 104 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL); 105 if (!chan) 106 return -ENOMEM; 107 108 chan->cli = cli; 109 chan->drm = drm; 110 chan->handle = handle; 111 112 /* allocate memory for dma push buffer */ 113 target = TTM_PL_FLAG_TT; 114 if (nouveau_vram_pushbuf) 115 target = TTM_PL_FLAG_VRAM; 116 117 ret = nouveau_bo_new(drm->dev, size, 0, target, 0, 0, NULL, 118 &chan->push.buffer); 119 if (ret == 0) { 120 ret = nouveau_bo_pin(chan->push.buffer, target); 121 if (ret == 0) 122 ret = nouveau_bo_map(chan->push.buffer); 123 } 124 125 if (ret) { 126 nouveau_channel_del(pchan); 127 return ret; 128 } 129 130 /* create dma object covering the *entire* memory space that the 131 * pushbuf lives in, this is because the GEM code requires that 132 * we be able to call out to other (indirect) push buffers 133 */ 134 chan->push.vma.offset = chan->push.buffer->bo.offset; 135 chan->push.handle = NVDRM_PUSH | (handle & 0xffff); 136 137 if (device->card_type >= NV_50) { 138 ret = nouveau_bo_vma_add(chan->push.buffer, client->vm, 139 &chan->push.vma); 140 if (ret) { 141 nouveau_channel_del(pchan); 142 return ret; 143 } 144 145 args.flags = NV_DMA_TARGET_VM | NV_DMA_ACCESS_VM; 146 args.start = 0; 147 args.limit = client->vm->vmm->limit - 1; 148 } else 149 if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) { 150 u64 limit = pfb->ram->size - imem->reserved - 1; 151 if (device->card_type == NV_04) { 152 /* nv04 vram pushbuf hack, retarget to its location in 153 * the framebuffer bar rather than direct vram access.. 154 * nfi why this exists, it came from the -nv ddx. 155 */ 156 args.flags = NV_DMA_TARGET_PCI | NV_DMA_ACCESS_RDWR; 157 args.start = pci_resource_start(device->pdev, 1); 158 args.limit = args.start + limit; 159 } else { 160 args.flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR; 161 args.start = 0; 162 args.limit = limit; 163 } 164 } else { 165 if (chan->drm->agp.stat == ENABLED) { 166 args.flags = NV_DMA_TARGET_AGP | NV_DMA_ACCESS_RDWR; 167 args.start = chan->drm->agp.base; 168 args.limit = chan->drm->agp.base + 169 chan->drm->agp.size - 1; 170 } else { 171 args.flags = NV_DMA_TARGET_VM | NV_DMA_ACCESS_RDWR; 172 args.start = 0; 173 args.limit = vmm->limit - 1; 174 } 175 } 176 177 ret = nouveau_object_new(nv_object(chan->cli), parent, 178 chan->push.handle, 0x0002, 179 &args, sizeof(args), &push); 180 if (ret) { 181 nouveau_channel_del(pchan); 182 return ret; 183 } 184 185 return 0; 186 } 187 188 static int 189 nouveau_channel_ind(struct nouveau_drm *drm, struct nouveau_cli *cli, 190 u32 parent, u32 handle, u32 engine, 191 struct nouveau_channel **pchan) 192 { 193 static const u16 oclasses[] = { NVE0_CHANNEL_IND_CLASS, 194 NVC0_CHANNEL_IND_CLASS, 195 NV84_CHANNEL_IND_CLASS, 196 NV50_CHANNEL_IND_CLASS, 197 0 }; 198 const u16 *oclass = oclasses; 199 struct nve0_channel_ind_class args; 200 struct nouveau_channel *chan; 201 int ret; 202 203 /* allocate dma push buffer */ 204 ret = nouveau_channel_prep(drm, cli, parent, handle, 0x12000, &chan); 205 *pchan = chan; 206 if (ret) 207 return ret; 208 209 /* create channel object */ 210 args.pushbuf = chan->push.handle; 211 args.ioffset = 0x10000 + chan->push.vma.offset; 212 args.ilength = 0x02000; 213 args.engine = engine; 214 215 do { 216 ret = nouveau_object_new(nv_object(cli), parent, handle, 217 *oclass++, &args, sizeof(args), 218 &chan->object); 219 if (ret == 0) 220 return ret; 221 } while (*oclass); 222 223 nouveau_channel_del(pchan); 224 return ret; 225 } 226 227 static int 228 nouveau_channel_dma(struct nouveau_drm *drm, struct nouveau_cli *cli, 229 u32 parent, u32 handle, struct nouveau_channel **pchan) 230 { 231 static const u16 oclasses[] = { NV40_CHANNEL_DMA_CLASS, 232 NV17_CHANNEL_DMA_CLASS, 233 NV10_CHANNEL_DMA_CLASS, 234 NV03_CHANNEL_DMA_CLASS, 235 0 }; 236 const u16 *oclass = oclasses; 237 struct nv03_channel_dma_class args; 238 struct nouveau_channel *chan; 239 int ret; 240 241 /* allocate dma push buffer */ 242 ret = nouveau_channel_prep(drm, cli, parent, handle, 0x10000, &chan); 243 *pchan = chan; 244 if (ret) 245 return ret; 246 247 /* create channel object */ 248 args.pushbuf = chan->push.handle; 249 args.offset = chan->push.vma.offset; 250 251 do { 252 ret = nouveau_object_new(nv_object(cli), parent, handle, 253 *oclass++, &args, sizeof(args), 254 &chan->object); 255 if (ret == 0) 256 return ret; 257 } while (ret && *oclass); 258 259 nouveau_channel_del(pchan); 260 return ret; 261 } 262 263 static int 264 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart) 265 { 266 struct nouveau_client *client = nv_client(chan->cli); 267 struct nouveau_device *device = nv_device(chan->drm->device); 268 struct nouveau_instmem *imem = nouveau_instmem(device); 269 struct nouveau_vmmgr *vmm = nouveau_vmmgr(device); 270 struct nouveau_fb *pfb = nouveau_fb(device); 271 struct nouveau_software_chan *swch; 272 struct nouveau_object *object; 273 struct nv_dma_class args = {}; 274 int ret, i; 275 276 /* allocate dma objects to cover all allowed vram, and gart */ 277 if (device->card_type < NV_C0) { 278 if (device->card_type >= NV_50) { 279 args.flags = NV_DMA_TARGET_VM | NV_DMA_ACCESS_VM; 280 args.start = 0; 281 args.limit = client->vm->vmm->limit - 1; 282 } else { 283 args.flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR; 284 args.start = 0; 285 args.limit = pfb->ram->size - imem->reserved - 1; 286 } 287 288 ret = nouveau_object_new(nv_object(client), chan->handle, vram, 289 0x003d, &args, sizeof(args), &object); 290 if (ret) 291 return ret; 292 293 if (device->card_type >= NV_50) { 294 args.flags = NV_DMA_TARGET_VM | NV_DMA_ACCESS_VM; 295 args.start = 0; 296 args.limit = client->vm->vmm->limit - 1; 297 } else 298 if (chan->drm->agp.stat == ENABLED) { 299 args.flags = NV_DMA_TARGET_AGP | NV_DMA_ACCESS_RDWR; 300 args.start = chan->drm->agp.base; 301 args.limit = chan->drm->agp.base + 302 chan->drm->agp.size - 1; 303 } else { 304 args.flags = NV_DMA_TARGET_VM | NV_DMA_ACCESS_RDWR; 305 args.start = 0; 306 args.limit = vmm->limit - 1; 307 } 308 309 ret = nouveau_object_new(nv_object(client), chan->handle, gart, 310 0x003d, &args, sizeof(args), &object); 311 if (ret) 312 return ret; 313 314 chan->vram = vram; 315 chan->gart = gart; 316 } 317 318 /* initialise dma tracking parameters */ 319 switch (nv_hclass(chan->object) & 0x00ff) { 320 case 0x006b: 321 case 0x006e: 322 chan->user_put = 0x40; 323 chan->user_get = 0x44; 324 chan->dma.max = (0x10000 / 4) - 2; 325 break; 326 default: 327 chan->user_put = 0x40; 328 chan->user_get = 0x44; 329 chan->user_get_hi = 0x60; 330 chan->dma.ib_base = 0x10000 / 4; 331 chan->dma.ib_max = (0x02000 / 8) - 1; 332 chan->dma.ib_put = 0; 333 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put; 334 chan->dma.max = chan->dma.ib_base; 335 break; 336 } 337 338 chan->dma.put = 0; 339 chan->dma.cur = chan->dma.put; 340 chan->dma.free = chan->dma.max - chan->dma.cur; 341 342 ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS); 343 if (ret) 344 return ret; 345 346 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++) 347 OUT_RING(chan, 0x00000000); 348 349 /* allocate software object class (used for fences on <= nv05) */ 350 if (device->card_type < NV_10) { 351 ret = nouveau_object_new(nv_object(client), chan->handle, 352 NvSw, 0x006e, NULL, 0, &object); 353 if (ret) 354 return ret; 355 356 swch = (void *)object->parent; 357 swch->flip = nouveau_flip_complete; 358 swch->flip_data = chan; 359 360 ret = RING_SPACE(chan, 2); 361 if (ret) 362 return ret; 363 364 BEGIN_NV04(chan, NvSubSw, 0x0000, 1); 365 OUT_RING (chan, NvSw); 366 FIRE_RING (chan); 367 } 368 369 /* initialise synchronisation */ 370 return nouveau_fence(chan->drm)->context_new(chan); 371 } 372 373 int 374 nouveau_channel_new(struct nouveau_drm *drm, struct nouveau_cli *cli, 375 u32 parent, u32 handle, u32 arg0, u32 arg1, 376 struct nouveau_channel **pchan) 377 { 378 int ret; 379 380 ret = nouveau_channel_ind(drm, cli, parent, handle, arg0, pchan); 381 if (ret) { 382 NV_DEBUG(cli, "ib channel create, %d\n", ret); 383 ret = nouveau_channel_dma(drm, cli, parent, handle, pchan); 384 if (ret) { 385 NV_DEBUG(cli, "dma channel create, %d\n", ret); 386 return ret; 387 } 388 } 389 390 ret = nouveau_channel_init(*pchan, arg0, arg1); 391 if (ret) { 392 NV_ERROR(cli, "channel failed to initialise, %d\n", ret); 393 nouveau_channel_del(pchan); 394 return ret; 395 } 396 397 return 0; 398 } 399