xref: /openbmc/linux/drivers/gpu/drm/nouveau/nouveau_chan.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <nvif/push006c.h>
25 
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/if0020.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 #include "nouveau_abi16.h"
36 #include "nouveau_vmm.h"
37 #include "nouveau_svm.h"
38 
39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
40 int nouveau_vram_pushbuf;
41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
42 
43 static int
44 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
45 {
46 	struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
47 	struct nouveau_cli *cli = (void *)chan->user.client;
48 
49 	NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
50 	atomic_set(&chan->killed, 1);
51 	if (chan->fence)
52 		nouveau_fence_context_kill(chan->fence, -ENODEV);
53 
54 	return NVIF_EVENT_DROP;
55 }
56 
57 int
58 nouveau_channel_idle(struct nouveau_channel *chan)
59 {
60 	if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
61 		struct nouveau_cli *cli = (void *)chan->user.client;
62 		struct nouveau_fence *fence = NULL;
63 		int ret;
64 
65 		ret = nouveau_fence_new(chan, false, &fence);
66 		if (!ret) {
67 			ret = nouveau_fence_wait(fence, false, false);
68 			nouveau_fence_unref(&fence);
69 		}
70 
71 		if (ret) {
72 			NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
73 				  chan->chid, nvxx_client(&cli->base)->name);
74 			return ret;
75 		}
76 	}
77 	return 0;
78 }
79 
80 void
81 nouveau_channel_del(struct nouveau_channel **pchan)
82 {
83 	struct nouveau_channel *chan = *pchan;
84 	if (chan) {
85 		struct nouveau_cli *cli = (void *)chan->user.client;
86 
87 		if (chan->fence)
88 			nouveau_fence(chan->drm)->context_del(chan);
89 
90 		if (cli)
91 			nouveau_svmm_part(chan->vmm->svmm, chan->inst);
92 
93 		nvif_object_dtor(&chan->blit);
94 		nvif_object_dtor(&chan->nvsw);
95 		nvif_object_dtor(&chan->gart);
96 		nvif_object_dtor(&chan->vram);
97 		nvif_event_dtor(&chan->kill);
98 		nvif_object_dtor(&chan->user);
99 		nvif_mem_dtor(&chan->mem_userd);
100 		nvif_object_dtor(&chan->push.ctxdma);
101 		nouveau_vma_del(&chan->push.vma);
102 		nouveau_bo_unmap(chan->push.buffer);
103 		if (chan->push.buffer && chan->push.buffer->bo.pin_count)
104 			nouveau_bo_unpin(chan->push.buffer);
105 		nouveau_bo_ref(NULL, &chan->push.buffer);
106 		kfree(chan);
107 	}
108 	*pchan = NULL;
109 }
110 
111 static void
112 nouveau_channel_kick(struct nvif_push *push)
113 {
114 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
115 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
116 	FIRE_RING(chan);
117 	chan->chan._push.bgn = chan->chan._push.cur;
118 }
119 
120 static int
121 nouveau_channel_wait(struct nvif_push *push, u32 size)
122 {
123 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
124 	int ret;
125 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
126 	ret = RING_SPACE(chan, size);
127 	if (ret == 0) {
128 		chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
129 		chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
130 		chan->chan._push.cur = chan->chan._push.bgn;
131 		chan->chan._push.end = chan->chan._push.bgn + size;
132 	}
133 	return ret;
134 }
135 
136 static int
137 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
138 		     u32 size, struct nouveau_channel **pchan)
139 {
140 	struct nouveau_cli *cli = (void *)device->object.client;
141 	struct nv_dma_v0 args = {};
142 	struct nouveau_channel *chan;
143 	u32 target;
144 	int ret;
145 
146 	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
147 	if (!chan)
148 		return -ENOMEM;
149 
150 	chan->device = device;
151 	chan->drm = drm;
152 	chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm;
153 	atomic_set(&chan->killed, 0);
154 
155 	/* allocate memory for dma push buffer */
156 	target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
157 	if (nouveau_vram_pushbuf)
158 		target = NOUVEAU_GEM_DOMAIN_VRAM;
159 
160 	ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
161 			    &chan->push.buffer);
162 	if (ret == 0) {
163 		ret = nouveau_bo_pin(chan->push.buffer, target, false);
164 		if (ret == 0)
165 			ret = nouveau_bo_map(chan->push.buffer);
166 	}
167 
168 	if (ret) {
169 		nouveau_channel_del(pchan);
170 		return ret;
171 	}
172 
173 	chan->chan._push.mem.object.parent = cli->base.object.parent;
174 	chan->chan._push.mem.object.client = &cli->base;
175 	chan->chan._push.mem.object.name = "chanPush";
176 	chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
177 	chan->chan._push.wait = nouveau_channel_wait;
178 	chan->chan._push.kick = nouveau_channel_kick;
179 	chan->chan.push = &chan->chan._push;
180 
181 	/* create dma object covering the *entire* memory space that the
182 	 * pushbuf lives in, this is because the GEM code requires that
183 	 * we be able to call out to other (indirect) push buffers
184 	 */
185 	chan->push.addr = chan->push.buffer->offset;
186 
187 	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
188 		ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
189 				      &chan->push.vma);
190 		if (ret) {
191 			nouveau_channel_del(pchan);
192 			return ret;
193 		}
194 
195 		chan->push.addr = chan->push.vma->addr;
196 
197 		if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
198 			return 0;
199 
200 		args.target = NV_DMA_V0_TARGET_VM;
201 		args.access = NV_DMA_V0_ACCESS_VM;
202 		args.start = 0;
203 		args.limit = chan->vmm->vmm.limit - 1;
204 	} else
205 	if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
206 		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
207 			/* nv04 vram pushbuf hack, retarget to its location in
208 			 * the framebuffer bar rather than direct vram access..
209 			 * nfi why this exists, it came from the -nv ddx.
210 			 */
211 			args.target = NV_DMA_V0_TARGET_PCI;
212 			args.access = NV_DMA_V0_ACCESS_RDWR;
213 			args.start = nvxx_device(device)->func->
214 				resource_addr(nvxx_device(device), 1);
215 			args.limit = args.start + device->info.ram_user - 1;
216 		} else {
217 			args.target = NV_DMA_V0_TARGET_VRAM;
218 			args.access = NV_DMA_V0_ACCESS_RDWR;
219 			args.start = 0;
220 			args.limit = device->info.ram_user - 1;
221 		}
222 	} else {
223 		if (chan->drm->agp.bridge) {
224 			args.target = NV_DMA_V0_TARGET_AGP;
225 			args.access = NV_DMA_V0_ACCESS_RDWR;
226 			args.start = chan->drm->agp.base;
227 			args.limit = chan->drm->agp.base +
228 				     chan->drm->agp.size - 1;
229 		} else {
230 			args.target = NV_DMA_V0_TARGET_VM;
231 			args.access = NV_DMA_V0_ACCESS_RDWR;
232 			args.start = 0;
233 			args.limit = chan->vmm->vmm.limit - 1;
234 		}
235 	}
236 
237 	ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
238 			       NV_DMA_FROM_MEMORY, &args, sizeof(args),
239 			       &chan->push.ctxdma);
240 	if (ret) {
241 		nouveau_channel_del(pchan);
242 		return ret;
243 	}
244 
245 	return 0;
246 }
247 
248 static int
249 nouveau_channel_ctor(struct nouveau_drm *drm, struct nvif_device *device, bool priv, u64 runm,
250 		     struct nouveau_channel **pchan)
251 {
252 	static const struct {
253 		s32 oclass;
254 		int version;
255 	} hosts[] = {
256 		{  AMPERE_CHANNEL_GPFIFO_B, 0 },
257 		{  AMPERE_CHANNEL_GPFIFO_A, 0 },
258 		{  TURING_CHANNEL_GPFIFO_A, 0 },
259 		{   VOLTA_CHANNEL_GPFIFO_A, 0 },
260 		{  PASCAL_CHANNEL_GPFIFO_A, 0 },
261 		{ MAXWELL_CHANNEL_GPFIFO_A, 0 },
262 		{  KEPLER_CHANNEL_GPFIFO_B, 0 },
263 		{  KEPLER_CHANNEL_GPFIFO_A, 0 },
264 		{   FERMI_CHANNEL_GPFIFO  , 0 },
265 		{     G82_CHANNEL_GPFIFO  , 0 },
266 		{    NV50_CHANNEL_GPFIFO  , 0 },
267 		{    NV40_CHANNEL_DMA     , 0 },
268 		{    NV17_CHANNEL_DMA     , 0 },
269 		{    NV10_CHANNEL_DMA     , 0 },
270 		{    NV03_CHANNEL_DMA     , 0 },
271 		{}
272 	};
273 	struct {
274 		struct nvif_chan_v0 chan;
275 		char name[TASK_COMM_LEN+16];
276 	} args;
277 	struct nouveau_cli *cli = (void *)device->object.client;
278 	struct nouveau_channel *chan;
279 	const u64 plength = 0x10000;
280 	const u64 ioffset = plength;
281 	const u64 ilength = 0x02000;
282 	char name[TASK_COMM_LEN];
283 	int cid, ret;
284 	u64 size;
285 
286 	cid = nvif_mclass(&device->object, hosts);
287 	if (cid < 0)
288 		return cid;
289 
290 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
291 		size = plength;
292 	else
293 		size = ioffset + ilength;
294 
295 	/* allocate dma push buffer */
296 	ret = nouveau_channel_prep(drm, device, size, &chan);
297 	*pchan = chan;
298 	if (ret)
299 		return ret;
300 
301 	/* create channel object */
302 	args.chan.version = 0;
303 	args.chan.namelen = sizeof(args.name);
304 	args.chan.runlist = __ffs64(runm);
305 	args.chan.runq = 0;
306 	args.chan.priv = priv;
307 	args.chan.devm = BIT(0);
308 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
309 		args.chan.vmm = 0;
310 		args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
311 		args.chan.offset = chan->push.addr;
312 		args.chan.length = 0;
313 	} else {
314 		args.chan.vmm = nvif_handle(&chan->vmm->vmm.object);
315 		if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
316 			args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
317 		else
318 			args.chan.ctxdma = 0;
319 		args.chan.offset = ioffset + chan->push.addr;
320 		args.chan.length = ilength;
321 	}
322 	args.chan.huserd = 0;
323 	args.chan.ouserd = 0;
324 
325 	/* allocate userd */
326 	if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
327 		ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
328 				    NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
329 				    0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
330 		if (ret)
331 			return ret;
332 
333 		args.chan.huserd = nvif_handle(&chan->mem_userd.object);
334 		args.chan.ouserd = 0;
335 
336 		chan->userd = &chan->mem_userd.object;
337 	} else {
338 		chan->userd = &chan->user;
339 	}
340 
341 	get_task_comm(name, current);
342 	snprintf(args.name, sizeof(args.name), "%s[%d]", name, task_pid_nr(current));
343 
344 	ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
345 			       &args, sizeof(args), &chan->user);
346 	if (ret) {
347 		nouveau_channel_del(pchan);
348 		return ret;
349 	}
350 
351 	chan->runlist = args.chan.runlist;
352 	chan->chid = args.chan.chid;
353 	chan->inst = args.chan.inst;
354 	chan->token = args.chan.token;
355 	return 0;
356 }
357 
358 static int
359 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
360 {
361 	struct nvif_device *device = chan->device;
362 	struct nouveau_drm *drm = chan->drm;
363 	struct nv_dma_v0 args = {};
364 	int ret, i;
365 
366 	ret = nvif_object_map(chan->userd, NULL, 0);
367 	if (ret)
368 		return ret;
369 
370 	if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
371 		struct {
372 			struct nvif_event_v0 base;
373 			struct nvif_chan_event_v0 host;
374 		} args;
375 
376 		args.host.version = 0;
377 		args.host.type = NVIF_CHAN_EVENT_V0_KILLED;
378 
379 		ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
380 				      nouveau_channel_killed, false,
381 				      &args.base, sizeof(args), &chan->kill);
382 		if (ret == 0)
383 			ret = nvif_event_allow(&chan->kill);
384 		if (ret) {
385 			NV_ERROR(drm, "Failed to request channel kill "
386 				      "notification: %d\n", ret);
387 			return ret;
388 		}
389 	}
390 
391 	/* allocate dma objects to cover all allowed vram, and gart */
392 	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
393 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
394 			args.target = NV_DMA_V0_TARGET_VM;
395 			args.access = NV_DMA_V0_ACCESS_VM;
396 			args.start = 0;
397 			args.limit = chan->vmm->vmm.limit - 1;
398 		} else {
399 			args.target = NV_DMA_V0_TARGET_VRAM;
400 			args.access = NV_DMA_V0_ACCESS_RDWR;
401 			args.start = 0;
402 			args.limit = device->info.ram_user - 1;
403 		}
404 
405 		ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
406 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
407 				       &chan->vram);
408 		if (ret)
409 			return ret;
410 
411 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
412 			args.target = NV_DMA_V0_TARGET_VM;
413 			args.access = NV_DMA_V0_ACCESS_VM;
414 			args.start = 0;
415 			args.limit = chan->vmm->vmm.limit - 1;
416 		} else
417 		if (chan->drm->agp.bridge) {
418 			args.target = NV_DMA_V0_TARGET_AGP;
419 			args.access = NV_DMA_V0_ACCESS_RDWR;
420 			args.start = chan->drm->agp.base;
421 			args.limit = chan->drm->agp.base +
422 				     chan->drm->agp.size - 1;
423 		} else {
424 			args.target = NV_DMA_V0_TARGET_VM;
425 			args.access = NV_DMA_V0_ACCESS_RDWR;
426 			args.start = 0;
427 			args.limit = chan->vmm->vmm.limit - 1;
428 		}
429 
430 		ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
431 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
432 				       &chan->gart);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	/* initialise dma tracking parameters */
438 	switch (chan->user.oclass & 0x00ff) {
439 	case 0x006b:
440 	case 0x006e:
441 		chan->user_put = 0x40;
442 		chan->user_get = 0x44;
443 		chan->dma.max = (0x10000 / 4) - 2;
444 		break;
445 	default:
446 		chan->user_put = 0x40;
447 		chan->user_get = 0x44;
448 		chan->user_get_hi = 0x60;
449 		chan->dma.ib_base =  0x10000 / 4;
450 		chan->dma.ib_max  = (0x02000 / 8) - 1;
451 		chan->dma.ib_put  = 0;
452 		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
453 		chan->dma.max = chan->dma.ib_base;
454 		break;
455 	}
456 
457 	chan->dma.put = 0;
458 	chan->dma.cur = chan->dma.put;
459 	chan->dma.free = chan->dma.max - chan->dma.cur;
460 
461 	ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
462 	if (ret)
463 		return ret;
464 
465 	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
466 		PUSH_DATA(chan->chan.push, 0x00000000);
467 
468 	/* allocate software object class (used for fences on <= nv05) */
469 	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
470 		ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
471 				       NVIF_CLASS_SW_NV04,
472 				       NULL, 0, &chan->nvsw);
473 		if (ret)
474 			return ret;
475 
476 		ret = PUSH_WAIT(chan->chan.push, 2);
477 		if (ret)
478 			return ret;
479 
480 		PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
481 		PUSH_KICK(chan->chan.push);
482 	}
483 
484 	/* initialise synchronisation */
485 	return nouveau_fence(chan->drm)->context_new(chan);
486 }
487 
488 int
489 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
490 		    bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
491 {
492 	struct nouveau_cli *cli = (void *)device->object.client;
493 	int ret;
494 
495 	ret = nouveau_channel_ctor(drm, device, priv, runm, pchan);
496 	if (ret) {
497 		NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
498 		return ret;
499 	}
500 
501 	ret = nouveau_channel_init(*pchan, vram, gart);
502 	if (ret) {
503 		NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
504 		nouveau_channel_del(pchan);
505 		return ret;
506 	}
507 
508 	ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
509 	if (ret)
510 		nouveau_channel_del(pchan);
511 
512 	return ret;
513 }
514 
515 void
516 nouveau_channels_fini(struct nouveau_drm *drm)
517 {
518 	kfree(drm->runl);
519 }
520 
521 int
522 nouveau_channels_init(struct nouveau_drm *drm)
523 {
524 	struct {
525 		struct nv_device_info_v1 m;
526 		struct {
527 			struct nv_device_info_v1_data channels;
528 			struct nv_device_info_v1_data runlists;
529 		} v;
530 	} args = {
531 		.m.version = 1,
532 		.m.count = sizeof(args.v) / sizeof(args.v.channels),
533 		.v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
534 		.v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS,
535 	};
536 	struct nvif_object *device = &drm->client.device.object;
537 	int ret, i;
538 
539 	ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
540 	if (ret ||
541 	    args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data ||
542 	    args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
543 		return -ENODEV;
544 
545 	drm->chan_nr = drm->chan_total = args.v.channels.data;
546 	drm->runl_nr = fls64(args.v.runlists.data);
547 	drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
548 	if (!drm->runl)
549 		return -ENOMEM;
550 
551 	if (drm->chan_nr == 0) {
552 		for (i = 0; i < drm->runl_nr; i++) {
553 			if (!(args.v.runlists.data & BIT(i)))
554 				continue;
555 
556 			args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
557 			args.v.channels.data = i;
558 
559 			ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
560 			if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
561 				return -ENODEV;
562 
563 			drm->runl[i].chan_nr = args.v.channels.data;
564 			drm->runl[i].chan_id_base = drm->chan_total;
565 			drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
566 
567 			drm->chan_total += drm->runl[i].chan_nr;
568 		}
569 	} else {
570 		drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
571 		for (i = 1; i < drm->runl_nr; i++)
572 			drm->runl[i].context_base = drm->runl[0].context_base;
573 
574 	}
575 
576 	return 0;
577 }
578