1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <nvif/push006c.h> 25 26 #include <nvif/class.h> 27 #include <nvif/cl0002.h> 28 #include <nvif/if0020.h> 29 30 #include "nouveau_drv.h" 31 #include "nouveau_dma.h" 32 #include "nouveau_bo.h" 33 #include "nouveau_chan.h" 34 #include "nouveau_fence.h" 35 #include "nouveau_abi16.h" 36 #include "nouveau_vmm.h" 37 #include "nouveau_svm.h" 38 39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM"); 40 int nouveau_vram_pushbuf; 41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400); 42 43 void 44 nouveau_channel_kill(struct nouveau_channel *chan) 45 { 46 atomic_set(&chan->killed, 1); 47 if (chan->fence) 48 nouveau_fence_context_kill(chan->fence, -ENODEV); 49 } 50 51 static int 52 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc) 53 { 54 struct nouveau_channel *chan = container_of(event, typeof(*chan), kill); 55 struct nouveau_cli *cli = (void *)chan->user.client; 56 57 NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid); 58 59 if (unlikely(!atomic_read(&chan->killed))) 60 nouveau_channel_kill(chan); 61 62 return NVIF_EVENT_DROP; 63 } 64 65 int 66 nouveau_channel_idle(struct nouveau_channel *chan) 67 { 68 if (likely(chan && chan->fence && !atomic_read(&chan->killed))) { 69 struct nouveau_cli *cli = (void *)chan->user.client; 70 struct nouveau_fence *fence = NULL; 71 int ret; 72 73 ret = nouveau_fence_new(&fence, chan); 74 if (!ret) { 75 ret = nouveau_fence_wait(fence, false, false); 76 nouveau_fence_unref(&fence); 77 } 78 79 if (ret) { 80 NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n", 81 chan->chid, nvxx_client(&cli->base)->name); 82 return ret; 83 } 84 } 85 return 0; 86 } 87 88 void 89 nouveau_channel_del(struct nouveau_channel **pchan) 90 { 91 struct nouveau_channel *chan = *pchan; 92 if (chan) { 93 struct nouveau_cli *cli = (void *)chan->user.client; 94 95 if (chan->fence) 96 nouveau_fence(chan->drm)->context_del(chan); 97 98 if (cli) 99 nouveau_svmm_part(chan->vmm->svmm, chan->inst); 100 101 nvif_object_dtor(&chan->blit); 102 nvif_object_dtor(&chan->nvsw); 103 nvif_object_dtor(&chan->gart); 104 nvif_object_dtor(&chan->vram); 105 nvif_event_dtor(&chan->kill); 106 nvif_object_dtor(&chan->user); 107 nvif_mem_dtor(&chan->mem_userd); 108 nvif_object_dtor(&chan->push.ctxdma); 109 nouveau_vma_del(&chan->push.vma); 110 nouveau_bo_unmap(chan->push.buffer); 111 if (chan->push.buffer && chan->push.buffer->bo.pin_count) 112 nouveau_bo_unpin(chan->push.buffer); 113 nouveau_bo_ref(NULL, &chan->push.buffer); 114 kfree(chan); 115 } 116 *pchan = NULL; 117 } 118 119 static void 120 nouveau_channel_kick(struct nvif_push *push) 121 { 122 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push); 123 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn); 124 FIRE_RING(chan); 125 chan->chan._push.bgn = chan->chan._push.cur; 126 } 127 128 static int 129 nouveau_channel_wait(struct nvif_push *push, u32 size) 130 { 131 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push); 132 int ret; 133 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn); 134 ret = RING_SPACE(chan, size); 135 if (ret == 0) { 136 chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr; 137 chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur; 138 chan->chan._push.cur = chan->chan._push.bgn; 139 chan->chan._push.end = chan->chan._push.bgn + size; 140 } 141 return ret; 142 } 143 144 static int 145 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device, 146 u32 size, struct nouveau_channel **pchan) 147 { 148 struct nouveau_cli *cli = (void *)device->object.client; 149 struct nv_dma_v0 args = {}; 150 struct nouveau_channel *chan; 151 u32 target; 152 int ret; 153 154 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL); 155 if (!chan) 156 return -ENOMEM; 157 158 chan->device = device; 159 chan->drm = drm; 160 chan->vmm = nouveau_cli_vmm(cli); 161 atomic_set(&chan->killed, 0); 162 163 /* allocate memory for dma push buffer */ 164 target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT; 165 if (nouveau_vram_pushbuf) 166 target = NOUVEAU_GEM_DOMAIN_VRAM; 167 168 ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL, 169 &chan->push.buffer); 170 if (ret == 0) { 171 ret = nouveau_bo_pin(chan->push.buffer, target, false); 172 if (ret == 0) 173 ret = nouveau_bo_map(chan->push.buffer); 174 } 175 176 if (ret) { 177 nouveau_channel_del(pchan); 178 return ret; 179 } 180 181 chan->chan._push.mem.object.parent = cli->base.object.parent; 182 chan->chan._push.mem.object.client = &cli->base; 183 chan->chan._push.mem.object.name = "chanPush"; 184 chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual; 185 chan->chan._push.wait = nouveau_channel_wait; 186 chan->chan._push.kick = nouveau_channel_kick; 187 chan->chan.push = &chan->chan._push; 188 189 /* create dma object covering the *entire* memory space that the 190 * pushbuf lives in, this is because the GEM code requires that 191 * we be able to call out to other (indirect) push buffers 192 */ 193 chan->push.addr = chan->push.buffer->offset; 194 195 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { 196 ret = nouveau_vma_new(chan->push.buffer, chan->vmm, 197 &chan->push.vma); 198 if (ret) { 199 nouveau_channel_del(pchan); 200 return ret; 201 } 202 203 chan->push.addr = chan->push.vma->addr; 204 205 if (device->info.family >= NV_DEVICE_INFO_V0_FERMI) 206 return 0; 207 208 args.target = NV_DMA_V0_TARGET_VM; 209 args.access = NV_DMA_V0_ACCESS_VM; 210 args.start = 0; 211 args.limit = chan->vmm->vmm.limit - 1; 212 } else 213 if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) { 214 if (device->info.family == NV_DEVICE_INFO_V0_TNT) { 215 /* nv04 vram pushbuf hack, retarget to its location in 216 * the framebuffer bar rather than direct vram access.. 217 * nfi why this exists, it came from the -nv ddx. 218 */ 219 args.target = NV_DMA_V0_TARGET_PCI; 220 args.access = NV_DMA_V0_ACCESS_RDWR; 221 args.start = nvxx_device(device)->func-> 222 resource_addr(nvxx_device(device), 1); 223 args.limit = args.start + device->info.ram_user - 1; 224 } else { 225 args.target = NV_DMA_V0_TARGET_VRAM; 226 args.access = NV_DMA_V0_ACCESS_RDWR; 227 args.start = 0; 228 args.limit = device->info.ram_user - 1; 229 } 230 } else { 231 if (chan->drm->agp.bridge) { 232 args.target = NV_DMA_V0_TARGET_AGP; 233 args.access = NV_DMA_V0_ACCESS_RDWR; 234 args.start = chan->drm->agp.base; 235 args.limit = chan->drm->agp.base + 236 chan->drm->agp.size - 1; 237 } else { 238 args.target = NV_DMA_V0_TARGET_VM; 239 args.access = NV_DMA_V0_ACCESS_RDWR; 240 args.start = 0; 241 args.limit = chan->vmm->vmm.limit - 1; 242 } 243 } 244 245 ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0, 246 NV_DMA_FROM_MEMORY, &args, sizeof(args), 247 &chan->push.ctxdma); 248 if (ret) { 249 nouveau_channel_del(pchan); 250 return ret; 251 } 252 253 return 0; 254 } 255 256 static int 257 nouveau_channel_ctor(struct nouveau_drm *drm, struct nvif_device *device, bool priv, u64 runm, 258 struct nouveau_channel **pchan) 259 { 260 const struct nvif_mclass hosts[] = { 261 { AMPERE_CHANNEL_GPFIFO_B, 0 }, 262 { AMPERE_CHANNEL_GPFIFO_A, 0 }, 263 { TURING_CHANNEL_GPFIFO_A, 0 }, 264 { VOLTA_CHANNEL_GPFIFO_A, 0 }, 265 { PASCAL_CHANNEL_GPFIFO_A, 0 }, 266 { MAXWELL_CHANNEL_GPFIFO_A, 0 }, 267 { KEPLER_CHANNEL_GPFIFO_B, 0 }, 268 { KEPLER_CHANNEL_GPFIFO_A, 0 }, 269 { FERMI_CHANNEL_GPFIFO , 0 }, 270 { G82_CHANNEL_GPFIFO , 0 }, 271 { NV50_CHANNEL_GPFIFO , 0 }, 272 { NV40_CHANNEL_DMA , 0 }, 273 { NV17_CHANNEL_DMA , 0 }, 274 { NV10_CHANNEL_DMA , 0 }, 275 { NV03_CHANNEL_DMA , 0 }, 276 {} 277 }; 278 struct { 279 struct nvif_chan_v0 chan; 280 char name[TASK_COMM_LEN+16]; 281 } args; 282 struct nouveau_cli *cli = (void *)device->object.client; 283 struct nouveau_channel *chan; 284 const u64 plength = 0x10000; 285 const u64 ioffset = plength; 286 const u64 ilength = 0x02000; 287 char name[TASK_COMM_LEN]; 288 int cid, ret; 289 u64 size; 290 291 cid = nvif_mclass(&device->object, hosts); 292 if (cid < 0) 293 return cid; 294 295 if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) 296 size = plength; 297 else 298 size = ioffset + ilength; 299 300 /* allocate dma push buffer */ 301 ret = nouveau_channel_prep(drm, device, size, &chan); 302 *pchan = chan; 303 if (ret) 304 return ret; 305 306 /* create channel object */ 307 args.chan.version = 0; 308 args.chan.namelen = sizeof(args.name); 309 args.chan.runlist = __ffs64(runm); 310 args.chan.runq = 0; 311 args.chan.priv = priv; 312 args.chan.devm = BIT(0); 313 if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) { 314 args.chan.vmm = 0; 315 args.chan.ctxdma = nvif_handle(&chan->push.ctxdma); 316 args.chan.offset = chan->push.addr; 317 args.chan.length = 0; 318 } else { 319 args.chan.vmm = nvif_handle(&chan->vmm->vmm.object); 320 if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO) 321 args.chan.ctxdma = nvif_handle(&chan->push.ctxdma); 322 else 323 args.chan.ctxdma = 0; 324 args.chan.offset = ioffset + chan->push.addr; 325 args.chan.length = ilength; 326 } 327 args.chan.huserd = 0; 328 args.chan.ouserd = 0; 329 330 /* allocate userd */ 331 if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) { 332 ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100, 333 NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE, 334 0, PAGE_SIZE, NULL, 0, &chan->mem_userd); 335 if (ret) 336 return ret; 337 338 args.chan.huserd = nvif_handle(&chan->mem_userd.object); 339 args.chan.ouserd = 0; 340 341 chan->userd = &chan->mem_userd.object; 342 } else { 343 chan->userd = &chan->user; 344 } 345 346 get_task_comm(name, current); 347 snprintf(args.name, sizeof(args.name), "%s[%d]", name, task_pid_nr(current)); 348 349 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass, 350 &args, sizeof(args), &chan->user); 351 if (ret) { 352 nouveau_channel_del(pchan); 353 return ret; 354 } 355 356 chan->runlist = args.chan.runlist; 357 chan->chid = args.chan.chid; 358 chan->inst = args.chan.inst; 359 chan->token = args.chan.token; 360 return 0; 361 } 362 363 static int 364 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart) 365 { 366 struct nvif_device *device = chan->device; 367 struct nouveau_drm *drm = chan->drm; 368 struct nv_dma_v0 args = {}; 369 int ret, i; 370 371 ret = nvif_object_map(chan->userd, NULL, 0); 372 if (ret) 373 return ret; 374 375 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) { 376 struct { 377 struct nvif_event_v0 base; 378 struct nvif_chan_event_v0 host; 379 } args; 380 381 args.host.version = 0; 382 args.host.type = NVIF_CHAN_EVENT_V0_KILLED; 383 384 ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid, 385 nouveau_channel_killed, false, 386 &args.base, sizeof(args), &chan->kill); 387 if (ret == 0) 388 ret = nvif_event_allow(&chan->kill); 389 if (ret) { 390 NV_ERROR(drm, "Failed to request channel kill " 391 "notification: %d\n", ret); 392 return ret; 393 } 394 } 395 396 /* allocate dma objects to cover all allowed vram, and gart */ 397 if (device->info.family < NV_DEVICE_INFO_V0_FERMI) { 398 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { 399 args.target = NV_DMA_V0_TARGET_VM; 400 args.access = NV_DMA_V0_ACCESS_VM; 401 args.start = 0; 402 args.limit = chan->vmm->vmm.limit - 1; 403 } else { 404 args.target = NV_DMA_V0_TARGET_VRAM; 405 args.access = NV_DMA_V0_ACCESS_RDWR; 406 args.start = 0; 407 args.limit = device->info.ram_user - 1; 408 } 409 410 ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram, 411 NV_DMA_IN_MEMORY, &args, sizeof(args), 412 &chan->vram); 413 if (ret) 414 return ret; 415 416 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { 417 args.target = NV_DMA_V0_TARGET_VM; 418 args.access = NV_DMA_V0_ACCESS_VM; 419 args.start = 0; 420 args.limit = chan->vmm->vmm.limit - 1; 421 } else 422 if (chan->drm->agp.bridge) { 423 args.target = NV_DMA_V0_TARGET_AGP; 424 args.access = NV_DMA_V0_ACCESS_RDWR; 425 args.start = chan->drm->agp.base; 426 args.limit = chan->drm->agp.base + 427 chan->drm->agp.size - 1; 428 } else { 429 args.target = NV_DMA_V0_TARGET_VM; 430 args.access = NV_DMA_V0_ACCESS_RDWR; 431 args.start = 0; 432 args.limit = chan->vmm->vmm.limit - 1; 433 } 434 435 ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart, 436 NV_DMA_IN_MEMORY, &args, sizeof(args), 437 &chan->gart); 438 if (ret) 439 return ret; 440 } 441 442 /* initialise dma tracking parameters */ 443 switch (chan->user.oclass) { 444 case NV03_CHANNEL_DMA: 445 case NV10_CHANNEL_DMA: 446 case NV17_CHANNEL_DMA: 447 case NV40_CHANNEL_DMA: 448 chan->user_put = 0x40; 449 chan->user_get = 0x44; 450 chan->dma.max = (0x10000 / 4) - 2; 451 break; 452 default: 453 chan->user_put = 0x40; 454 chan->user_get = 0x44; 455 chan->user_get_hi = 0x60; 456 chan->dma.ib_base = 0x10000 / 4; 457 chan->dma.ib_max = NV50_DMA_IB_MAX; 458 chan->dma.ib_put = 0; 459 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put; 460 chan->dma.max = chan->dma.ib_base; 461 break; 462 } 463 464 chan->dma.put = 0; 465 chan->dma.cur = chan->dma.put; 466 chan->dma.free = chan->dma.max - chan->dma.cur; 467 468 ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS); 469 if (ret) 470 return ret; 471 472 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++) 473 PUSH_DATA(chan->chan.push, 0x00000000); 474 475 /* allocate software object class (used for fences on <= nv05) */ 476 if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) { 477 ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e, 478 NVIF_CLASS_SW_NV04, 479 NULL, 0, &chan->nvsw); 480 if (ret) 481 return ret; 482 483 ret = PUSH_WAIT(chan->chan.push, 2); 484 if (ret) 485 return ret; 486 487 PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle); 488 PUSH_KICK(chan->chan.push); 489 } 490 491 /* initialise synchronisation */ 492 return nouveau_fence(chan->drm)->context_new(chan); 493 } 494 495 int 496 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device, 497 bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan) 498 { 499 struct nouveau_cli *cli = (void *)device->object.client; 500 int ret; 501 502 ret = nouveau_channel_ctor(drm, device, priv, runm, pchan); 503 if (ret) { 504 NV_PRINTK(dbg, cli, "channel create, %d\n", ret); 505 return ret; 506 } 507 508 ret = nouveau_channel_init(*pchan, vram, gart); 509 if (ret) { 510 NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret); 511 nouveau_channel_del(pchan); 512 return ret; 513 } 514 515 ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst); 516 if (ret) 517 nouveau_channel_del(pchan); 518 519 return ret; 520 } 521 522 void 523 nouveau_channels_fini(struct nouveau_drm *drm) 524 { 525 kfree(drm->runl); 526 } 527 528 int 529 nouveau_channels_init(struct nouveau_drm *drm) 530 { 531 struct { 532 struct nv_device_info_v1 m; 533 struct { 534 struct nv_device_info_v1_data channels; 535 struct nv_device_info_v1_data runlists; 536 } v; 537 } args = { 538 .m.version = 1, 539 .m.count = sizeof(args.v) / sizeof(args.v.channels), 540 .v.channels.mthd = NV_DEVICE_HOST_CHANNELS, 541 .v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS, 542 }; 543 struct nvif_object *device = &drm->client.device.object; 544 int ret, i; 545 546 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args)); 547 if (ret || 548 args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data || 549 args.v.channels.mthd == NV_DEVICE_INFO_INVALID) 550 return -ENODEV; 551 552 drm->chan_nr = drm->chan_total = args.v.channels.data; 553 drm->runl_nr = fls64(args.v.runlists.data); 554 drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL); 555 if (!drm->runl) 556 return -ENOMEM; 557 558 if (drm->chan_nr == 0) { 559 for (i = 0; i < drm->runl_nr; i++) { 560 if (!(args.v.runlists.data & BIT(i))) 561 continue; 562 563 args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS; 564 args.v.channels.data = i; 565 566 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args)); 567 if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID) 568 return -ENODEV; 569 570 drm->runl[i].chan_nr = args.v.channels.data; 571 drm->runl[i].chan_id_base = drm->chan_total; 572 drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr); 573 574 drm->chan_total += drm->runl[i].chan_nr; 575 } 576 } else { 577 drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr); 578 for (i = 1; i < drm->runl_nr; i++) 579 drm->runl[i].context_base = drm->runl[0].context_base; 580 581 } 582 583 return 0; 584 } 585