xref: /openbmc/linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 /*
48  * NV10-NV40 tiling helpers
49  */
50 
51 static void
52 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
53 			   u32 addr, u32 size, u32 pitch, u32 flags)
54 {
55 	struct nouveau_drm *drm = nouveau_drm(dev);
56 	int i = reg - drm->tile.reg;
57 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
58 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
59 
60 	nouveau_fence_unref(&reg->fence);
61 
62 	if (tile->pitch)
63 		nvkm_fb_tile_fini(fb, i, tile);
64 
65 	if (pitch)
66 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
67 
68 	nvkm_fb_tile_prog(fb, i, tile);
69 }
70 
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
73 {
74 	struct nouveau_drm *drm = nouveau_drm(dev);
75 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
76 
77 	spin_lock(&drm->tile.lock);
78 
79 	if (!tile->used &&
80 	    (!tile->fence || nouveau_fence_done(tile->fence)))
81 		tile->used = true;
82 	else
83 		tile = NULL;
84 
85 	spin_unlock(&drm->tile.lock);
86 	return tile;
87 }
88 
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 			struct dma_fence *fence)
92 {
93 	struct nouveau_drm *drm = nouveau_drm(dev);
94 
95 	if (tile) {
96 		spin_lock(&drm->tile.lock);
97 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
98 		tile->used = false;
99 		spin_unlock(&drm->tile.lock);
100 	}
101 }
102 
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 		   u32 size, u32 pitch, u32 zeta)
106 {
107 	struct nouveau_drm *drm = nouveau_drm(dev);
108 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
109 	struct nouveau_drm_tile *tile, *found = NULL;
110 	int i;
111 
112 	for (i = 0; i < fb->tile.regions; i++) {
113 		tile = nv10_bo_get_tile_region(dev, i);
114 
115 		if (pitch && !found) {
116 			found = tile;
117 			continue;
118 
119 		} else if (tile && fb->tile.region[i].pitch) {
120 			/* Kill an unused tile region. */
121 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
122 		}
123 
124 		nv10_bo_put_tile_region(dev, tile, NULL);
125 	}
126 
127 	if (found)
128 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
129 	return found;
130 }
131 
132 static void
133 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
134 {
135 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
136 	struct drm_device *dev = drm->dev;
137 	struct nouveau_bo *nvbo = nouveau_bo(bo);
138 
139 	WARN_ON(nvbo->pin_refcnt > 0);
140 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
141 
142 	/*
143 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
144 	 * initialized, so don't attempt to release it.
145 	 */
146 	if (bo->base.dev)
147 		drm_gem_object_release(&bo->base);
148 
149 	kfree(nvbo);
150 }
151 
152 static inline u64
153 roundup_64(u64 x, u32 y)
154 {
155 	x += y - 1;
156 	do_div(x, y);
157 	return x * y;
158 }
159 
160 static void
161 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
162 		       int *align, u64 *size)
163 {
164 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
165 	struct nvif_device *device = &drm->client.device;
166 
167 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
168 		if (nvbo->mode) {
169 			if (device->info.chipset >= 0x40) {
170 				*align = 65536;
171 				*size = roundup_64(*size, 64 * nvbo->mode);
172 
173 			} else if (device->info.chipset >= 0x30) {
174 				*align = 32768;
175 				*size = roundup_64(*size, 64 * nvbo->mode);
176 
177 			} else if (device->info.chipset >= 0x20) {
178 				*align = 16384;
179 				*size = roundup_64(*size, 64 * nvbo->mode);
180 
181 			} else if (device->info.chipset >= 0x10) {
182 				*align = 16384;
183 				*size = roundup_64(*size, 32 * nvbo->mode);
184 			}
185 		}
186 	} else {
187 		*size = roundup_64(*size, (1 << nvbo->page));
188 		*align = max((1 <<  nvbo->page), *align);
189 	}
190 
191 	*size = roundup_64(*size, PAGE_SIZE);
192 }
193 
194 struct nouveau_bo *
195 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 flags,
196 		 u32 tile_mode, u32 tile_flags)
197 {
198 	struct nouveau_drm *drm = cli->drm;
199 	struct nouveau_bo *nvbo;
200 	struct nvif_mmu *mmu = &cli->mmu;
201 	struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
202 	int i, pi = -1;
203 
204 	if (!*size) {
205 		NV_WARN(drm, "skipped size %016llx\n", *size);
206 		return ERR_PTR(-EINVAL);
207 	}
208 
209 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
210 	if (!nvbo)
211 		return ERR_PTR(-ENOMEM);
212 	INIT_LIST_HEAD(&nvbo->head);
213 	INIT_LIST_HEAD(&nvbo->entry);
214 	INIT_LIST_HEAD(&nvbo->vma_list);
215 	nvbo->bo.bdev = &drm->ttm.bdev;
216 
217 	/* This is confusing, and doesn't actually mean we want an uncached
218 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
219 	 * into in nouveau_gem_new().
220 	 */
221 	if (flags & TTM_PL_FLAG_UNCACHED) {
222 		/* Determine if we can get a cache-coherent map, forcing
223 		 * uncached mapping if we can't.
224 		 */
225 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
226 			nvbo->force_coherent = true;
227 	}
228 
229 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
230 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
231 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
232 			kfree(nvbo);
233 			return ERR_PTR(-EINVAL);
234 		}
235 
236 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
237 	} else
238 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
239 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
240 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
241 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
242 			kfree(nvbo);
243 			return ERR_PTR(-EINVAL);
244 		}
245 	} else {
246 		nvbo->zeta = (tile_flags & 0x00000007);
247 	}
248 	nvbo->mode = tile_mode;
249 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
250 
251 	/* Determine the desirable target GPU page size for the buffer. */
252 	for (i = 0; i < vmm->page_nr; i++) {
253 		/* Because we cannot currently allow VMM maps to fail
254 		 * during buffer migration, we need to determine page
255 		 * size for the buffer up-front, and pre-allocate its
256 		 * page tables.
257 		 *
258 		 * Skip page sizes that can't support needed domains.
259 		 */
260 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
261 		    (flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
262 			continue;
263 		if ((flags & TTM_PL_FLAG_TT) &&
264 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
265 			continue;
266 
267 		/* Select this page size if it's the first that supports
268 		 * the potential memory domains, or when it's compatible
269 		 * with the requested compression settings.
270 		 */
271 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
272 			pi = i;
273 
274 		/* Stop once the buffer is larger than the current page size. */
275 		if (*size >= 1ULL << vmm->page[i].shift)
276 			break;
277 	}
278 
279 	if (WARN_ON(pi < 0))
280 		return ERR_PTR(-EINVAL);
281 
282 	/* Disable compression if suitable settings couldn't be found. */
283 	if (nvbo->comp && !vmm->page[pi].comp) {
284 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
285 			nvbo->kind = mmu->kind[nvbo->kind];
286 		nvbo->comp = 0;
287 	}
288 	nvbo->page = vmm->page[pi].shift;
289 
290 	nouveau_bo_fixup_align(nvbo, flags, align, size);
291 
292 	return nvbo;
293 }
294 
295 int
296 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 flags,
297 		struct sg_table *sg, struct dma_resv *robj)
298 {
299 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
300 	size_t acc_size;
301 	int ret;
302 
303 	acc_size = ttm_bo_dma_acc_size(nvbo->bo.bdev, size, sizeof(*nvbo));
304 
305 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
306 	nouveau_bo_placement_set(nvbo, flags, 0);
307 
308 	ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
309 			  &nvbo->placement, align >> PAGE_SHIFT, false,
310 			  acc_size, sg, robj, nouveau_bo_del_ttm);
311 	if (ret) {
312 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
313 		return ret;
314 	}
315 
316 	return 0;
317 }
318 
319 int
320 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
321 	       uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
322 	       struct sg_table *sg, struct dma_resv *robj,
323 	       struct nouveau_bo **pnvbo)
324 {
325 	struct nouveau_bo *nvbo;
326 	int ret;
327 
328 	nvbo = nouveau_bo_alloc(cli, &size, &align, flags, tile_mode,
329 				tile_flags);
330 	if (IS_ERR(nvbo))
331 		return PTR_ERR(nvbo);
332 
333 	ret = nouveau_bo_init(nvbo, size, align, flags, sg, robj);
334 	if (ret)
335 		return ret;
336 
337 	*pnvbo = nvbo;
338 	return 0;
339 }
340 
341 static void
342 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
343 {
344 	*n = 0;
345 
346 	if (type & TTM_PL_FLAG_VRAM)
347 		pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
348 	if (type & TTM_PL_FLAG_TT)
349 		pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
350 	if (type & TTM_PL_FLAG_SYSTEM)
351 		pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
352 }
353 
354 static void
355 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
356 {
357 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
358 	u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
359 	unsigned i, fpfn, lpfn;
360 
361 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
362 	    nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
363 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
364 		/*
365 		 * Make sure that the color and depth buffers are handled
366 		 * by independent memory controller units. Up to a 9x
367 		 * speed up when alpha-blending and depth-test are enabled
368 		 * at the same time.
369 		 */
370 		if (nvbo->zeta) {
371 			fpfn = vram_pages / 2;
372 			lpfn = ~0;
373 		} else {
374 			fpfn = 0;
375 			lpfn = vram_pages / 2;
376 		}
377 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
378 			nvbo->placements[i].fpfn = fpfn;
379 			nvbo->placements[i].lpfn = lpfn;
380 		}
381 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
382 			nvbo->busy_placements[i].fpfn = fpfn;
383 			nvbo->busy_placements[i].lpfn = lpfn;
384 		}
385 	}
386 }
387 
388 void
389 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
390 {
391 	struct ttm_placement *pl = &nvbo->placement;
392 	uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
393 						 TTM_PL_MASK_CACHING) |
394 			 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
395 
396 	pl->placement = nvbo->placements;
397 	set_placement_list(nvbo->placements, &pl->num_placement,
398 			   type, flags);
399 
400 	pl->busy_placement = nvbo->busy_placements;
401 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
402 			   type | busy, flags);
403 
404 	set_placement_range(nvbo, type);
405 }
406 
407 int
408 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
409 {
410 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
411 	struct ttm_buffer_object *bo = &nvbo->bo;
412 	bool force = false, evict = false;
413 	int ret;
414 
415 	ret = ttm_bo_reserve(bo, false, false, NULL);
416 	if (ret)
417 		return ret;
418 
419 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
420 	    memtype == TTM_PL_FLAG_VRAM && contig) {
421 		if (!nvbo->contig) {
422 			nvbo->contig = true;
423 			force = true;
424 			evict = true;
425 		}
426 	}
427 
428 	if (nvbo->pin_refcnt) {
429 		if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
430 			NV_ERROR(drm, "bo %p pinned elsewhere: "
431 				      "0x%08x vs 0x%08x\n", bo,
432 				 1 << bo->mem.mem_type, memtype);
433 			ret = -EBUSY;
434 		}
435 		nvbo->pin_refcnt++;
436 		goto out;
437 	}
438 
439 	if (evict) {
440 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
441 		ret = nouveau_bo_validate(nvbo, false, false);
442 		if (ret)
443 			goto out;
444 	}
445 
446 	nvbo->pin_refcnt++;
447 	nouveau_bo_placement_set(nvbo, memtype, 0);
448 
449 	/* drop pin_refcnt temporarily, so we don't trip the assertion
450 	 * in nouveau_bo_move() that makes sure we're not trying to
451 	 * move a pinned buffer
452 	 */
453 	nvbo->pin_refcnt--;
454 	ret = nouveau_bo_validate(nvbo, false, false);
455 	if (ret)
456 		goto out;
457 	nvbo->pin_refcnt++;
458 
459 	switch (bo->mem.mem_type) {
460 	case TTM_PL_VRAM:
461 		drm->gem.vram_available -= bo->mem.size;
462 		break;
463 	case TTM_PL_TT:
464 		drm->gem.gart_available -= bo->mem.size;
465 		break;
466 	default:
467 		break;
468 	}
469 
470 out:
471 	if (force && ret)
472 		nvbo->contig = false;
473 	ttm_bo_unreserve(bo);
474 	return ret;
475 }
476 
477 int
478 nouveau_bo_unpin(struct nouveau_bo *nvbo)
479 {
480 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
481 	struct ttm_buffer_object *bo = &nvbo->bo;
482 	int ret, ref;
483 
484 	ret = ttm_bo_reserve(bo, false, false, NULL);
485 	if (ret)
486 		return ret;
487 
488 	ref = --nvbo->pin_refcnt;
489 	WARN_ON_ONCE(ref < 0);
490 	if (ref)
491 		goto out;
492 
493 	nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
494 
495 	ret = nouveau_bo_validate(nvbo, false, false);
496 	if (ret == 0) {
497 		switch (bo->mem.mem_type) {
498 		case TTM_PL_VRAM:
499 			drm->gem.vram_available += bo->mem.size;
500 			break;
501 		case TTM_PL_TT:
502 			drm->gem.gart_available += bo->mem.size;
503 			break;
504 		default:
505 			break;
506 		}
507 	}
508 
509 out:
510 	ttm_bo_unreserve(bo);
511 	return ret;
512 }
513 
514 int
515 nouveau_bo_map(struct nouveau_bo *nvbo)
516 {
517 	int ret;
518 
519 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
520 	if (ret)
521 		return ret;
522 
523 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
524 
525 	ttm_bo_unreserve(&nvbo->bo);
526 	return ret;
527 }
528 
529 void
530 nouveau_bo_unmap(struct nouveau_bo *nvbo)
531 {
532 	if (!nvbo)
533 		return;
534 
535 	ttm_bo_kunmap(&nvbo->kmap);
536 }
537 
538 void
539 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
540 {
541 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
542 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
543 	int i;
544 
545 	if (!ttm_dma)
546 		return;
547 
548 	/* Don't waste time looping if the object is coherent */
549 	if (nvbo->force_coherent)
550 		return;
551 
552 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
553 		dma_sync_single_for_device(drm->dev->dev,
554 					   ttm_dma->dma_address[i],
555 					   PAGE_SIZE, DMA_TO_DEVICE);
556 }
557 
558 void
559 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
560 {
561 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
562 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
563 	int i;
564 
565 	if (!ttm_dma)
566 		return;
567 
568 	/* Don't waste time looping if the object is coherent */
569 	if (nvbo->force_coherent)
570 		return;
571 
572 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
573 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
574 					PAGE_SIZE, DMA_FROM_DEVICE);
575 }
576 
577 int
578 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
579 		    bool no_wait_gpu)
580 {
581 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
582 	int ret;
583 
584 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
585 	if (ret)
586 		return ret;
587 
588 	nouveau_bo_sync_for_device(nvbo);
589 
590 	return 0;
591 }
592 
593 void
594 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
595 {
596 	bool is_iomem;
597 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
598 
599 	mem += index;
600 
601 	if (is_iomem)
602 		iowrite16_native(val, (void __force __iomem *)mem);
603 	else
604 		*mem = val;
605 }
606 
607 u32
608 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
609 {
610 	bool is_iomem;
611 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
612 
613 	mem += index;
614 
615 	if (is_iomem)
616 		return ioread32_native((void __force __iomem *)mem);
617 	else
618 		return *mem;
619 }
620 
621 void
622 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
623 {
624 	bool is_iomem;
625 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
626 
627 	mem += index;
628 
629 	if (is_iomem)
630 		iowrite32_native(val, (void __force __iomem *)mem);
631 	else
632 		*mem = val;
633 }
634 
635 static struct ttm_tt *
636 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
637 {
638 #if IS_ENABLED(CONFIG_AGP)
639 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
640 
641 	if (drm->agp.bridge) {
642 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
643 	}
644 #endif
645 
646 	return nouveau_sgdma_create_ttm(bo, page_flags);
647 }
648 
649 static int
650 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
651 			 struct ttm_mem_type_manager *man)
652 {
653 	struct nouveau_drm *drm = nouveau_bdev(bdev);
654 	struct nvif_mmu *mmu = &drm->client.mmu;
655 
656 	switch (type) {
657 	case TTM_PL_SYSTEM:
658 		man->flags = 0;
659 		man->available_caching = TTM_PL_MASK_CACHING;
660 		man->default_caching = TTM_PL_FLAG_CACHED;
661 		break;
662 	case TTM_PL_VRAM:
663 		man->flags = TTM_MEMTYPE_FLAG_FIXED;
664 		man->available_caching = TTM_PL_FLAG_UNCACHED |
665 					 TTM_PL_FLAG_WC;
666 		man->default_caching = TTM_PL_FLAG_WC;
667 
668 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
669 			/* Some BARs do not support being ioremapped WC */
670 			const u8 type = mmu->type[drm->ttm.type_vram].type;
671 			if (type & NVIF_MEM_UNCACHED) {
672 				man->available_caching = TTM_PL_FLAG_UNCACHED;
673 				man->default_caching = TTM_PL_FLAG_UNCACHED;
674 			}
675 
676 			man->func = &nouveau_vram_manager;
677 			man->use_io_reserve_lru = true;
678 		} else {
679 			man->func = &ttm_bo_manager_func;
680 		}
681 		break;
682 	case TTM_PL_TT:
683 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
684 			man->func = &nouveau_gart_manager;
685 		else
686 		if (!drm->agp.bridge)
687 			man->func = &nv04_gart_manager;
688 		else
689 			man->func = &ttm_bo_manager_func;
690 
691 		if (drm->agp.bridge) {
692 			man->flags = 0;
693 			man->available_caching = TTM_PL_FLAG_UNCACHED |
694 				TTM_PL_FLAG_WC;
695 			man->default_caching = TTM_PL_FLAG_WC;
696 		} else {
697 			man->flags = 0;
698 			man->available_caching = TTM_PL_MASK_CACHING;
699 			man->default_caching = TTM_PL_FLAG_CACHED;
700 		}
701 
702 		break;
703 	default:
704 		return -EINVAL;
705 	}
706 	return 0;
707 }
708 
709 static void
710 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
711 {
712 	struct nouveau_bo *nvbo = nouveau_bo(bo);
713 
714 	switch (bo->mem.mem_type) {
715 	case TTM_PL_VRAM:
716 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
717 					 TTM_PL_FLAG_SYSTEM);
718 		break;
719 	default:
720 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
721 		break;
722 	}
723 
724 	*pl = nvbo->placement;
725 }
726 
727 static int
728 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
729 		     struct ttm_mem_reg *reg)
730 {
731 	struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
732 	struct nouveau_mem *new_mem = nouveau_mem(reg);
733 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
734 	int ret;
735 
736 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
737 			   old_mem->mem.size, &old_mem->vma[0]);
738 	if (ret)
739 		return ret;
740 
741 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
742 			   new_mem->mem.size, &old_mem->vma[1]);
743 	if (ret)
744 		goto done;
745 
746 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
747 	if (ret)
748 		goto done;
749 
750 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
751 done:
752 	if (ret) {
753 		nvif_vmm_put(vmm, &old_mem->vma[1]);
754 		nvif_vmm_put(vmm, &old_mem->vma[0]);
755 	}
756 	return 0;
757 }
758 
759 static int
760 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
761 		     bool no_wait_gpu, struct ttm_mem_reg *new_reg)
762 {
763 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
764 	struct nouveau_channel *chan = drm->ttm.chan;
765 	struct nouveau_cli *cli = (void *)chan->user.client;
766 	struct nouveau_fence *fence;
767 	int ret;
768 
769 	/* create temporary vmas for the transfer and attach them to the
770 	 * old nvkm_mem node, these will get cleaned up after ttm has
771 	 * destroyed the ttm_mem_reg
772 	 */
773 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
774 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
775 		if (ret)
776 			return ret;
777 	}
778 
779 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
780 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
781 	if (ret == 0) {
782 		ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
783 		if (ret == 0) {
784 			ret = nouveau_fence_new(chan, false, &fence);
785 			if (ret == 0) {
786 				ret = ttm_bo_move_accel_cleanup(bo,
787 								&fence->base,
788 								evict,
789 								new_reg);
790 				nouveau_fence_unref(&fence);
791 			}
792 		}
793 	}
794 	mutex_unlock(&cli->mutex);
795 	return ret;
796 }
797 
798 void
799 nouveau_bo_move_init(struct nouveau_drm *drm)
800 {
801 	static const struct _method_table {
802 		const char *name;
803 		int engine;
804 		s32 oclass;
805 		int (*exec)(struct nouveau_channel *,
806 			    struct ttm_buffer_object *,
807 			    struct ttm_mem_reg *, struct ttm_mem_reg *);
808 		int (*init)(struct nouveau_channel *, u32 handle);
809 	} _methods[] = {
810 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
811 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
812 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
813 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
814 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
815 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
816 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
817 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
818 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
819 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
820 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
821 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
822 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
823 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
824 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
825 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
826 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
827 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
828 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
829 		{},
830 	};
831 	const struct _method_table *mthd = _methods;
832 	const char *name = "CPU";
833 	int ret;
834 
835 	do {
836 		struct nouveau_channel *chan;
837 
838 		if (mthd->engine)
839 			chan = drm->cechan;
840 		else
841 			chan = drm->channel;
842 		if (chan == NULL)
843 			continue;
844 
845 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
846 				       mthd->oclass | (mthd->engine << 16),
847 				       mthd->oclass, NULL, 0,
848 				       &drm->ttm.copy);
849 		if (ret == 0) {
850 			ret = mthd->init(chan, drm->ttm.copy.handle);
851 			if (ret) {
852 				nvif_object_dtor(&drm->ttm.copy);
853 				continue;
854 			}
855 
856 			drm->ttm.move = mthd->exec;
857 			drm->ttm.chan = chan;
858 			name = mthd->name;
859 			break;
860 		}
861 	} while ((++mthd)->exec);
862 
863 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
864 }
865 
866 static int
867 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
868 		      bool no_wait_gpu, struct ttm_mem_reg *new_reg)
869 {
870 	struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
871 	struct ttm_place placement_memtype = {
872 		.fpfn = 0,
873 		.lpfn = 0,
874 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
875 	};
876 	struct ttm_placement placement;
877 	struct ttm_mem_reg tmp_reg;
878 	int ret;
879 
880 	placement.num_placement = placement.num_busy_placement = 1;
881 	placement.placement = placement.busy_placement = &placement_memtype;
882 
883 	tmp_reg = *new_reg;
884 	tmp_reg.mm_node = NULL;
885 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
886 	if (ret)
887 		return ret;
888 
889 	ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx);
890 	if (ret)
891 		goto out;
892 
893 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
894 	if (ret)
895 		goto out;
896 
897 	ret = ttm_bo_move_ttm(bo, &ctx, new_reg);
898 out:
899 	ttm_bo_mem_put(bo, &tmp_reg);
900 	return ret;
901 }
902 
903 static int
904 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
905 		      bool no_wait_gpu, struct ttm_mem_reg *new_reg)
906 {
907 	struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
908 	struct ttm_place placement_memtype = {
909 		.fpfn = 0,
910 		.lpfn = 0,
911 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
912 	};
913 	struct ttm_placement placement;
914 	struct ttm_mem_reg tmp_reg;
915 	int ret;
916 
917 	placement.num_placement = placement.num_busy_placement = 1;
918 	placement.placement = placement.busy_placement = &placement_memtype;
919 
920 	tmp_reg = *new_reg;
921 	tmp_reg.mm_node = NULL;
922 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
923 	if (ret)
924 		return ret;
925 
926 	ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg);
927 	if (ret)
928 		goto out;
929 
930 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
931 	if (ret)
932 		goto out;
933 
934 out:
935 	ttm_bo_mem_put(bo, &tmp_reg);
936 	return ret;
937 }
938 
939 static void
940 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
941 		     struct ttm_mem_reg *new_reg)
942 {
943 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
944 	struct nouveau_bo *nvbo = nouveau_bo(bo);
945 	struct nouveau_vma *vma;
946 
947 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
948 	if (bo->destroy != nouveau_bo_del_ttm)
949 		return;
950 
951 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
952 	    mem->mem.page == nvbo->page) {
953 		list_for_each_entry(vma, &nvbo->vma_list, head) {
954 			nouveau_vma_map(vma, mem);
955 		}
956 	} else {
957 		list_for_each_entry(vma, &nvbo->vma_list, head) {
958 			WARN_ON(ttm_bo_wait(bo, false, false));
959 			nouveau_vma_unmap(vma);
960 		}
961 	}
962 
963 	if (new_reg) {
964 		if (new_reg->mm_node)
965 			nvbo->offset = (new_reg->start << PAGE_SHIFT);
966 		else
967 			nvbo->offset = 0;
968 	}
969 
970 }
971 
972 static int
973 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
974 		   struct nouveau_drm_tile **new_tile)
975 {
976 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
977 	struct drm_device *dev = drm->dev;
978 	struct nouveau_bo *nvbo = nouveau_bo(bo);
979 	u64 offset = new_reg->start << PAGE_SHIFT;
980 
981 	*new_tile = NULL;
982 	if (new_reg->mem_type != TTM_PL_VRAM)
983 		return 0;
984 
985 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
986 		*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
987 					       nvbo->mode, nvbo->zeta);
988 	}
989 
990 	return 0;
991 }
992 
993 static void
994 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
995 		      struct nouveau_drm_tile *new_tile,
996 		      struct nouveau_drm_tile **old_tile)
997 {
998 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
999 	struct drm_device *dev = drm->dev;
1000 	struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
1001 
1002 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1003 	*old_tile = new_tile;
1004 }
1005 
1006 static int
1007 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1008 		struct ttm_operation_ctx *ctx,
1009 		struct ttm_mem_reg *new_reg)
1010 {
1011 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1012 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1013 	struct ttm_mem_reg *old_reg = &bo->mem;
1014 	struct nouveau_drm_tile *new_tile = NULL;
1015 	int ret = 0;
1016 
1017 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1018 	if (ret)
1019 		return ret;
1020 
1021 	if (nvbo->pin_refcnt)
1022 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1023 
1024 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1025 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1026 		if (ret)
1027 			return ret;
1028 	}
1029 
1030 	/* Fake bo copy. */
1031 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1032 		BUG_ON(bo->mem.mm_node != NULL);
1033 		bo->mem = *new_reg;
1034 		new_reg->mm_node = NULL;
1035 		goto out;
1036 	}
1037 
1038 	/* Hardware assisted copy. */
1039 	if (drm->ttm.move) {
1040 		if (new_reg->mem_type == TTM_PL_SYSTEM)
1041 			ret = nouveau_bo_move_flipd(bo, evict,
1042 						    ctx->interruptible,
1043 						    ctx->no_wait_gpu, new_reg);
1044 		else if (old_reg->mem_type == TTM_PL_SYSTEM)
1045 			ret = nouveau_bo_move_flips(bo, evict,
1046 						    ctx->interruptible,
1047 						    ctx->no_wait_gpu, new_reg);
1048 		else
1049 			ret = nouveau_bo_move_m2mf(bo, evict,
1050 						   ctx->interruptible,
1051 						   ctx->no_wait_gpu, new_reg);
1052 		if (!ret)
1053 			goto out;
1054 	}
1055 
1056 	/* Fallback to software copy. */
1057 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1058 	if (ret == 0)
1059 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1060 
1061 out:
1062 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1063 		if (ret)
1064 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1065 		else
1066 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1067 	}
1068 
1069 	return ret;
1070 }
1071 
1072 static int
1073 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1074 {
1075 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1076 
1077 	return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
1078 					  filp->private_data);
1079 }
1080 
1081 static int
1082 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1083 {
1084 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1085 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1086 	struct nouveau_mem *mem = nouveau_mem(reg);
1087 
1088 	reg->bus.addr = NULL;
1089 	reg->bus.offset = 0;
1090 	reg->bus.size = reg->num_pages << PAGE_SHIFT;
1091 	reg->bus.base = 0;
1092 	reg->bus.is_iomem = false;
1093 
1094 	switch (reg->mem_type) {
1095 	case TTM_PL_SYSTEM:
1096 		/* System memory */
1097 		return 0;
1098 	case TTM_PL_TT:
1099 #if IS_ENABLED(CONFIG_AGP)
1100 		if (drm->agp.bridge) {
1101 			reg->bus.offset = reg->start << PAGE_SHIFT;
1102 			reg->bus.base = drm->agp.base;
1103 			reg->bus.is_iomem = !drm->agp.cma;
1104 		}
1105 #endif
1106 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
1107 			/* untiled */
1108 			break;
1109 		fallthrough;	/* tiled memory */
1110 	case TTM_PL_VRAM:
1111 		reg->bus.offset = reg->start << PAGE_SHIFT;
1112 		reg->bus.base = device->func->resource_addr(device, 1);
1113 		reg->bus.is_iomem = true;
1114 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1115 			union {
1116 				struct nv50_mem_map_v0 nv50;
1117 				struct gf100_mem_map_v0 gf100;
1118 			} args;
1119 			u64 handle, length;
1120 			u32 argc = 0;
1121 			int ret;
1122 
1123 			switch (mem->mem.object.oclass) {
1124 			case NVIF_CLASS_MEM_NV50:
1125 				args.nv50.version = 0;
1126 				args.nv50.ro = 0;
1127 				args.nv50.kind = mem->kind;
1128 				args.nv50.comp = mem->comp;
1129 				argc = sizeof(args.nv50);
1130 				break;
1131 			case NVIF_CLASS_MEM_GF100:
1132 				args.gf100.version = 0;
1133 				args.gf100.ro = 0;
1134 				args.gf100.kind = mem->kind;
1135 				argc = sizeof(args.gf100);
1136 				break;
1137 			default:
1138 				WARN_ON(1);
1139 				break;
1140 			}
1141 
1142 			ret = nvif_object_map_handle(&mem->mem.object,
1143 						     &args, argc,
1144 						     &handle, &length);
1145 			if (ret != 1) {
1146 				if (WARN_ON(ret == 0))
1147 					return -EINVAL;
1148 				return ret;
1149 			}
1150 
1151 			reg->bus.base = 0;
1152 			reg->bus.offset = handle;
1153 		}
1154 		break;
1155 	default:
1156 		return -EINVAL;
1157 	}
1158 	return 0;
1159 }
1160 
1161 static void
1162 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1163 {
1164 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1165 	struct nouveau_mem *mem = nouveau_mem(reg);
1166 
1167 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1168 		switch (reg->mem_type) {
1169 		case TTM_PL_TT:
1170 			if (mem->kind)
1171 				nvif_object_unmap_handle(&mem->mem.object);
1172 			break;
1173 		case TTM_PL_VRAM:
1174 			nvif_object_unmap_handle(&mem->mem.object);
1175 			break;
1176 		default:
1177 			break;
1178 		}
1179 	}
1180 }
1181 
1182 static int
1183 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1184 {
1185 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1186 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1187 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1188 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1189 	int i, ret;
1190 
1191 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1192 	 * nothing to do here.
1193 	 */
1194 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1195 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1196 		    !nvbo->kind)
1197 			return 0;
1198 
1199 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1200 			nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1201 
1202 			ret = nouveau_bo_validate(nvbo, false, false);
1203 			if (ret)
1204 				return ret;
1205 		}
1206 		return 0;
1207 	}
1208 
1209 	/* make sure bo is in mappable vram */
1210 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1211 	    bo->mem.start + bo->mem.num_pages < mappable)
1212 		return 0;
1213 
1214 	for (i = 0; i < nvbo->placement.num_placement; ++i) {
1215 		nvbo->placements[i].fpfn = 0;
1216 		nvbo->placements[i].lpfn = mappable;
1217 	}
1218 
1219 	for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1220 		nvbo->busy_placements[i].fpfn = 0;
1221 		nvbo->busy_placements[i].lpfn = mappable;
1222 	}
1223 
1224 	nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1225 	return nouveau_bo_validate(nvbo, false, false);
1226 }
1227 
1228 static int
1229 nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1230 {
1231 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1232 	struct nouveau_drm *drm;
1233 	struct device *dev;
1234 	unsigned i;
1235 	int r;
1236 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1237 
1238 	if (ttm->state != tt_unpopulated)
1239 		return 0;
1240 
1241 	if (slave && ttm->sg) {
1242 		/* make userspace faulting work */
1243 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1244 						 ttm_dma->dma_address, ttm->num_pages);
1245 		ttm->state = tt_unbound;
1246 		return 0;
1247 	}
1248 
1249 	drm = nouveau_bdev(ttm->bdev);
1250 	dev = drm->dev->dev;
1251 
1252 #if IS_ENABLED(CONFIG_AGP)
1253 	if (drm->agp.bridge) {
1254 		return ttm_agp_tt_populate(ttm, ctx);
1255 	}
1256 #endif
1257 
1258 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1259 	if (swiotlb_nr_tbl()) {
1260 		return ttm_dma_populate((void *)ttm, dev, ctx);
1261 	}
1262 #endif
1263 
1264 	r = ttm_pool_populate(ttm, ctx);
1265 	if (r) {
1266 		return r;
1267 	}
1268 
1269 	for (i = 0; i < ttm->num_pages; i++) {
1270 		dma_addr_t addr;
1271 
1272 		addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
1273 				    DMA_BIDIRECTIONAL);
1274 
1275 		if (dma_mapping_error(dev, addr)) {
1276 			while (i--) {
1277 				dma_unmap_page(dev, ttm_dma->dma_address[i],
1278 					       PAGE_SIZE, DMA_BIDIRECTIONAL);
1279 				ttm_dma->dma_address[i] = 0;
1280 			}
1281 			ttm_pool_unpopulate(ttm);
1282 			return -EFAULT;
1283 		}
1284 
1285 		ttm_dma->dma_address[i] = addr;
1286 	}
1287 	return 0;
1288 }
1289 
1290 static void
1291 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1292 {
1293 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1294 	struct nouveau_drm *drm;
1295 	struct device *dev;
1296 	unsigned i;
1297 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1298 
1299 	if (slave)
1300 		return;
1301 
1302 	drm = nouveau_bdev(ttm->bdev);
1303 	dev = drm->dev->dev;
1304 
1305 #if IS_ENABLED(CONFIG_AGP)
1306 	if (drm->agp.bridge) {
1307 		ttm_agp_tt_unpopulate(ttm);
1308 		return;
1309 	}
1310 #endif
1311 
1312 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1313 	if (swiotlb_nr_tbl()) {
1314 		ttm_dma_unpopulate((void *)ttm, dev);
1315 		return;
1316 	}
1317 #endif
1318 
1319 	for (i = 0; i < ttm->num_pages; i++) {
1320 		if (ttm_dma->dma_address[i]) {
1321 			dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
1322 				       DMA_BIDIRECTIONAL);
1323 		}
1324 	}
1325 
1326 	ttm_pool_unpopulate(ttm);
1327 }
1328 
1329 void
1330 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1331 {
1332 	struct dma_resv *resv = nvbo->bo.base.resv;
1333 
1334 	if (exclusive)
1335 		dma_resv_add_excl_fence(resv, &fence->base);
1336 	else if (fence)
1337 		dma_resv_add_shared_fence(resv, &fence->base);
1338 }
1339 
1340 struct ttm_bo_driver nouveau_bo_driver = {
1341 	.ttm_tt_create = &nouveau_ttm_tt_create,
1342 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1343 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1344 	.init_mem_type = nouveau_bo_init_mem_type,
1345 	.eviction_valuable = ttm_bo_eviction_valuable,
1346 	.evict_flags = nouveau_bo_evict_flags,
1347 	.move_notify = nouveau_bo_move_ntfy,
1348 	.move = nouveau_bo_move,
1349 	.verify_access = nouveau_bo_verify_access,
1350 	.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1351 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1352 	.io_mem_free = &nouveau_ttm_io_mem_free,
1353 };
1354