1 /* 2 * Copyright 2007 Dave Airlied 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Authors: Dave Airlied <airlied@linux.ie> 26 * Ben Skeggs <darktama@iinet.net.au> 27 * Jeremy Kolb <jkolb@brandeis.edu> 28 */ 29 30 #include <linux/dma-mapping.h> 31 32 #include "nouveau_drv.h" 33 #include "nouveau_chan.h" 34 #include "nouveau_fence.h" 35 36 #include "nouveau_bo.h" 37 #include "nouveau_ttm.h" 38 #include "nouveau_gem.h" 39 #include "nouveau_mem.h" 40 #include "nouveau_vmm.h" 41 42 #include <nvif/class.h> 43 #include <nvif/if500b.h> 44 #include <nvif/if900b.h> 45 46 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 47 struct ttm_resource *reg); 48 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); 49 50 /* 51 * NV10-NV40 tiling helpers 52 */ 53 54 static void 55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, 56 u32 addr, u32 size, u32 pitch, u32 flags) 57 { 58 struct nouveau_drm *drm = nouveau_drm(dev); 59 int i = reg - drm->tile.reg; 60 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 61 struct nvkm_fb_tile *tile = &fb->tile.region[i]; 62 63 nouveau_fence_unref(®->fence); 64 65 if (tile->pitch) 66 nvkm_fb_tile_fini(fb, i, tile); 67 68 if (pitch) 69 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); 70 71 nvkm_fb_tile_prog(fb, i, tile); 72 } 73 74 static struct nouveau_drm_tile * 75 nv10_bo_get_tile_region(struct drm_device *dev, int i) 76 { 77 struct nouveau_drm *drm = nouveau_drm(dev); 78 struct nouveau_drm_tile *tile = &drm->tile.reg[i]; 79 80 spin_lock(&drm->tile.lock); 81 82 if (!tile->used && 83 (!tile->fence || nouveau_fence_done(tile->fence))) 84 tile->used = true; 85 else 86 tile = NULL; 87 88 spin_unlock(&drm->tile.lock); 89 return tile; 90 } 91 92 static void 93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, 94 struct dma_fence *fence) 95 { 96 struct nouveau_drm *drm = nouveau_drm(dev); 97 98 if (tile) { 99 spin_lock(&drm->tile.lock); 100 tile->fence = (struct nouveau_fence *)dma_fence_get(fence); 101 tile->used = false; 102 spin_unlock(&drm->tile.lock); 103 } 104 } 105 106 static struct nouveau_drm_tile * 107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr, 108 u32 size, u32 pitch, u32 zeta) 109 { 110 struct nouveau_drm *drm = nouveau_drm(dev); 111 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 112 struct nouveau_drm_tile *tile, *found = NULL; 113 int i; 114 115 for (i = 0; i < fb->tile.regions; i++) { 116 tile = nv10_bo_get_tile_region(dev, i); 117 118 if (pitch && !found) { 119 found = tile; 120 continue; 121 122 } else if (tile && fb->tile.region[i].pitch) { 123 /* Kill an unused tile region. */ 124 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); 125 } 126 127 nv10_bo_put_tile_region(dev, tile, NULL); 128 } 129 130 if (found) 131 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); 132 return found; 133 } 134 135 static void 136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo) 137 { 138 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 139 struct drm_device *dev = drm->dev; 140 struct nouveau_bo *nvbo = nouveau_bo(bo); 141 142 WARN_ON(nvbo->bo.pin_count > 0); 143 nouveau_bo_del_io_reserve_lru(bo); 144 nv10_bo_put_tile_region(dev, nvbo->tile, NULL); 145 146 /* 147 * If nouveau_bo_new() allocated this buffer, the GEM object was never 148 * initialized, so don't attempt to release it. 149 */ 150 if (bo->base.dev) 151 drm_gem_object_release(&bo->base); 152 else 153 dma_resv_fini(&bo->base._resv); 154 155 kfree(nvbo); 156 } 157 158 static inline u64 159 roundup_64(u64 x, u32 y) 160 { 161 x += y - 1; 162 do_div(x, y); 163 return x * y; 164 } 165 166 static void 167 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size) 168 { 169 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 170 struct nvif_device *device = &drm->client.device; 171 172 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { 173 if (nvbo->mode) { 174 if (device->info.chipset >= 0x40) { 175 *align = 65536; 176 *size = roundup_64(*size, 64 * nvbo->mode); 177 178 } else if (device->info.chipset >= 0x30) { 179 *align = 32768; 180 *size = roundup_64(*size, 64 * nvbo->mode); 181 182 } else if (device->info.chipset >= 0x20) { 183 *align = 16384; 184 *size = roundup_64(*size, 64 * nvbo->mode); 185 186 } else if (device->info.chipset >= 0x10) { 187 *align = 16384; 188 *size = roundup_64(*size, 32 * nvbo->mode); 189 } 190 } 191 } else { 192 *size = roundup_64(*size, (1 << nvbo->page)); 193 *align = max((1 << nvbo->page), *align); 194 } 195 196 *size = roundup_64(*size, PAGE_SIZE); 197 } 198 199 struct nouveau_bo * 200 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain, 201 u32 tile_mode, u32 tile_flags) 202 { 203 struct nouveau_drm *drm = cli->drm; 204 struct nouveau_bo *nvbo; 205 struct nvif_mmu *mmu = &cli->mmu; 206 struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm; 207 int i, pi = -1; 208 209 if (!*size) { 210 NV_WARN(drm, "skipped size %016llx\n", *size); 211 return ERR_PTR(-EINVAL); 212 } 213 214 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); 215 if (!nvbo) 216 return ERR_PTR(-ENOMEM); 217 INIT_LIST_HEAD(&nvbo->head); 218 INIT_LIST_HEAD(&nvbo->entry); 219 INIT_LIST_HEAD(&nvbo->vma_list); 220 nvbo->bo.bdev = &drm->ttm.bdev; 221 222 /* This is confusing, and doesn't actually mean we want an uncached 223 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated 224 * into in nouveau_gem_new(). 225 */ 226 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) { 227 /* Determine if we can get a cache-coherent map, forcing 228 * uncached mapping if we can't. 229 */ 230 if (!nouveau_drm_use_coherent_gpu_mapping(drm)) 231 nvbo->force_coherent = true; 232 } 233 234 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { 235 nvbo->kind = (tile_flags & 0x0000ff00) >> 8; 236 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 237 kfree(nvbo); 238 return ERR_PTR(-EINVAL); 239 } 240 241 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; 242 } else 243 if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 244 nvbo->kind = (tile_flags & 0x00007f00) >> 8; 245 nvbo->comp = (tile_flags & 0x00030000) >> 16; 246 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 247 kfree(nvbo); 248 return ERR_PTR(-EINVAL); 249 } 250 } else { 251 nvbo->zeta = (tile_flags & 0x00000007); 252 } 253 nvbo->mode = tile_mode; 254 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); 255 256 /* Determine the desirable target GPU page size for the buffer. */ 257 for (i = 0; i < vmm->page_nr; i++) { 258 /* Because we cannot currently allow VMM maps to fail 259 * during buffer migration, we need to determine page 260 * size for the buffer up-front, and pre-allocate its 261 * page tables. 262 * 263 * Skip page sizes that can't support needed domains. 264 */ 265 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && 266 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 267 continue; 268 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 269 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 270 continue; 271 272 /* Select this page size if it's the first that supports 273 * the potential memory domains, or when it's compatible 274 * with the requested compression settings. 275 */ 276 if (pi < 0 || !nvbo->comp || vmm->page[i].comp) 277 pi = i; 278 279 /* Stop once the buffer is larger than the current page size. */ 280 if (*size >= 1ULL << vmm->page[i].shift) 281 break; 282 } 283 284 if (WARN_ON(pi < 0)) { 285 kfree(nvbo); 286 return ERR_PTR(-EINVAL); 287 } 288 289 /* Disable compression if suitable settings couldn't be found. */ 290 if (nvbo->comp && !vmm->page[pi].comp) { 291 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) 292 nvbo->kind = mmu->kind[nvbo->kind]; 293 nvbo->comp = 0; 294 } 295 nvbo->page = vmm->page[pi].shift; 296 297 nouveau_bo_fixup_align(nvbo, align, size); 298 299 return nvbo; 300 } 301 302 int 303 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain, 304 struct sg_table *sg, struct dma_resv *robj) 305 { 306 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device; 307 int ret; 308 309 nouveau_bo_placement_set(nvbo, domain, 0); 310 INIT_LIST_HEAD(&nvbo->io_reserve_lru); 311 312 ret = ttm_bo_init_validate(nvbo->bo.bdev, &nvbo->bo, type, 313 &nvbo->placement, align >> PAGE_SHIFT, false, 314 sg, robj, nouveau_bo_del_ttm); 315 if (ret) { 316 /* ttm will call nouveau_bo_del_ttm if it fails.. */ 317 return ret; 318 } 319 320 return 0; 321 } 322 323 int 324 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, 325 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags, 326 struct sg_table *sg, struct dma_resv *robj, 327 struct nouveau_bo **pnvbo) 328 { 329 struct nouveau_bo *nvbo; 330 int ret; 331 332 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode, 333 tile_flags); 334 if (IS_ERR(nvbo)) 335 return PTR_ERR(nvbo); 336 337 nvbo->bo.base.size = size; 338 dma_resv_init(&nvbo->bo.base._resv); 339 drm_vma_node_reset(&nvbo->bo.base.vma_node); 340 341 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj); 342 if (ret) 343 return ret; 344 345 *pnvbo = nvbo; 346 return 0; 347 } 348 349 static void 350 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain) 351 { 352 *n = 0; 353 354 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) { 355 pl[*n].mem_type = TTM_PL_VRAM; 356 pl[*n].flags = 0; 357 (*n)++; 358 } 359 if (domain & NOUVEAU_GEM_DOMAIN_GART) { 360 pl[*n].mem_type = TTM_PL_TT; 361 pl[*n].flags = 0; 362 (*n)++; 363 } 364 if (domain & NOUVEAU_GEM_DOMAIN_CPU) { 365 pl[*n].mem_type = TTM_PL_SYSTEM; 366 pl[(*n)++].flags = 0; 367 } 368 } 369 370 static void 371 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain) 372 { 373 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 374 u64 vram_size = drm->client.device.info.ram_size; 375 unsigned i, fpfn, lpfn; 376 377 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && 378 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) && 379 nvbo->bo.base.size < vram_size / 4) { 380 /* 381 * Make sure that the color and depth buffers are handled 382 * by independent memory controller units. Up to a 9x 383 * speed up when alpha-blending and depth-test are enabled 384 * at the same time. 385 */ 386 if (nvbo->zeta) { 387 fpfn = (vram_size / 2) >> PAGE_SHIFT; 388 lpfn = ~0; 389 } else { 390 fpfn = 0; 391 lpfn = (vram_size / 2) >> PAGE_SHIFT; 392 } 393 for (i = 0; i < nvbo->placement.num_placement; ++i) { 394 nvbo->placements[i].fpfn = fpfn; 395 nvbo->placements[i].lpfn = lpfn; 396 } 397 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 398 nvbo->busy_placements[i].fpfn = fpfn; 399 nvbo->busy_placements[i].lpfn = lpfn; 400 } 401 } 402 } 403 404 void 405 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain, 406 uint32_t busy) 407 { 408 struct ttm_placement *pl = &nvbo->placement; 409 410 pl->placement = nvbo->placements; 411 set_placement_list(nvbo->placements, &pl->num_placement, domain); 412 413 pl->busy_placement = nvbo->busy_placements; 414 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, 415 domain | busy); 416 417 set_placement_range(nvbo, domain); 418 } 419 420 int 421 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 422 { 423 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 424 struct ttm_buffer_object *bo = &nvbo->bo; 425 bool force = false, evict = false; 426 int ret; 427 428 ret = ttm_bo_reserve(bo, false, false, NULL); 429 if (ret) 430 return ret; 431 432 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 433 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) { 434 if (!nvbo->contig) { 435 nvbo->contig = true; 436 force = true; 437 evict = true; 438 } 439 } 440 441 if (nvbo->bo.pin_count) { 442 bool error = evict; 443 444 switch (bo->resource->mem_type) { 445 case TTM_PL_VRAM: 446 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM); 447 break; 448 case TTM_PL_TT: 449 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART); 450 break; 451 default: 452 break; 453 } 454 455 if (error) { 456 NV_ERROR(drm, "bo %p pinned elsewhere: " 457 "0x%08x vs 0x%08x\n", bo, 458 bo->resource->mem_type, domain); 459 ret = -EBUSY; 460 } 461 ttm_bo_pin(&nvbo->bo); 462 goto out; 463 } 464 465 if (evict) { 466 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 467 ret = nouveau_bo_validate(nvbo, false, false); 468 if (ret) 469 goto out; 470 } 471 472 nouveau_bo_placement_set(nvbo, domain, 0); 473 ret = nouveau_bo_validate(nvbo, false, false); 474 if (ret) 475 goto out; 476 477 ttm_bo_pin(&nvbo->bo); 478 479 switch (bo->resource->mem_type) { 480 case TTM_PL_VRAM: 481 drm->gem.vram_available -= bo->base.size; 482 break; 483 case TTM_PL_TT: 484 drm->gem.gart_available -= bo->base.size; 485 break; 486 default: 487 break; 488 } 489 490 out: 491 if (force && ret) 492 nvbo->contig = false; 493 ttm_bo_unreserve(bo); 494 return ret; 495 } 496 497 int 498 nouveau_bo_unpin(struct nouveau_bo *nvbo) 499 { 500 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 501 struct ttm_buffer_object *bo = &nvbo->bo; 502 int ret; 503 504 ret = ttm_bo_reserve(bo, false, false, NULL); 505 if (ret) 506 return ret; 507 508 ttm_bo_unpin(&nvbo->bo); 509 if (!nvbo->bo.pin_count) { 510 switch (bo->resource->mem_type) { 511 case TTM_PL_VRAM: 512 drm->gem.vram_available += bo->base.size; 513 break; 514 case TTM_PL_TT: 515 drm->gem.gart_available += bo->base.size; 516 break; 517 default: 518 break; 519 } 520 } 521 522 ttm_bo_unreserve(bo); 523 return 0; 524 } 525 526 int 527 nouveau_bo_map(struct nouveau_bo *nvbo) 528 { 529 int ret; 530 531 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); 532 if (ret) 533 return ret; 534 535 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.resource->num_pages, &nvbo->kmap); 536 537 ttm_bo_unreserve(&nvbo->bo); 538 return ret; 539 } 540 541 void 542 nouveau_bo_unmap(struct nouveau_bo *nvbo) 543 { 544 if (!nvbo) 545 return; 546 547 ttm_bo_kunmap(&nvbo->kmap); 548 } 549 550 void 551 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) 552 { 553 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 554 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 555 int i, j; 556 557 if (!ttm_dma || !ttm_dma->dma_address) 558 return; 559 if (!ttm_dma->pages) { 560 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 561 return; 562 } 563 564 /* Don't waste time looping if the object is coherent */ 565 if (nvbo->force_coherent) 566 return; 567 568 i = 0; 569 while (i < ttm_dma->num_pages) { 570 struct page *p = ttm_dma->pages[i]; 571 size_t num_pages = 1; 572 573 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 574 if (++p != ttm_dma->pages[j]) 575 break; 576 577 ++num_pages; 578 } 579 dma_sync_single_for_device(drm->dev->dev, 580 ttm_dma->dma_address[i], 581 num_pages * PAGE_SIZE, DMA_TO_DEVICE); 582 i += num_pages; 583 } 584 } 585 586 void 587 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) 588 { 589 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 590 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 591 int i, j; 592 593 if (!ttm_dma || !ttm_dma->dma_address) 594 return; 595 if (!ttm_dma->pages) { 596 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 597 return; 598 } 599 600 /* Don't waste time looping if the object is coherent */ 601 if (nvbo->force_coherent) 602 return; 603 604 i = 0; 605 while (i < ttm_dma->num_pages) { 606 struct page *p = ttm_dma->pages[i]; 607 size_t num_pages = 1; 608 609 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 610 if (++p != ttm_dma->pages[j]) 611 break; 612 613 ++num_pages; 614 } 615 616 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], 617 num_pages * PAGE_SIZE, DMA_FROM_DEVICE); 618 i += num_pages; 619 } 620 } 621 622 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo) 623 { 624 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 625 struct nouveau_bo *nvbo = nouveau_bo(bo); 626 627 mutex_lock(&drm->ttm.io_reserve_mutex); 628 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru); 629 mutex_unlock(&drm->ttm.io_reserve_mutex); 630 } 631 632 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo) 633 { 634 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 635 struct nouveau_bo *nvbo = nouveau_bo(bo); 636 637 mutex_lock(&drm->ttm.io_reserve_mutex); 638 list_del_init(&nvbo->io_reserve_lru); 639 mutex_unlock(&drm->ttm.io_reserve_mutex); 640 } 641 642 int 643 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, 644 bool no_wait_gpu) 645 { 646 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; 647 int ret; 648 649 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); 650 if (ret) 651 return ret; 652 653 nouveau_bo_sync_for_device(nvbo); 654 655 return 0; 656 } 657 658 void 659 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) 660 { 661 bool is_iomem; 662 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 663 664 mem += index; 665 666 if (is_iomem) 667 iowrite16_native(val, (void __force __iomem *)mem); 668 else 669 *mem = val; 670 } 671 672 u32 673 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) 674 { 675 bool is_iomem; 676 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 677 678 mem += index; 679 680 if (is_iomem) 681 return ioread32_native((void __force __iomem *)mem); 682 else 683 return *mem; 684 } 685 686 void 687 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) 688 { 689 bool is_iomem; 690 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 691 692 mem += index; 693 694 if (is_iomem) 695 iowrite32_native(val, (void __force __iomem *)mem); 696 else 697 *mem = val; 698 } 699 700 static struct ttm_tt * 701 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) 702 { 703 #if IS_ENABLED(CONFIG_AGP) 704 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 705 706 if (drm->agp.bridge) { 707 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); 708 } 709 #endif 710 711 return nouveau_sgdma_create_ttm(bo, page_flags); 712 } 713 714 static int 715 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 716 struct ttm_resource *reg) 717 { 718 #if IS_ENABLED(CONFIG_AGP) 719 struct nouveau_drm *drm = nouveau_bdev(bdev); 720 #endif 721 if (!reg) 722 return -EINVAL; 723 #if IS_ENABLED(CONFIG_AGP) 724 if (drm->agp.bridge) 725 return ttm_agp_bind(ttm, reg); 726 #endif 727 return nouveau_sgdma_bind(bdev, ttm, reg); 728 } 729 730 static void 731 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) 732 { 733 #if IS_ENABLED(CONFIG_AGP) 734 struct nouveau_drm *drm = nouveau_bdev(bdev); 735 736 if (drm->agp.bridge) { 737 ttm_agp_unbind(ttm); 738 return; 739 } 740 #endif 741 nouveau_sgdma_unbind(bdev, ttm); 742 } 743 744 static void 745 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) 746 { 747 struct nouveau_bo *nvbo = nouveau_bo(bo); 748 749 switch (bo->resource->mem_type) { 750 case TTM_PL_VRAM: 751 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 752 NOUVEAU_GEM_DOMAIN_CPU); 753 break; 754 default: 755 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0); 756 break; 757 } 758 759 *pl = nvbo->placement; 760 } 761 762 static int 763 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, 764 struct ttm_resource *reg) 765 { 766 struct nouveau_mem *old_mem = nouveau_mem(bo->resource); 767 struct nouveau_mem *new_mem = nouveau_mem(reg); 768 struct nvif_vmm *vmm = &drm->client.vmm.vmm; 769 int ret; 770 771 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, 772 old_mem->mem.size, &old_mem->vma[0]); 773 if (ret) 774 return ret; 775 776 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, 777 new_mem->mem.size, &old_mem->vma[1]); 778 if (ret) 779 goto done; 780 781 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); 782 if (ret) 783 goto done; 784 785 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); 786 done: 787 if (ret) { 788 nvif_vmm_put(vmm, &old_mem->vma[1]); 789 nvif_vmm_put(vmm, &old_mem->vma[0]); 790 } 791 return 0; 792 } 793 794 static int 795 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, 796 struct ttm_operation_ctx *ctx, 797 struct ttm_resource *new_reg) 798 { 799 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 800 struct nouveau_channel *chan = drm->ttm.chan; 801 struct nouveau_cli *cli = (void *)chan->user.client; 802 struct nouveau_fence *fence; 803 int ret; 804 805 /* create temporary vmas for the transfer and attach them to the 806 * old nvkm_mem node, these will get cleaned up after ttm has 807 * destroyed the ttm_resource 808 */ 809 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 810 ret = nouveau_bo_move_prep(drm, bo, new_reg); 811 if (ret) 812 return ret; 813 } 814 815 if (drm_drv_uses_atomic_modeset(drm->dev)) 816 mutex_lock(&cli->mutex); 817 else 818 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); 819 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible); 820 if (ret == 0) { 821 ret = drm->ttm.move(chan, bo, bo->resource, new_reg); 822 if (ret == 0) { 823 ret = nouveau_fence_new(chan, false, &fence); 824 if (ret == 0) { 825 ret = ttm_bo_move_accel_cleanup(bo, 826 &fence->base, 827 evict, false, 828 new_reg); 829 nouveau_fence_unref(&fence); 830 } 831 } 832 } 833 mutex_unlock(&cli->mutex); 834 return ret; 835 } 836 837 void 838 nouveau_bo_move_init(struct nouveau_drm *drm) 839 { 840 static const struct _method_table { 841 const char *name; 842 int engine; 843 s32 oclass; 844 int (*exec)(struct nouveau_channel *, 845 struct ttm_buffer_object *, 846 struct ttm_resource *, struct ttm_resource *); 847 int (*init)(struct nouveau_channel *, u32 handle); 848 } _methods[] = { 849 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init }, 850 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, 851 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, 852 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, 853 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, 854 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, 855 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, 856 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, 857 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 858 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, 859 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 860 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, 861 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 862 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, 863 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, 864 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, 865 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, 866 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, 867 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, 868 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, 869 {}, 870 }; 871 const struct _method_table *mthd = _methods; 872 const char *name = "CPU"; 873 int ret; 874 875 do { 876 struct nouveau_channel *chan; 877 878 if (mthd->engine) 879 chan = drm->cechan; 880 else 881 chan = drm->channel; 882 if (chan == NULL) 883 continue; 884 885 ret = nvif_object_ctor(&chan->user, "ttmBoMove", 886 mthd->oclass | (mthd->engine << 16), 887 mthd->oclass, NULL, 0, 888 &drm->ttm.copy); 889 if (ret == 0) { 890 ret = mthd->init(chan, drm->ttm.copy.handle); 891 if (ret) { 892 nvif_object_dtor(&drm->ttm.copy); 893 continue; 894 } 895 896 drm->ttm.move = mthd->exec; 897 drm->ttm.chan = chan; 898 name = mthd->name; 899 break; 900 } 901 } while ((++mthd)->exec); 902 903 NV_INFO(drm, "MM: using %s for buffer copies\n", name); 904 } 905 906 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, 907 struct ttm_resource *new_reg) 908 { 909 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; 910 struct nouveau_bo *nvbo = nouveau_bo(bo); 911 struct nouveau_vma *vma; 912 913 /* ttm can now (stupidly) pass the driver bos it didn't create... */ 914 if (bo->destroy != nouveau_bo_del_ttm) 915 return; 916 917 nouveau_bo_del_io_reserve_lru(bo); 918 919 if (mem && new_reg->mem_type != TTM_PL_SYSTEM && 920 mem->mem.page == nvbo->page) { 921 list_for_each_entry(vma, &nvbo->vma_list, head) { 922 nouveau_vma_map(vma, mem); 923 } 924 } else { 925 list_for_each_entry(vma, &nvbo->vma_list, head) { 926 WARN_ON(ttm_bo_wait(bo, false, false)); 927 nouveau_vma_unmap(vma); 928 } 929 } 930 931 if (new_reg) 932 nvbo->offset = (new_reg->start << PAGE_SHIFT); 933 934 } 935 936 static int 937 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg, 938 struct nouveau_drm_tile **new_tile) 939 { 940 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 941 struct drm_device *dev = drm->dev; 942 struct nouveau_bo *nvbo = nouveau_bo(bo); 943 u64 offset = new_reg->start << PAGE_SHIFT; 944 945 *new_tile = NULL; 946 if (new_reg->mem_type != TTM_PL_VRAM) 947 return 0; 948 949 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { 950 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size, 951 nvbo->mode, nvbo->zeta); 952 } 953 954 return 0; 955 } 956 957 static void 958 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, 959 struct nouveau_drm_tile *new_tile, 960 struct nouveau_drm_tile **old_tile) 961 { 962 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 963 struct drm_device *dev = drm->dev; 964 struct dma_fence *fence; 965 int ret; 966 967 ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE, 968 &fence); 969 if (ret) 970 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE, 971 false, MAX_SCHEDULE_TIMEOUT); 972 973 nv10_bo_put_tile_region(dev, *old_tile, fence); 974 *old_tile = new_tile; 975 } 976 977 static int 978 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, 979 struct ttm_operation_ctx *ctx, 980 struct ttm_resource *new_reg, 981 struct ttm_place *hop) 982 { 983 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 984 struct nouveau_bo *nvbo = nouveau_bo(bo); 985 struct ttm_resource *old_reg = bo->resource; 986 struct nouveau_drm_tile *new_tile = NULL; 987 int ret = 0; 988 989 990 if (new_reg->mem_type == TTM_PL_TT) { 991 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg); 992 if (ret) 993 return ret; 994 } 995 996 nouveau_bo_move_ntfy(bo, new_reg); 997 ret = ttm_bo_wait_ctx(bo, ctx); 998 if (ret) 999 goto out_ntfy; 1000 1001 if (nvbo->bo.pin_count) 1002 NV_WARN(drm, "Moving pinned object %p!\n", nvbo); 1003 1004 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1005 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); 1006 if (ret) 1007 goto out_ntfy; 1008 } 1009 1010 /* Fake bo copy. */ 1011 if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM && 1012 !bo->ttm)) { 1013 ttm_bo_move_null(bo, new_reg); 1014 goto out; 1015 } 1016 1017 if (old_reg->mem_type == TTM_PL_SYSTEM && 1018 new_reg->mem_type == TTM_PL_TT) { 1019 ttm_bo_move_null(bo, new_reg); 1020 goto out; 1021 } 1022 1023 if (old_reg->mem_type == TTM_PL_TT && 1024 new_reg->mem_type == TTM_PL_SYSTEM) { 1025 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm); 1026 ttm_resource_free(bo, &bo->resource); 1027 ttm_bo_assign_mem(bo, new_reg); 1028 goto out; 1029 } 1030 1031 /* Hardware assisted copy. */ 1032 if (drm->ttm.move) { 1033 if ((old_reg->mem_type == TTM_PL_SYSTEM && 1034 new_reg->mem_type == TTM_PL_VRAM) || 1035 (old_reg->mem_type == TTM_PL_VRAM && 1036 new_reg->mem_type == TTM_PL_SYSTEM)) { 1037 hop->fpfn = 0; 1038 hop->lpfn = 0; 1039 hop->mem_type = TTM_PL_TT; 1040 hop->flags = 0; 1041 return -EMULTIHOP; 1042 } 1043 ret = nouveau_bo_move_m2mf(bo, evict, ctx, 1044 new_reg); 1045 } else 1046 ret = -ENODEV; 1047 1048 if (ret) { 1049 /* Fallback to software copy. */ 1050 ret = ttm_bo_move_memcpy(bo, ctx, new_reg); 1051 } 1052 1053 out: 1054 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1055 if (ret) 1056 nouveau_bo_vm_cleanup(bo, NULL, &new_tile); 1057 else 1058 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); 1059 } 1060 out_ntfy: 1061 if (ret) { 1062 nouveau_bo_move_ntfy(bo, bo->resource); 1063 } 1064 return ret; 1065 } 1066 1067 static void 1068 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm, 1069 struct ttm_resource *reg) 1070 { 1071 struct nouveau_mem *mem = nouveau_mem(reg); 1072 1073 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1074 switch (reg->mem_type) { 1075 case TTM_PL_TT: 1076 if (mem->kind) 1077 nvif_object_unmap_handle(&mem->mem.object); 1078 break; 1079 case TTM_PL_VRAM: 1080 nvif_object_unmap_handle(&mem->mem.object); 1081 break; 1082 default: 1083 break; 1084 } 1085 } 1086 } 1087 1088 static int 1089 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg) 1090 { 1091 struct nouveau_drm *drm = nouveau_bdev(bdev); 1092 struct nvkm_device *device = nvxx_device(&drm->client.device); 1093 struct nouveau_mem *mem = nouveau_mem(reg); 1094 struct nvif_mmu *mmu = &drm->client.mmu; 1095 int ret; 1096 1097 mutex_lock(&drm->ttm.io_reserve_mutex); 1098 retry: 1099 switch (reg->mem_type) { 1100 case TTM_PL_SYSTEM: 1101 /* System memory */ 1102 ret = 0; 1103 goto out; 1104 case TTM_PL_TT: 1105 #if IS_ENABLED(CONFIG_AGP) 1106 if (drm->agp.bridge) { 1107 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1108 drm->agp.base; 1109 reg->bus.is_iomem = !drm->agp.cma; 1110 reg->bus.caching = ttm_write_combined; 1111 } 1112 #endif 1113 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || 1114 !mem->kind) { 1115 /* untiled */ 1116 ret = 0; 1117 break; 1118 } 1119 fallthrough; /* tiled memory */ 1120 case TTM_PL_VRAM: 1121 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1122 device->func->resource_addr(device, 1); 1123 reg->bus.is_iomem = true; 1124 1125 /* Some BARs do not support being ioremapped WC */ 1126 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 1127 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED) 1128 reg->bus.caching = ttm_uncached; 1129 else 1130 reg->bus.caching = ttm_write_combined; 1131 1132 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1133 union { 1134 struct nv50_mem_map_v0 nv50; 1135 struct gf100_mem_map_v0 gf100; 1136 } args; 1137 u64 handle, length; 1138 u32 argc = 0; 1139 1140 switch (mem->mem.object.oclass) { 1141 case NVIF_CLASS_MEM_NV50: 1142 args.nv50.version = 0; 1143 args.nv50.ro = 0; 1144 args.nv50.kind = mem->kind; 1145 args.nv50.comp = mem->comp; 1146 argc = sizeof(args.nv50); 1147 break; 1148 case NVIF_CLASS_MEM_GF100: 1149 args.gf100.version = 0; 1150 args.gf100.ro = 0; 1151 args.gf100.kind = mem->kind; 1152 argc = sizeof(args.gf100); 1153 break; 1154 default: 1155 WARN_ON(1); 1156 break; 1157 } 1158 1159 ret = nvif_object_map_handle(&mem->mem.object, 1160 &args, argc, 1161 &handle, &length); 1162 if (ret != 1) { 1163 if (WARN_ON(ret == 0)) 1164 ret = -EINVAL; 1165 goto out; 1166 } 1167 1168 reg->bus.offset = handle; 1169 } 1170 ret = 0; 1171 break; 1172 default: 1173 ret = -EINVAL; 1174 } 1175 1176 out: 1177 if (ret == -ENOSPC) { 1178 struct nouveau_bo *nvbo; 1179 1180 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru, 1181 typeof(*nvbo), 1182 io_reserve_lru); 1183 if (nvbo) { 1184 list_del_init(&nvbo->io_reserve_lru); 1185 drm_vma_node_unmap(&nvbo->bo.base.vma_node, 1186 bdev->dev_mapping); 1187 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource); 1188 goto retry; 1189 } 1190 1191 } 1192 mutex_unlock(&drm->ttm.io_reserve_mutex); 1193 return ret; 1194 } 1195 1196 static void 1197 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg) 1198 { 1199 struct nouveau_drm *drm = nouveau_bdev(bdev); 1200 1201 mutex_lock(&drm->ttm.io_reserve_mutex); 1202 nouveau_ttm_io_mem_free_locked(drm, reg); 1203 mutex_unlock(&drm->ttm.io_reserve_mutex); 1204 } 1205 1206 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) 1207 { 1208 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1209 struct nouveau_bo *nvbo = nouveau_bo(bo); 1210 struct nvkm_device *device = nvxx_device(&drm->client.device); 1211 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; 1212 int i, ret; 1213 1214 /* as long as the bo isn't in vram, and isn't tiled, we've got 1215 * nothing to do here. 1216 */ 1217 if (bo->resource->mem_type != TTM_PL_VRAM) { 1218 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || 1219 !nvbo->kind) 1220 return 0; 1221 1222 if (bo->resource->mem_type != TTM_PL_SYSTEM) 1223 return 0; 1224 1225 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 1226 1227 } else { 1228 /* make sure bo is in mappable vram */ 1229 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || 1230 bo->resource->start + bo->resource->num_pages < mappable) 1231 return 0; 1232 1233 for (i = 0; i < nvbo->placement.num_placement; ++i) { 1234 nvbo->placements[i].fpfn = 0; 1235 nvbo->placements[i].lpfn = mappable; 1236 } 1237 1238 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 1239 nvbo->busy_placements[i].fpfn = 0; 1240 nvbo->busy_placements[i].lpfn = mappable; 1241 } 1242 1243 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0); 1244 } 1245 1246 ret = nouveau_bo_validate(nvbo, false, false); 1247 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS)) 1248 return VM_FAULT_NOPAGE; 1249 else if (unlikely(ret)) 1250 return VM_FAULT_SIGBUS; 1251 1252 ttm_bo_move_to_lru_tail_unlocked(bo); 1253 return 0; 1254 } 1255 1256 static int 1257 nouveau_ttm_tt_populate(struct ttm_device *bdev, 1258 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 1259 { 1260 struct ttm_tt *ttm_dma = (void *)ttm; 1261 struct nouveau_drm *drm; 1262 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1263 1264 if (ttm_tt_is_populated(ttm)) 1265 return 0; 1266 1267 if (slave && ttm->sg) { 1268 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address, 1269 ttm->num_pages); 1270 return 0; 1271 } 1272 1273 drm = nouveau_bdev(bdev); 1274 1275 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx); 1276 } 1277 1278 static void 1279 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev, 1280 struct ttm_tt *ttm) 1281 { 1282 struct nouveau_drm *drm; 1283 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1284 1285 if (slave) 1286 return; 1287 1288 nouveau_ttm_tt_unbind(bdev, ttm); 1289 1290 drm = nouveau_bdev(bdev); 1291 1292 return ttm_pool_free(&drm->ttm.bdev.pool, ttm); 1293 } 1294 1295 static void 1296 nouveau_ttm_tt_destroy(struct ttm_device *bdev, 1297 struct ttm_tt *ttm) 1298 { 1299 #if IS_ENABLED(CONFIG_AGP) 1300 struct nouveau_drm *drm = nouveau_bdev(bdev); 1301 if (drm->agp.bridge) { 1302 ttm_agp_destroy(ttm); 1303 return; 1304 } 1305 #endif 1306 nouveau_sgdma_destroy(bdev, ttm); 1307 } 1308 1309 void 1310 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) 1311 { 1312 struct dma_resv *resv = nvbo->bo.base.resv; 1313 1314 if (!fence) 1315 return; 1316 1317 dma_resv_add_fence(resv, &fence->base, exclusive ? 1318 DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ); 1319 } 1320 1321 static void 1322 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1323 { 1324 nouveau_bo_move_ntfy(bo, NULL); 1325 } 1326 1327 struct ttm_device_funcs nouveau_bo_driver = { 1328 .ttm_tt_create = &nouveau_ttm_tt_create, 1329 .ttm_tt_populate = &nouveau_ttm_tt_populate, 1330 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, 1331 .ttm_tt_destroy = &nouveau_ttm_tt_destroy, 1332 .eviction_valuable = ttm_bo_eviction_valuable, 1333 .evict_flags = nouveau_bo_evict_flags, 1334 .delete_mem_notify = nouveau_bo_delete_mem_notify, 1335 .move = nouveau_bo_move, 1336 .io_mem_reserve = &nouveau_ttm_io_mem_reserve, 1337 .io_mem_free = &nouveau_ttm_io_mem_free, 1338 }; 1339