1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32 
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 
41 /*
42  * NV10-NV40 tiling helpers
43  */
44 
45 static void
46 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
47 			   u32 addr, u32 size, u32 pitch, u32 flags)
48 {
49 	struct nouveau_drm *drm = nouveau_drm(dev);
50 	int i = reg - drm->tile.reg;
51 	struct nvkm_fb *pfb = nvxx_fb(&drm->device);
52 	struct nvkm_fb_tile *tile = &pfb->tile.region[i];
53 	struct nvkm_engine *engine;
54 
55 	nouveau_fence_unref(&reg->fence);
56 
57 	if (tile->pitch)
58 		pfb->tile.fini(pfb, i, tile);
59 
60 	if (pitch)
61 		pfb->tile.init(pfb, i, addr, size, pitch, flags, tile);
62 
63 	pfb->tile.prog(pfb, i, tile);
64 
65 	if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_GR)))
66 		engine->tile_prog(engine, i);
67 	if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_MPEG)))
68 		engine->tile_prog(engine, i);
69 }
70 
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
73 {
74 	struct nouveau_drm *drm = nouveau_drm(dev);
75 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
76 
77 	spin_lock(&drm->tile.lock);
78 
79 	if (!tile->used &&
80 	    (!tile->fence || nouveau_fence_done(tile->fence)))
81 		tile->used = true;
82 	else
83 		tile = NULL;
84 
85 	spin_unlock(&drm->tile.lock);
86 	return tile;
87 }
88 
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 			struct fence *fence)
92 {
93 	struct nouveau_drm *drm = nouveau_drm(dev);
94 
95 	if (tile) {
96 		spin_lock(&drm->tile.lock);
97 		tile->fence = (struct nouveau_fence *)fence_get(fence);
98 		tile->used = false;
99 		spin_unlock(&drm->tile.lock);
100 	}
101 }
102 
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 		   u32 size, u32 pitch, u32 flags)
106 {
107 	struct nouveau_drm *drm = nouveau_drm(dev);
108 	struct nvkm_fb *pfb = nvxx_fb(&drm->device);
109 	struct nouveau_drm_tile *tile, *found = NULL;
110 	int i;
111 
112 	for (i = 0; i < pfb->tile.regions; i++) {
113 		tile = nv10_bo_get_tile_region(dev, i);
114 
115 		if (pitch && !found) {
116 			found = tile;
117 			continue;
118 
119 		} else if (tile && pfb->tile.region[i].pitch) {
120 			/* Kill an unused tile region. */
121 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
122 		}
123 
124 		nv10_bo_put_tile_region(dev, tile, NULL);
125 	}
126 
127 	if (found)
128 		nv10_bo_update_tile_region(dev, found, addr, size,
129 					    pitch, flags);
130 	return found;
131 }
132 
133 static void
134 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
135 {
136 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
137 	struct drm_device *dev = drm->dev;
138 	struct nouveau_bo *nvbo = nouveau_bo(bo);
139 
140 	if (unlikely(nvbo->gem.filp))
141 		DRM_ERROR("bo %p still attached to GEM object\n", bo);
142 	WARN_ON(nvbo->pin_refcnt > 0);
143 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
144 	kfree(nvbo);
145 }
146 
147 static void
148 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
149 		       int *align, int *size)
150 {
151 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
152 	struct nvif_device *device = &drm->device;
153 
154 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
155 		if (nvbo->tile_mode) {
156 			if (device->info.chipset >= 0x40) {
157 				*align = 65536;
158 				*size = roundup(*size, 64 * nvbo->tile_mode);
159 
160 			} else if (device->info.chipset >= 0x30) {
161 				*align = 32768;
162 				*size = roundup(*size, 64 * nvbo->tile_mode);
163 
164 			} else if (device->info.chipset >= 0x20) {
165 				*align = 16384;
166 				*size = roundup(*size, 64 * nvbo->tile_mode);
167 
168 			} else if (device->info.chipset >= 0x10) {
169 				*align = 16384;
170 				*size = roundup(*size, 32 * nvbo->tile_mode);
171 			}
172 		}
173 	} else {
174 		*size = roundup(*size, (1 << nvbo->page_shift));
175 		*align = max((1 <<  nvbo->page_shift), *align);
176 	}
177 
178 	*size = roundup(*size, PAGE_SIZE);
179 }
180 
181 int
182 nouveau_bo_new(struct drm_device *dev, int size, int align,
183 	       uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
184 	       struct sg_table *sg, struct reservation_object *robj,
185 	       struct nouveau_bo **pnvbo)
186 {
187 	struct nouveau_drm *drm = nouveau_drm(dev);
188 	struct nouveau_bo *nvbo;
189 	size_t acc_size;
190 	int ret;
191 	int type = ttm_bo_type_device;
192 	int lpg_shift = 12;
193 	int max_size;
194 
195 	if (drm->client.vm)
196 		lpg_shift = drm->client.vm->mmu->lpg_shift;
197 	max_size = INT_MAX & ~((1 << lpg_shift) - 1);
198 
199 	if (size <= 0 || size > max_size) {
200 		NV_WARN(drm, "skipped size %x\n", (u32)size);
201 		return -EINVAL;
202 	}
203 
204 	if (sg)
205 		type = ttm_bo_type_sg;
206 
207 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
208 	if (!nvbo)
209 		return -ENOMEM;
210 	INIT_LIST_HEAD(&nvbo->head);
211 	INIT_LIST_HEAD(&nvbo->entry);
212 	INIT_LIST_HEAD(&nvbo->vma_list);
213 	nvbo->tile_mode = tile_mode;
214 	nvbo->tile_flags = tile_flags;
215 	nvbo->bo.bdev = &drm->ttm.bdev;
216 
217 	if (!nv_device_is_cpu_coherent(nvxx_device(&drm->device)))
218 		nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
219 
220 	nvbo->page_shift = 12;
221 	if (drm->client.vm) {
222 		if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
223 			nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
224 	}
225 
226 	nouveau_bo_fixup_align(nvbo, flags, &align, &size);
227 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
228 	nouveau_bo_placement_set(nvbo, flags, 0);
229 
230 	acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
231 				       sizeof(struct nouveau_bo));
232 
233 	ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
234 			  type, &nvbo->placement,
235 			  align >> PAGE_SHIFT, false, NULL, acc_size, sg,
236 			  robj, nouveau_bo_del_ttm);
237 	if (ret) {
238 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
239 		return ret;
240 	}
241 
242 	*pnvbo = nvbo;
243 	return 0;
244 }
245 
246 static void
247 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
248 {
249 	*n = 0;
250 
251 	if (type & TTM_PL_FLAG_VRAM)
252 		pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
253 	if (type & TTM_PL_FLAG_TT)
254 		pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
255 	if (type & TTM_PL_FLAG_SYSTEM)
256 		pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
257 }
258 
259 static void
260 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
261 {
262 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
263 	u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
264 	unsigned i, fpfn, lpfn;
265 
266 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
267 	    nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
268 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
269 		/*
270 		 * Make sure that the color and depth buffers are handled
271 		 * by independent memory controller units. Up to a 9x
272 		 * speed up when alpha-blending and depth-test are enabled
273 		 * at the same time.
274 		 */
275 		if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
276 			fpfn = vram_pages / 2;
277 			lpfn = ~0;
278 		} else {
279 			fpfn = 0;
280 			lpfn = vram_pages / 2;
281 		}
282 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
283 			nvbo->placements[i].fpfn = fpfn;
284 			nvbo->placements[i].lpfn = lpfn;
285 		}
286 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
287 			nvbo->busy_placements[i].fpfn = fpfn;
288 			nvbo->busy_placements[i].lpfn = lpfn;
289 		}
290 	}
291 }
292 
293 void
294 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
295 {
296 	struct ttm_placement *pl = &nvbo->placement;
297 	uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
298 						 TTM_PL_MASK_CACHING) |
299 			 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
300 
301 	pl->placement = nvbo->placements;
302 	set_placement_list(nvbo->placements, &pl->num_placement,
303 			   type, flags);
304 
305 	pl->busy_placement = nvbo->busy_placements;
306 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
307 			   type | busy, flags);
308 
309 	set_placement_range(nvbo, type);
310 }
311 
312 int
313 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
314 {
315 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
316 	struct ttm_buffer_object *bo = &nvbo->bo;
317 	bool force = false, evict = false;
318 	int ret;
319 
320 	ret = ttm_bo_reserve(bo, false, false, false, NULL);
321 	if (ret)
322 		return ret;
323 
324 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
325 	    memtype == TTM_PL_FLAG_VRAM && contig) {
326 		if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
327 			if (bo->mem.mem_type == TTM_PL_VRAM) {
328 				struct nvkm_mem *mem = bo->mem.mm_node;
329 				if (!list_is_singular(&mem->regions))
330 					evict = true;
331 			}
332 			nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
333 			force = true;
334 		}
335 	}
336 
337 	if (nvbo->pin_refcnt) {
338 		if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
339 			NV_ERROR(drm, "bo %p pinned elsewhere: "
340 				      "0x%08x vs 0x%08x\n", bo,
341 				 1 << bo->mem.mem_type, memtype);
342 			ret = -EBUSY;
343 		}
344 		nvbo->pin_refcnt++;
345 		goto out;
346 	}
347 
348 	if (evict) {
349 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
350 		ret = nouveau_bo_validate(nvbo, false, false);
351 		if (ret)
352 			goto out;
353 	}
354 
355 	nvbo->pin_refcnt++;
356 	nouveau_bo_placement_set(nvbo, memtype, 0);
357 
358 	/* drop pin_refcnt temporarily, so we don't trip the assertion
359 	 * in nouveau_bo_move() that makes sure we're not trying to
360 	 * move a pinned buffer
361 	 */
362 	nvbo->pin_refcnt--;
363 	ret = nouveau_bo_validate(nvbo, false, false);
364 	if (ret)
365 		goto out;
366 	nvbo->pin_refcnt++;
367 
368 	switch (bo->mem.mem_type) {
369 	case TTM_PL_VRAM:
370 		drm->gem.vram_available -= bo->mem.size;
371 		break;
372 	case TTM_PL_TT:
373 		drm->gem.gart_available -= bo->mem.size;
374 		break;
375 	default:
376 		break;
377 	}
378 
379 out:
380 	if (force && ret)
381 		nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
382 	ttm_bo_unreserve(bo);
383 	return ret;
384 }
385 
386 int
387 nouveau_bo_unpin(struct nouveau_bo *nvbo)
388 {
389 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
390 	struct ttm_buffer_object *bo = &nvbo->bo;
391 	int ret, ref;
392 
393 	ret = ttm_bo_reserve(bo, false, false, false, NULL);
394 	if (ret)
395 		return ret;
396 
397 	ref = --nvbo->pin_refcnt;
398 	WARN_ON_ONCE(ref < 0);
399 	if (ref)
400 		goto out;
401 
402 	nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
403 
404 	ret = nouveau_bo_validate(nvbo, false, false);
405 	if (ret == 0) {
406 		switch (bo->mem.mem_type) {
407 		case TTM_PL_VRAM:
408 			drm->gem.vram_available += bo->mem.size;
409 			break;
410 		case TTM_PL_TT:
411 			drm->gem.gart_available += bo->mem.size;
412 			break;
413 		default:
414 			break;
415 		}
416 	}
417 
418 out:
419 	ttm_bo_unreserve(bo);
420 	return ret;
421 }
422 
423 int
424 nouveau_bo_map(struct nouveau_bo *nvbo)
425 {
426 	int ret;
427 
428 	ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
429 	if (ret)
430 		return ret;
431 
432 	/*
433 	 * TTM buffers allocated using the DMA API already have a mapping, let's
434 	 * use it instead.
435 	 */
436 	if (!nvbo->force_coherent)
437 		ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
438 				  &nvbo->kmap);
439 
440 	ttm_bo_unreserve(&nvbo->bo);
441 	return ret;
442 }
443 
444 void
445 nouveau_bo_unmap(struct nouveau_bo *nvbo)
446 {
447 	if (!nvbo)
448 		return;
449 
450 	/*
451 	 * TTM buffers allocated using the DMA API already had a coherent
452 	 * mapping which we used, no need to unmap.
453 	 */
454 	if (!nvbo->force_coherent)
455 		ttm_bo_kunmap(&nvbo->kmap);
456 }
457 
458 void
459 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
460 {
461 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
462 	struct nvkm_device *device = nvxx_device(&drm->device);
463 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
464 	int i;
465 
466 	if (!ttm_dma)
467 		return;
468 
469 	/* Don't waste time looping if the object is coherent */
470 	if (nvbo->force_coherent)
471 		return;
472 
473 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
474 		dma_sync_single_for_device(nv_device_base(device),
475 			ttm_dma->dma_address[i], PAGE_SIZE, DMA_TO_DEVICE);
476 }
477 
478 void
479 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
480 {
481 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
482 	struct nvkm_device *device = nvxx_device(&drm->device);
483 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
484 	int i;
485 
486 	if (!ttm_dma)
487 		return;
488 
489 	/* Don't waste time looping if the object is coherent */
490 	if (nvbo->force_coherent)
491 		return;
492 
493 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
494 		dma_sync_single_for_cpu(nv_device_base(device),
495 			ttm_dma->dma_address[i], PAGE_SIZE, DMA_FROM_DEVICE);
496 }
497 
498 int
499 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
500 		    bool no_wait_gpu)
501 {
502 	int ret;
503 
504 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
505 			      interruptible, no_wait_gpu);
506 	if (ret)
507 		return ret;
508 
509 	nouveau_bo_sync_for_device(nvbo);
510 
511 	return 0;
512 }
513 
514 static inline void *
515 _nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
516 {
517 	struct ttm_dma_tt *dma_tt;
518 	u8 *m = mem;
519 
520 	index *= sz;
521 
522 	if (m) {
523 		/* kmap'd address, return the corresponding offset */
524 		m += index;
525 	} else {
526 		/* DMA-API mapping, lookup the right address */
527 		dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
528 		m = dma_tt->cpu_address[index / PAGE_SIZE];
529 		m += index % PAGE_SIZE;
530 	}
531 
532 	return m;
533 }
534 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
535 
536 void
537 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
538 {
539 	bool is_iomem;
540 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
541 
542 	mem = nouveau_bo_mem_index(nvbo, index, mem);
543 
544 	if (is_iomem)
545 		iowrite16_native(val, (void __force __iomem *)mem);
546 	else
547 		*mem = val;
548 }
549 
550 u32
551 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
552 {
553 	bool is_iomem;
554 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
555 
556 	mem = nouveau_bo_mem_index(nvbo, index, mem);
557 
558 	if (is_iomem)
559 		return ioread32_native((void __force __iomem *)mem);
560 	else
561 		return *mem;
562 }
563 
564 void
565 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
566 {
567 	bool is_iomem;
568 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
569 
570 	mem = nouveau_bo_mem_index(nvbo, index, mem);
571 
572 	if (is_iomem)
573 		iowrite32_native(val, (void __force __iomem *)mem);
574 	else
575 		*mem = val;
576 }
577 
578 static struct ttm_tt *
579 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
580 		      uint32_t page_flags, struct page *dummy_read)
581 {
582 #if __OS_HAS_AGP
583 	struct nouveau_drm *drm = nouveau_bdev(bdev);
584 	struct drm_device *dev = drm->dev;
585 
586 	if (drm->agp.stat == ENABLED) {
587 		return ttm_agp_tt_create(bdev, dev->agp->bridge, size,
588 					 page_flags, dummy_read);
589 	}
590 #endif
591 
592 	return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
593 }
594 
595 static int
596 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
597 {
598 	/* We'll do this from user space. */
599 	return 0;
600 }
601 
602 static int
603 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
604 			 struct ttm_mem_type_manager *man)
605 {
606 	struct nouveau_drm *drm = nouveau_bdev(bdev);
607 
608 	switch (type) {
609 	case TTM_PL_SYSTEM:
610 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
611 		man->available_caching = TTM_PL_MASK_CACHING;
612 		man->default_caching = TTM_PL_FLAG_CACHED;
613 		break;
614 	case TTM_PL_VRAM:
615 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
616 			     TTM_MEMTYPE_FLAG_MAPPABLE;
617 		man->available_caching = TTM_PL_FLAG_UNCACHED |
618 					 TTM_PL_FLAG_WC;
619 		man->default_caching = TTM_PL_FLAG_WC;
620 
621 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
622 			/* Some BARs do not support being ioremapped WC */
623 			if (nvxx_bar(&drm->device)->iomap_uncached) {
624 				man->available_caching = TTM_PL_FLAG_UNCACHED;
625 				man->default_caching = TTM_PL_FLAG_UNCACHED;
626 			}
627 
628 			man->func = &nouveau_vram_manager;
629 			man->io_reserve_fastpath = false;
630 			man->use_io_reserve_lru = true;
631 		} else {
632 			man->func = &ttm_bo_manager_func;
633 		}
634 		break;
635 	case TTM_PL_TT:
636 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
637 			man->func = &nouveau_gart_manager;
638 		else
639 		if (drm->agp.stat != ENABLED)
640 			man->func = &nv04_gart_manager;
641 		else
642 			man->func = &ttm_bo_manager_func;
643 
644 		if (drm->agp.stat == ENABLED) {
645 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
646 			man->available_caching = TTM_PL_FLAG_UNCACHED |
647 				TTM_PL_FLAG_WC;
648 			man->default_caching = TTM_PL_FLAG_WC;
649 		} else {
650 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
651 				     TTM_MEMTYPE_FLAG_CMA;
652 			man->available_caching = TTM_PL_MASK_CACHING;
653 			man->default_caching = TTM_PL_FLAG_CACHED;
654 		}
655 
656 		break;
657 	default:
658 		return -EINVAL;
659 	}
660 	return 0;
661 }
662 
663 static void
664 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
665 {
666 	struct nouveau_bo *nvbo = nouveau_bo(bo);
667 
668 	switch (bo->mem.mem_type) {
669 	case TTM_PL_VRAM:
670 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
671 					 TTM_PL_FLAG_SYSTEM);
672 		break;
673 	default:
674 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
675 		break;
676 	}
677 
678 	*pl = nvbo->placement;
679 }
680 
681 
682 static int
683 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
684 {
685 	int ret = RING_SPACE(chan, 2);
686 	if (ret == 0) {
687 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
688 		OUT_RING  (chan, handle & 0x0000ffff);
689 		FIRE_RING (chan);
690 	}
691 	return ret;
692 }
693 
694 static int
695 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
696 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
697 {
698 	struct nvkm_mem *node = old_mem->mm_node;
699 	int ret = RING_SPACE(chan, 10);
700 	if (ret == 0) {
701 		BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
702 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
703 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
704 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
705 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
706 		OUT_RING  (chan, PAGE_SIZE);
707 		OUT_RING  (chan, PAGE_SIZE);
708 		OUT_RING  (chan, PAGE_SIZE);
709 		OUT_RING  (chan, new_mem->num_pages);
710 		BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
711 	}
712 	return ret;
713 }
714 
715 static int
716 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
717 {
718 	int ret = RING_SPACE(chan, 2);
719 	if (ret == 0) {
720 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
721 		OUT_RING  (chan, handle);
722 	}
723 	return ret;
724 }
725 
726 static int
727 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
728 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
729 {
730 	struct nvkm_mem *node = old_mem->mm_node;
731 	u64 src_offset = node->vma[0].offset;
732 	u64 dst_offset = node->vma[1].offset;
733 	u32 page_count = new_mem->num_pages;
734 	int ret;
735 
736 	page_count = new_mem->num_pages;
737 	while (page_count) {
738 		int line_count = (page_count > 8191) ? 8191 : page_count;
739 
740 		ret = RING_SPACE(chan, 11);
741 		if (ret)
742 			return ret;
743 
744 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
745 		OUT_RING  (chan, upper_32_bits(src_offset));
746 		OUT_RING  (chan, lower_32_bits(src_offset));
747 		OUT_RING  (chan, upper_32_bits(dst_offset));
748 		OUT_RING  (chan, lower_32_bits(dst_offset));
749 		OUT_RING  (chan, PAGE_SIZE);
750 		OUT_RING  (chan, PAGE_SIZE);
751 		OUT_RING  (chan, PAGE_SIZE);
752 		OUT_RING  (chan, line_count);
753 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
754 		OUT_RING  (chan, 0x00000110);
755 
756 		page_count -= line_count;
757 		src_offset += (PAGE_SIZE * line_count);
758 		dst_offset += (PAGE_SIZE * line_count);
759 	}
760 
761 	return 0;
762 }
763 
764 static int
765 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
766 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
767 {
768 	struct nvkm_mem *node = old_mem->mm_node;
769 	u64 src_offset = node->vma[0].offset;
770 	u64 dst_offset = node->vma[1].offset;
771 	u32 page_count = new_mem->num_pages;
772 	int ret;
773 
774 	page_count = new_mem->num_pages;
775 	while (page_count) {
776 		int line_count = (page_count > 2047) ? 2047 : page_count;
777 
778 		ret = RING_SPACE(chan, 12);
779 		if (ret)
780 			return ret;
781 
782 		BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
783 		OUT_RING  (chan, upper_32_bits(dst_offset));
784 		OUT_RING  (chan, lower_32_bits(dst_offset));
785 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
786 		OUT_RING  (chan, upper_32_bits(src_offset));
787 		OUT_RING  (chan, lower_32_bits(src_offset));
788 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
789 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
790 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
791 		OUT_RING  (chan, line_count);
792 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
793 		OUT_RING  (chan, 0x00100110);
794 
795 		page_count -= line_count;
796 		src_offset += (PAGE_SIZE * line_count);
797 		dst_offset += (PAGE_SIZE * line_count);
798 	}
799 
800 	return 0;
801 }
802 
803 static int
804 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
805 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
806 {
807 	struct nvkm_mem *node = old_mem->mm_node;
808 	u64 src_offset = node->vma[0].offset;
809 	u64 dst_offset = node->vma[1].offset;
810 	u32 page_count = new_mem->num_pages;
811 	int ret;
812 
813 	page_count = new_mem->num_pages;
814 	while (page_count) {
815 		int line_count = (page_count > 8191) ? 8191 : page_count;
816 
817 		ret = RING_SPACE(chan, 11);
818 		if (ret)
819 			return ret;
820 
821 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
822 		OUT_RING  (chan, upper_32_bits(src_offset));
823 		OUT_RING  (chan, lower_32_bits(src_offset));
824 		OUT_RING  (chan, upper_32_bits(dst_offset));
825 		OUT_RING  (chan, lower_32_bits(dst_offset));
826 		OUT_RING  (chan, PAGE_SIZE);
827 		OUT_RING  (chan, PAGE_SIZE);
828 		OUT_RING  (chan, PAGE_SIZE);
829 		OUT_RING  (chan, line_count);
830 		BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
831 		OUT_RING  (chan, 0x00000110);
832 
833 		page_count -= line_count;
834 		src_offset += (PAGE_SIZE * line_count);
835 		dst_offset += (PAGE_SIZE * line_count);
836 	}
837 
838 	return 0;
839 }
840 
841 static int
842 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
843 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
844 {
845 	struct nvkm_mem *node = old_mem->mm_node;
846 	int ret = RING_SPACE(chan, 7);
847 	if (ret == 0) {
848 		BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
849 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
850 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
851 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
852 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
853 		OUT_RING  (chan, 0x00000000 /* COPY */);
854 		OUT_RING  (chan, new_mem->num_pages << PAGE_SHIFT);
855 	}
856 	return ret;
857 }
858 
859 static int
860 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
861 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
862 {
863 	struct nvkm_mem *node = old_mem->mm_node;
864 	int ret = RING_SPACE(chan, 7);
865 	if (ret == 0) {
866 		BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
867 		OUT_RING  (chan, new_mem->num_pages << PAGE_SHIFT);
868 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
869 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
870 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
871 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
872 		OUT_RING  (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
873 	}
874 	return ret;
875 }
876 
877 static int
878 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
879 {
880 	int ret = RING_SPACE(chan, 6);
881 	if (ret == 0) {
882 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
883 		OUT_RING  (chan, handle);
884 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
885 		OUT_RING  (chan, chan->drm->ntfy.handle);
886 		OUT_RING  (chan, chan->vram.handle);
887 		OUT_RING  (chan, chan->vram.handle);
888 	}
889 
890 	return ret;
891 }
892 
893 static int
894 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
895 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
896 {
897 	struct nvkm_mem *node = old_mem->mm_node;
898 	u64 length = (new_mem->num_pages << PAGE_SHIFT);
899 	u64 src_offset = node->vma[0].offset;
900 	u64 dst_offset = node->vma[1].offset;
901 	int src_tiled = !!node->memtype;
902 	int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
903 	int ret;
904 
905 	while (length) {
906 		u32 amount, stride, height;
907 
908 		ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
909 		if (ret)
910 			return ret;
911 
912 		amount  = min(length, (u64)(4 * 1024 * 1024));
913 		stride  = 16 * 4;
914 		height  = amount / stride;
915 
916 		if (src_tiled) {
917 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
918 			OUT_RING  (chan, 0);
919 			OUT_RING  (chan, 0);
920 			OUT_RING  (chan, stride);
921 			OUT_RING  (chan, height);
922 			OUT_RING  (chan, 1);
923 			OUT_RING  (chan, 0);
924 			OUT_RING  (chan, 0);
925 		} else {
926 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
927 			OUT_RING  (chan, 1);
928 		}
929 		if (dst_tiled) {
930 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
931 			OUT_RING  (chan, 0);
932 			OUT_RING  (chan, 0);
933 			OUT_RING  (chan, stride);
934 			OUT_RING  (chan, height);
935 			OUT_RING  (chan, 1);
936 			OUT_RING  (chan, 0);
937 			OUT_RING  (chan, 0);
938 		} else {
939 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
940 			OUT_RING  (chan, 1);
941 		}
942 
943 		BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
944 		OUT_RING  (chan, upper_32_bits(src_offset));
945 		OUT_RING  (chan, upper_32_bits(dst_offset));
946 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
947 		OUT_RING  (chan, lower_32_bits(src_offset));
948 		OUT_RING  (chan, lower_32_bits(dst_offset));
949 		OUT_RING  (chan, stride);
950 		OUT_RING  (chan, stride);
951 		OUT_RING  (chan, stride);
952 		OUT_RING  (chan, height);
953 		OUT_RING  (chan, 0x00000101);
954 		OUT_RING  (chan, 0x00000000);
955 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
956 		OUT_RING  (chan, 0);
957 
958 		length -= amount;
959 		src_offset += amount;
960 		dst_offset += amount;
961 	}
962 
963 	return 0;
964 }
965 
966 static int
967 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
968 {
969 	int ret = RING_SPACE(chan, 4);
970 	if (ret == 0) {
971 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
972 		OUT_RING  (chan, handle);
973 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
974 		OUT_RING  (chan, chan->drm->ntfy.handle);
975 	}
976 
977 	return ret;
978 }
979 
980 static inline uint32_t
981 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
982 		      struct nouveau_channel *chan, struct ttm_mem_reg *mem)
983 {
984 	if (mem->mem_type == TTM_PL_TT)
985 		return NvDmaTT;
986 	return chan->vram.handle;
987 }
988 
989 static int
990 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
991 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
992 {
993 	u32 src_offset = old_mem->start << PAGE_SHIFT;
994 	u32 dst_offset = new_mem->start << PAGE_SHIFT;
995 	u32 page_count = new_mem->num_pages;
996 	int ret;
997 
998 	ret = RING_SPACE(chan, 3);
999 	if (ret)
1000 		return ret;
1001 
1002 	BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
1003 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
1004 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
1005 
1006 	page_count = new_mem->num_pages;
1007 	while (page_count) {
1008 		int line_count = (page_count > 2047) ? 2047 : page_count;
1009 
1010 		ret = RING_SPACE(chan, 11);
1011 		if (ret)
1012 			return ret;
1013 
1014 		BEGIN_NV04(chan, NvSubCopy,
1015 				 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1016 		OUT_RING  (chan, src_offset);
1017 		OUT_RING  (chan, dst_offset);
1018 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
1019 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
1020 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
1021 		OUT_RING  (chan, line_count);
1022 		OUT_RING  (chan, 0x00000101);
1023 		OUT_RING  (chan, 0x00000000);
1024 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1025 		OUT_RING  (chan, 0);
1026 
1027 		page_count -= line_count;
1028 		src_offset += (PAGE_SIZE * line_count);
1029 		dst_offset += (PAGE_SIZE * line_count);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static int
1036 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1037 		     struct ttm_mem_reg *mem)
1038 {
1039 	struct nvkm_mem *old_node = bo->mem.mm_node;
1040 	struct nvkm_mem *new_node = mem->mm_node;
1041 	u64 size = (u64)mem->num_pages << PAGE_SHIFT;
1042 	int ret;
1043 
1044 	ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
1045 			  NV_MEM_ACCESS_RW, &old_node->vma[0]);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
1050 			  NV_MEM_ACCESS_RW, &old_node->vma[1]);
1051 	if (ret) {
1052 		nvkm_vm_put(&old_node->vma[0]);
1053 		return ret;
1054 	}
1055 
1056 	nvkm_vm_map(&old_node->vma[0], old_node);
1057 	nvkm_vm_map(&old_node->vma[1], new_node);
1058 	return 0;
1059 }
1060 
1061 static int
1062 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1063 		     bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1064 {
1065 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1066 	struct nouveau_channel *chan = drm->ttm.chan;
1067 	struct nouveau_cli *cli = (void *)nvif_client(&chan->device->base);
1068 	struct nouveau_fence *fence;
1069 	int ret;
1070 
1071 	/* create temporary vmas for the transfer and attach them to the
1072 	 * old nvkm_mem node, these will get cleaned up after ttm has
1073 	 * destroyed the ttm_mem_reg
1074 	 */
1075 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1076 		ret = nouveau_bo_move_prep(drm, bo, new_mem);
1077 		if (ret)
1078 			return ret;
1079 	}
1080 
1081 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1082 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1083 	if (ret == 0) {
1084 		ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
1085 		if (ret == 0) {
1086 			ret = nouveau_fence_new(chan, false, &fence);
1087 			if (ret == 0) {
1088 				ret = ttm_bo_move_accel_cleanup(bo,
1089 								&fence->base,
1090 								evict,
1091 								no_wait_gpu,
1092 								new_mem);
1093 				nouveau_fence_unref(&fence);
1094 			}
1095 		}
1096 	}
1097 	mutex_unlock(&cli->mutex);
1098 	return ret;
1099 }
1100 
1101 void
1102 nouveau_bo_move_init(struct nouveau_drm *drm)
1103 {
1104 	static const struct {
1105 		const char *name;
1106 		int engine;
1107 		u32 oclass;
1108 		int (*exec)(struct nouveau_channel *,
1109 			    struct ttm_buffer_object *,
1110 			    struct ttm_mem_reg *, struct ttm_mem_reg *);
1111 		int (*init)(struct nouveau_channel *, u32 handle);
1112 	} _methods[] = {
1113 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1114 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1115 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1116 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1117 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1118 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1119 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1120 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1121 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1122 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1123 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1124 		{},
1125 		{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1126 	}, *mthd = _methods;
1127 	const char *name = "CPU";
1128 	int ret;
1129 
1130 	do {
1131 		struct nouveau_channel *chan;
1132 
1133 		if (mthd->engine)
1134 			chan = drm->cechan;
1135 		else
1136 			chan = drm->channel;
1137 		if (chan == NULL)
1138 			continue;
1139 
1140 		ret = nvif_object_init(chan->object, NULL,
1141 				       mthd->oclass | (mthd->engine << 16),
1142 				       mthd->oclass, NULL, 0,
1143 				       &drm->ttm.copy);
1144 		if (ret == 0) {
1145 			ret = mthd->init(chan, drm->ttm.copy.handle);
1146 			if (ret) {
1147 				nvif_object_fini(&drm->ttm.copy);
1148 				continue;
1149 			}
1150 
1151 			drm->ttm.move = mthd->exec;
1152 			drm->ttm.chan = chan;
1153 			name = mthd->name;
1154 			break;
1155 		}
1156 	} while ((++mthd)->exec);
1157 
1158 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1159 }
1160 
1161 static int
1162 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1163 		      bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1164 {
1165 	struct ttm_place placement_memtype = {
1166 		.fpfn = 0,
1167 		.lpfn = 0,
1168 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1169 	};
1170 	struct ttm_placement placement;
1171 	struct ttm_mem_reg tmp_mem;
1172 	int ret;
1173 
1174 	placement.num_placement = placement.num_busy_placement = 1;
1175 	placement.placement = placement.busy_placement = &placement_memtype;
1176 
1177 	tmp_mem = *new_mem;
1178 	tmp_mem.mm_node = NULL;
1179 	ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1180 	if (ret)
1181 		return ret;
1182 
1183 	ret = ttm_tt_bind(bo->ttm, &tmp_mem);
1184 	if (ret)
1185 		goto out;
1186 
1187 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
1188 	if (ret)
1189 		goto out;
1190 
1191 	ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
1192 out:
1193 	ttm_bo_mem_put(bo, &tmp_mem);
1194 	return ret;
1195 }
1196 
1197 static int
1198 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1199 		      bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1200 {
1201 	struct ttm_place placement_memtype = {
1202 		.fpfn = 0,
1203 		.lpfn = 0,
1204 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1205 	};
1206 	struct ttm_placement placement;
1207 	struct ttm_mem_reg tmp_mem;
1208 	int ret;
1209 
1210 	placement.num_placement = placement.num_busy_placement = 1;
1211 	placement.placement = placement.busy_placement = &placement_memtype;
1212 
1213 	tmp_mem = *new_mem;
1214 	tmp_mem.mm_node = NULL;
1215 	ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1216 	if (ret)
1217 		return ret;
1218 
1219 	ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
1220 	if (ret)
1221 		goto out;
1222 
1223 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
1224 	if (ret)
1225 		goto out;
1226 
1227 out:
1228 	ttm_bo_mem_put(bo, &tmp_mem);
1229 	return ret;
1230 }
1231 
1232 static void
1233 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
1234 {
1235 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1236 	struct nvkm_vma *vma;
1237 
1238 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
1239 	if (bo->destroy != nouveau_bo_del_ttm)
1240 		return;
1241 
1242 	list_for_each_entry(vma, &nvbo->vma_list, head) {
1243 		if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
1244 			      (new_mem->mem_type == TTM_PL_VRAM ||
1245 			       nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
1246 			nvkm_vm_map(vma, new_mem->mm_node);
1247 		} else {
1248 			nvkm_vm_unmap(vma);
1249 		}
1250 	}
1251 }
1252 
1253 static int
1254 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
1255 		   struct nouveau_drm_tile **new_tile)
1256 {
1257 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1258 	struct drm_device *dev = drm->dev;
1259 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1260 	u64 offset = new_mem->start << PAGE_SHIFT;
1261 
1262 	*new_tile = NULL;
1263 	if (new_mem->mem_type != TTM_PL_VRAM)
1264 		return 0;
1265 
1266 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1267 		*new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
1268 						nvbo->tile_mode,
1269 						nvbo->tile_flags);
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 static void
1276 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1277 		      struct nouveau_drm_tile *new_tile,
1278 		      struct nouveau_drm_tile **old_tile)
1279 {
1280 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1281 	struct drm_device *dev = drm->dev;
1282 	struct fence *fence = reservation_object_get_excl(bo->resv);
1283 
1284 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1285 	*old_tile = new_tile;
1286 }
1287 
1288 static int
1289 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
1290 		bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1291 {
1292 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1293 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1294 	struct ttm_mem_reg *old_mem = &bo->mem;
1295 	struct nouveau_drm_tile *new_tile = NULL;
1296 	int ret = 0;
1297 
1298 	if (nvbo->pin_refcnt)
1299 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1300 
1301 	if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1302 		ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
1303 		if (ret)
1304 			return ret;
1305 	}
1306 
1307 	/* Fake bo copy. */
1308 	if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1309 		BUG_ON(bo->mem.mm_node != NULL);
1310 		bo->mem = *new_mem;
1311 		new_mem->mm_node = NULL;
1312 		goto out;
1313 	}
1314 
1315 	/* Hardware assisted copy. */
1316 	if (drm->ttm.move) {
1317 		if (new_mem->mem_type == TTM_PL_SYSTEM)
1318 			ret = nouveau_bo_move_flipd(bo, evict, intr,
1319 						    no_wait_gpu, new_mem);
1320 		else if (old_mem->mem_type == TTM_PL_SYSTEM)
1321 			ret = nouveau_bo_move_flips(bo, evict, intr,
1322 						    no_wait_gpu, new_mem);
1323 		else
1324 			ret = nouveau_bo_move_m2mf(bo, evict, intr,
1325 						   no_wait_gpu, new_mem);
1326 		if (!ret)
1327 			goto out;
1328 	}
1329 
1330 	/* Fallback to software copy. */
1331 	ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
1332 	if (ret == 0)
1333 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
1334 
1335 out:
1336 	if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1337 		if (ret)
1338 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1339 		else
1340 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1341 	}
1342 
1343 	return ret;
1344 }
1345 
1346 static int
1347 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1348 {
1349 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1350 
1351 	return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
1352 }
1353 
1354 static int
1355 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1356 {
1357 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1358 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1359 	struct nvkm_mem *node = mem->mm_node;
1360 	int ret;
1361 
1362 	mem->bus.addr = NULL;
1363 	mem->bus.offset = 0;
1364 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
1365 	mem->bus.base = 0;
1366 	mem->bus.is_iomem = false;
1367 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1368 		return -EINVAL;
1369 	switch (mem->mem_type) {
1370 	case TTM_PL_SYSTEM:
1371 		/* System memory */
1372 		return 0;
1373 	case TTM_PL_TT:
1374 #if __OS_HAS_AGP
1375 		if (drm->agp.stat == ENABLED) {
1376 			mem->bus.offset = mem->start << PAGE_SHIFT;
1377 			mem->bus.base = drm->agp.base;
1378 			mem->bus.is_iomem = !drm->dev->agp->cant_use_aperture;
1379 		}
1380 #endif
1381 		if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
1382 			/* untiled */
1383 			break;
1384 		/* fallthrough, tiled memory */
1385 	case TTM_PL_VRAM:
1386 		mem->bus.offset = mem->start << PAGE_SHIFT;
1387 		mem->bus.base = nv_device_resource_start(nvxx_device(&drm->device), 1);
1388 		mem->bus.is_iomem = true;
1389 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1390 			struct nvkm_bar *bar = nvxx_bar(&drm->device);
1391 
1392 			ret = bar->umap(bar, node, NV_MEM_ACCESS_RW,
1393 					&node->bar_vma);
1394 			if (ret)
1395 				return ret;
1396 
1397 			mem->bus.offset = node->bar_vma.offset;
1398 		}
1399 		break;
1400 	default:
1401 		return -EINVAL;
1402 	}
1403 	return 0;
1404 }
1405 
1406 static void
1407 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1408 {
1409 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1410 	struct nvkm_bar *bar = nvxx_bar(&drm->device);
1411 	struct nvkm_mem *node = mem->mm_node;
1412 
1413 	if (!node->bar_vma.node)
1414 		return;
1415 
1416 	bar->unmap(bar, &node->bar_vma);
1417 }
1418 
1419 static int
1420 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1421 {
1422 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1423 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1424 	struct nvif_device *device = &drm->device;
1425 	u32 mappable = nv_device_resource_len(nvxx_device(device), 1) >> PAGE_SHIFT;
1426 	int i, ret;
1427 
1428 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1429 	 * nothing to do here.
1430 	 */
1431 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1432 		if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1433 		    !nouveau_bo_tile_layout(nvbo))
1434 			return 0;
1435 
1436 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1437 			nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1438 
1439 			ret = nouveau_bo_validate(nvbo, false, false);
1440 			if (ret)
1441 				return ret;
1442 		}
1443 		return 0;
1444 	}
1445 
1446 	/* make sure bo is in mappable vram */
1447 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1448 	    bo->mem.start + bo->mem.num_pages < mappable)
1449 		return 0;
1450 
1451 	for (i = 0; i < nvbo->placement.num_placement; ++i) {
1452 		nvbo->placements[i].fpfn = 0;
1453 		nvbo->placements[i].lpfn = mappable;
1454 	}
1455 
1456 	for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1457 		nvbo->busy_placements[i].fpfn = 0;
1458 		nvbo->busy_placements[i].lpfn = mappable;
1459 	}
1460 
1461 	nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1462 	return nouveau_bo_validate(nvbo, false, false);
1463 }
1464 
1465 static int
1466 nouveau_ttm_tt_populate(struct ttm_tt *ttm)
1467 {
1468 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1469 	struct nouveau_drm *drm;
1470 	struct nvkm_device *device;
1471 	struct drm_device *dev;
1472 	struct device *pdev;
1473 	unsigned i;
1474 	int r;
1475 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1476 
1477 	if (ttm->state != tt_unpopulated)
1478 		return 0;
1479 
1480 	if (slave && ttm->sg) {
1481 		/* make userspace faulting work */
1482 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1483 						 ttm_dma->dma_address, ttm->num_pages);
1484 		ttm->state = tt_unbound;
1485 		return 0;
1486 	}
1487 
1488 	drm = nouveau_bdev(ttm->bdev);
1489 	device = nvxx_device(&drm->device);
1490 	dev = drm->dev;
1491 	pdev = nv_device_base(device);
1492 
1493 	/*
1494 	 * Objects matching this condition have been marked as force_coherent,
1495 	 * so use the DMA API for them.
1496 	 */
1497 	if (!nv_device_is_cpu_coherent(device) &&
1498 	    ttm->caching_state == tt_uncached)
1499 		return ttm_dma_populate(ttm_dma, dev->dev);
1500 
1501 #if __OS_HAS_AGP
1502 	if (drm->agp.stat == ENABLED) {
1503 		return ttm_agp_tt_populate(ttm);
1504 	}
1505 #endif
1506 
1507 #ifdef CONFIG_SWIOTLB
1508 	if (swiotlb_nr_tbl()) {
1509 		return ttm_dma_populate((void *)ttm, dev->dev);
1510 	}
1511 #endif
1512 
1513 	r = ttm_pool_populate(ttm);
1514 	if (r) {
1515 		return r;
1516 	}
1517 
1518 	for (i = 0; i < ttm->num_pages; i++) {
1519 		dma_addr_t addr;
1520 
1521 		addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
1522 				    DMA_BIDIRECTIONAL);
1523 
1524 		if (dma_mapping_error(pdev, addr)) {
1525 			while (--i) {
1526 				dma_unmap_page(pdev, ttm_dma->dma_address[i],
1527 					       PAGE_SIZE, DMA_BIDIRECTIONAL);
1528 				ttm_dma->dma_address[i] = 0;
1529 			}
1530 			ttm_pool_unpopulate(ttm);
1531 			return -EFAULT;
1532 		}
1533 
1534 		ttm_dma->dma_address[i] = addr;
1535 	}
1536 	return 0;
1537 }
1538 
1539 static void
1540 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1541 {
1542 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1543 	struct nouveau_drm *drm;
1544 	struct nvkm_device *device;
1545 	struct drm_device *dev;
1546 	struct device *pdev;
1547 	unsigned i;
1548 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1549 
1550 	if (slave)
1551 		return;
1552 
1553 	drm = nouveau_bdev(ttm->bdev);
1554 	device = nvxx_device(&drm->device);
1555 	dev = drm->dev;
1556 	pdev = nv_device_base(device);
1557 
1558 	/*
1559 	 * Objects matching this condition have been marked as force_coherent,
1560 	 * so use the DMA API for them.
1561 	 */
1562 	if (!nv_device_is_cpu_coherent(device) &&
1563 	    ttm->caching_state == tt_uncached) {
1564 		ttm_dma_unpopulate(ttm_dma, dev->dev);
1565 		return;
1566 	}
1567 
1568 #if __OS_HAS_AGP
1569 	if (drm->agp.stat == ENABLED) {
1570 		ttm_agp_tt_unpopulate(ttm);
1571 		return;
1572 	}
1573 #endif
1574 
1575 #ifdef CONFIG_SWIOTLB
1576 	if (swiotlb_nr_tbl()) {
1577 		ttm_dma_unpopulate((void *)ttm, dev->dev);
1578 		return;
1579 	}
1580 #endif
1581 
1582 	for (i = 0; i < ttm->num_pages; i++) {
1583 		if (ttm_dma->dma_address[i]) {
1584 			dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
1585 				       DMA_BIDIRECTIONAL);
1586 		}
1587 	}
1588 
1589 	ttm_pool_unpopulate(ttm);
1590 }
1591 
1592 void
1593 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1594 {
1595 	struct reservation_object *resv = nvbo->bo.resv;
1596 
1597 	if (exclusive)
1598 		reservation_object_add_excl_fence(resv, &fence->base);
1599 	else if (fence)
1600 		reservation_object_add_shared_fence(resv, &fence->base);
1601 }
1602 
1603 struct ttm_bo_driver nouveau_bo_driver = {
1604 	.ttm_tt_create = &nouveau_ttm_tt_create,
1605 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1606 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1607 	.invalidate_caches = nouveau_bo_invalidate_caches,
1608 	.init_mem_type = nouveau_bo_init_mem_type,
1609 	.evict_flags = nouveau_bo_evict_flags,
1610 	.move_notify = nouveau_bo_move_ntfy,
1611 	.move = nouveau_bo_move,
1612 	.verify_access = nouveau_bo_verify_access,
1613 	.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1614 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1615 	.io_mem_free = &nouveau_ttm_io_mem_free,
1616 };
1617 
1618 struct nvkm_vma *
1619 nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
1620 {
1621 	struct nvkm_vma *vma;
1622 	list_for_each_entry(vma, &nvbo->vma_list, head) {
1623 		if (vma->vm == vm)
1624 			return vma;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 
1630 int
1631 nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
1632 		   struct nvkm_vma *vma)
1633 {
1634 	const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
1635 	int ret;
1636 
1637 	ret = nvkm_vm_get(vm, size, nvbo->page_shift,
1638 			     NV_MEM_ACCESS_RW, vma);
1639 	if (ret)
1640 		return ret;
1641 
1642 	if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
1643 	    (nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
1644 	     nvbo->page_shift != vma->vm->mmu->lpg_shift))
1645 		nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
1646 
1647 	list_add_tail(&vma->head, &nvbo->vma_list);
1648 	vma->refcount = 1;
1649 	return 0;
1650 }
1651 
1652 void
1653 nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
1654 {
1655 	if (vma->node) {
1656 		if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
1657 			nvkm_vm_unmap(vma);
1658 		nvkm_vm_put(vma);
1659 		list_del(&vma->head);
1660 	}
1661 }
1662