1 /* 2 * Copyright 2007 Dave Airlied 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Authors: Dave Airlied <airlied@linux.ie> 26 * Ben Skeggs <darktama@iinet.net.au> 27 * Jeremy Kolb <jkolb@brandeis.edu> 28 */ 29 30 #include <linux/dma-mapping.h> 31 32 #include "nouveau_drv.h" 33 #include "nouveau_chan.h" 34 #include "nouveau_fence.h" 35 36 #include "nouveau_bo.h" 37 #include "nouveau_ttm.h" 38 #include "nouveau_gem.h" 39 #include "nouveau_mem.h" 40 #include "nouveau_vmm.h" 41 42 #include <nvif/class.h> 43 #include <nvif/if500b.h> 44 #include <nvif/if900b.h> 45 46 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 47 struct ttm_resource *reg); 48 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); 49 50 /* 51 * NV10-NV40 tiling helpers 52 */ 53 54 static void 55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, 56 u32 addr, u32 size, u32 pitch, u32 flags) 57 { 58 struct nouveau_drm *drm = nouveau_drm(dev); 59 int i = reg - drm->tile.reg; 60 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 61 struct nvkm_fb_tile *tile = &fb->tile.region[i]; 62 63 nouveau_fence_unref(®->fence); 64 65 if (tile->pitch) 66 nvkm_fb_tile_fini(fb, i, tile); 67 68 if (pitch) 69 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); 70 71 nvkm_fb_tile_prog(fb, i, tile); 72 } 73 74 static struct nouveau_drm_tile * 75 nv10_bo_get_tile_region(struct drm_device *dev, int i) 76 { 77 struct nouveau_drm *drm = nouveau_drm(dev); 78 struct nouveau_drm_tile *tile = &drm->tile.reg[i]; 79 80 spin_lock(&drm->tile.lock); 81 82 if (!tile->used && 83 (!tile->fence || nouveau_fence_done(tile->fence))) 84 tile->used = true; 85 else 86 tile = NULL; 87 88 spin_unlock(&drm->tile.lock); 89 return tile; 90 } 91 92 static void 93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, 94 struct dma_fence *fence) 95 { 96 struct nouveau_drm *drm = nouveau_drm(dev); 97 98 if (tile) { 99 spin_lock(&drm->tile.lock); 100 tile->fence = (struct nouveau_fence *)dma_fence_get(fence); 101 tile->used = false; 102 spin_unlock(&drm->tile.lock); 103 } 104 } 105 106 static struct nouveau_drm_tile * 107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr, 108 u32 size, u32 pitch, u32 zeta) 109 { 110 struct nouveau_drm *drm = nouveau_drm(dev); 111 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 112 struct nouveau_drm_tile *tile, *found = NULL; 113 int i; 114 115 for (i = 0; i < fb->tile.regions; i++) { 116 tile = nv10_bo_get_tile_region(dev, i); 117 118 if (pitch && !found) { 119 found = tile; 120 continue; 121 122 } else if (tile && fb->tile.region[i].pitch) { 123 /* Kill an unused tile region. */ 124 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); 125 } 126 127 nv10_bo_put_tile_region(dev, tile, NULL); 128 } 129 130 if (found) 131 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); 132 return found; 133 } 134 135 static void 136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo) 137 { 138 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 139 struct drm_device *dev = drm->dev; 140 struct nouveau_bo *nvbo = nouveau_bo(bo); 141 142 WARN_ON(nvbo->bo.pin_count > 0); 143 nouveau_bo_del_io_reserve_lru(bo); 144 nv10_bo_put_tile_region(dev, nvbo->tile, NULL); 145 146 /* 147 * If nouveau_bo_new() allocated this buffer, the GEM object was never 148 * initialized, so don't attempt to release it. 149 */ 150 if (bo->base.dev) 151 drm_gem_object_release(&bo->base); 152 else 153 dma_resv_fini(&bo->base._resv); 154 155 kfree(nvbo); 156 } 157 158 static inline u64 159 roundup_64(u64 x, u32 y) 160 { 161 x += y - 1; 162 do_div(x, y); 163 return x * y; 164 } 165 166 static void 167 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size) 168 { 169 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 170 struct nvif_device *device = &drm->client.device; 171 172 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { 173 if (nvbo->mode) { 174 if (device->info.chipset >= 0x40) { 175 *align = 65536; 176 *size = roundup_64(*size, 64 * nvbo->mode); 177 178 } else if (device->info.chipset >= 0x30) { 179 *align = 32768; 180 *size = roundup_64(*size, 64 * nvbo->mode); 181 182 } else if (device->info.chipset >= 0x20) { 183 *align = 16384; 184 *size = roundup_64(*size, 64 * nvbo->mode); 185 186 } else if (device->info.chipset >= 0x10) { 187 *align = 16384; 188 *size = roundup_64(*size, 32 * nvbo->mode); 189 } 190 } 191 } else { 192 *size = roundup_64(*size, (1 << nvbo->page)); 193 *align = max((1 << nvbo->page), *align); 194 } 195 196 *size = roundup_64(*size, PAGE_SIZE); 197 } 198 199 struct nouveau_bo * 200 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain, 201 u32 tile_mode, u32 tile_flags) 202 { 203 struct nouveau_drm *drm = cli->drm; 204 struct nouveau_bo *nvbo; 205 struct nvif_mmu *mmu = &cli->mmu; 206 struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm; 207 int i, pi = -1; 208 209 if (!*size) { 210 NV_WARN(drm, "skipped size %016llx\n", *size); 211 return ERR_PTR(-EINVAL); 212 } 213 214 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); 215 if (!nvbo) 216 return ERR_PTR(-ENOMEM); 217 INIT_LIST_HEAD(&nvbo->head); 218 INIT_LIST_HEAD(&nvbo->entry); 219 INIT_LIST_HEAD(&nvbo->vma_list); 220 nvbo->bo.bdev = &drm->ttm.bdev; 221 222 /* This is confusing, and doesn't actually mean we want an uncached 223 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated 224 * into in nouveau_gem_new(). 225 */ 226 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) { 227 /* Determine if we can get a cache-coherent map, forcing 228 * uncached mapping if we can't. 229 */ 230 if (!nouveau_drm_use_coherent_gpu_mapping(drm)) 231 nvbo->force_coherent = true; 232 } 233 234 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { 235 nvbo->kind = (tile_flags & 0x0000ff00) >> 8; 236 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 237 kfree(nvbo); 238 return ERR_PTR(-EINVAL); 239 } 240 241 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; 242 } else 243 if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 244 nvbo->kind = (tile_flags & 0x00007f00) >> 8; 245 nvbo->comp = (tile_flags & 0x00030000) >> 16; 246 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 247 kfree(nvbo); 248 return ERR_PTR(-EINVAL); 249 } 250 } else { 251 nvbo->zeta = (tile_flags & 0x00000007); 252 } 253 nvbo->mode = tile_mode; 254 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); 255 256 /* Determine the desirable target GPU page size for the buffer. */ 257 for (i = 0; i < vmm->page_nr; i++) { 258 /* Because we cannot currently allow VMM maps to fail 259 * during buffer migration, we need to determine page 260 * size for the buffer up-front, and pre-allocate its 261 * page tables. 262 * 263 * Skip page sizes that can't support needed domains. 264 */ 265 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && 266 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 267 continue; 268 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 269 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 270 continue; 271 272 /* Select this page size if it's the first that supports 273 * the potential memory domains, or when it's compatible 274 * with the requested compression settings. 275 */ 276 if (pi < 0 || !nvbo->comp || vmm->page[i].comp) 277 pi = i; 278 279 /* Stop once the buffer is larger than the current page size. */ 280 if (*size >= 1ULL << vmm->page[i].shift) 281 break; 282 } 283 284 if (WARN_ON(pi < 0)) 285 return ERR_PTR(-EINVAL); 286 287 /* Disable compression if suitable settings couldn't be found. */ 288 if (nvbo->comp && !vmm->page[pi].comp) { 289 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) 290 nvbo->kind = mmu->kind[nvbo->kind]; 291 nvbo->comp = 0; 292 } 293 nvbo->page = vmm->page[pi].shift; 294 295 nouveau_bo_fixup_align(nvbo, align, size); 296 297 return nvbo; 298 } 299 300 int 301 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain, 302 struct sg_table *sg, struct dma_resv *robj) 303 { 304 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device; 305 int ret; 306 307 nouveau_bo_placement_set(nvbo, domain, 0); 308 INIT_LIST_HEAD(&nvbo->io_reserve_lru); 309 310 ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type, 311 &nvbo->placement, align >> PAGE_SHIFT, false, sg, 312 robj, nouveau_bo_del_ttm); 313 if (ret) { 314 /* ttm will call nouveau_bo_del_ttm if it fails.. */ 315 return ret; 316 } 317 318 return 0; 319 } 320 321 int 322 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, 323 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags, 324 struct sg_table *sg, struct dma_resv *robj, 325 struct nouveau_bo **pnvbo) 326 { 327 struct nouveau_bo *nvbo; 328 int ret; 329 330 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode, 331 tile_flags); 332 if (IS_ERR(nvbo)) 333 return PTR_ERR(nvbo); 334 335 nvbo->bo.base.size = size; 336 dma_resv_init(&nvbo->bo.base._resv); 337 drm_vma_node_reset(&nvbo->bo.base.vma_node); 338 339 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj); 340 if (ret) 341 return ret; 342 343 *pnvbo = nvbo; 344 return 0; 345 } 346 347 static void 348 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain) 349 { 350 *n = 0; 351 352 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) { 353 pl[*n].mem_type = TTM_PL_VRAM; 354 pl[*n].flags = 0; 355 (*n)++; 356 } 357 if (domain & NOUVEAU_GEM_DOMAIN_GART) { 358 pl[*n].mem_type = TTM_PL_TT; 359 pl[*n].flags = 0; 360 (*n)++; 361 } 362 if (domain & NOUVEAU_GEM_DOMAIN_CPU) { 363 pl[*n].mem_type = TTM_PL_SYSTEM; 364 pl[(*n)++].flags = 0; 365 } 366 } 367 368 static void 369 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain) 370 { 371 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 372 u64 vram_size = drm->client.device.info.ram_size; 373 unsigned i, fpfn, lpfn; 374 375 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && 376 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) && 377 nvbo->bo.base.size < vram_size / 4) { 378 /* 379 * Make sure that the color and depth buffers are handled 380 * by independent memory controller units. Up to a 9x 381 * speed up when alpha-blending and depth-test are enabled 382 * at the same time. 383 */ 384 if (nvbo->zeta) { 385 fpfn = (vram_size / 2) >> PAGE_SHIFT; 386 lpfn = ~0; 387 } else { 388 fpfn = 0; 389 lpfn = (vram_size / 2) >> PAGE_SHIFT; 390 } 391 for (i = 0; i < nvbo->placement.num_placement; ++i) { 392 nvbo->placements[i].fpfn = fpfn; 393 nvbo->placements[i].lpfn = lpfn; 394 } 395 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 396 nvbo->busy_placements[i].fpfn = fpfn; 397 nvbo->busy_placements[i].lpfn = lpfn; 398 } 399 } 400 } 401 402 void 403 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain, 404 uint32_t busy) 405 { 406 struct ttm_placement *pl = &nvbo->placement; 407 408 pl->placement = nvbo->placements; 409 set_placement_list(nvbo->placements, &pl->num_placement, domain); 410 411 pl->busy_placement = nvbo->busy_placements; 412 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, 413 domain | busy); 414 415 set_placement_range(nvbo, domain); 416 } 417 418 int 419 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 420 { 421 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 422 struct ttm_buffer_object *bo = &nvbo->bo; 423 bool force = false, evict = false; 424 int ret; 425 426 ret = ttm_bo_reserve(bo, false, false, NULL); 427 if (ret) 428 return ret; 429 430 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 431 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) { 432 if (!nvbo->contig) { 433 nvbo->contig = true; 434 force = true; 435 evict = true; 436 } 437 } 438 439 if (nvbo->bo.pin_count) { 440 bool error = evict; 441 442 switch (bo->resource->mem_type) { 443 case TTM_PL_VRAM: 444 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM); 445 break; 446 case TTM_PL_TT: 447 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART); 448 break; 449 default: 450 break; 451 } 452 453 if (error) { 454 NV_ERROR(drm, "bo %p pinned elsewhere: " 455 "0x%08x vs 0x%08x\n", bo, 456 bo->resource->mem_type, domain); 457 ret = -EBUSY; 458 } 459 ttm_bo_pin(&nvbo->bo); 460 goto out; 461 } 462 463 if (evict) { 464 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 465 ret = nouveau_bo_validate(nvbo, false, false); 466 if (ret) 467 goto out; 468 } 469 470 nouveau_bo_placement_set(nvbo, domain, 0); 471 ret = nouveau_bo_validate(nvbo, false, false); 472 if (ret) 473 goto out; 474 475 ttm_bo_pin(&nvbo->bo); 476 477 switch (bo->resource->mem_type) { 478 case TTM_PL_VRAM: 479 drm->gem.vram_available -= bo->base.size; 480 break; 481 case TTM_PL_TT: 482 drm->gem.gart_available -= bo->base.size; 483 break; 484 default: 485 break; 486 } 487 488 out: 489 if (force && ret) 490 nvbo->contig = false; 491 ttm_bo_unreserve(bo); 492 return ret; 493 } 494 495 int 496 nouveau_bo_unpin(struct nouveau_bo *nvbo) 497 { 498 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 499 struct ttm_buffer_object *bo = &nvbo->bo; 500 int ret; 501 502 ret = ttm_bo_reserve(bo, false, false, NULL); 503 if (ret) 504 return ret; 505 506 ttm_bo_unpin(&nvbo->bo); 507 if (!nvbo->bo.pin_count) { 508 switch (bo->resource->mem_type) { 509 case TTM_PL_VRAM: 510 drm->gem.vram_available += bo->base.size; 511 break; 512 case TTM_PL_TT: 513 drm->gem.gart_available += bo->base.size; 514 break; 515 default: 516 break; 517 } 518 } 519 520 ttm_bo_unreserve(bo); 521 return 0; 522 } 523 524 int 525 nouveau_bo_map(struct nouveau_bo *nvbo) 526 { 527 int ret; 528 529 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); 530 if (ret) 531 return ret; 532 533 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.resource->num_pages, &nvbo->kmap); 534 535 ttm_bo_unreserve(&nvbo->bo); 536 return ret; 537 } 538 539 void 540 nouveau_bo_unmap(struct nouveau_bo *nvbo) 541 { 542 if (!nvbo) 543 return; 544 545 ttm_bo_kunmap(&nvbo->kmap); 546 } 547 548 void 549 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) 550 { 551 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 552 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 553 int i, j; 554 555 if (!ttm_dma || !ttm_dma->dma_address) 556 return; 557 if (!ttm_dma->pages) { 558 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 559 return; 560 } 561 562 /* Don't waste time looping if the object is coherent */ 563 if (nvbo->force_coherent) 564 return; 565 566 i = 0; 567 while (i < ttm_dma->num_pages) { 568 struct page *p = ttm_dma->pages[i]; 569 size_t num_pages = 1; 570 571 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 572 if (++p != ttm_dma->pages[j]) 573 break; 574 575 ++num_pages; 576 } 577 dma_sync_single_for_device(drm->dev->dev, 578 ttm_dma->dma_address[i], 579 num_pages * PAGE_SIZE, DMA_TO_DEVICE); 580 i += num_pages; 581 } 582 } 583 584 void 585 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) 586 { 587 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 588 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 589 int i, j; 590 591 if (!ttm_dma || !ttm_dma->dma_address) 592 return; 593 if (!ttm_dma->pages) { 594 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 595 return; 596 } 597 598 /* Don't waste time looping if the object is coherent */ 599 if (nvbo->force_coherent) 600 return; 601 602 i = 0; 603 while (i < ttm_dma->num_pages) { 604 struct page *p = ttm_dma->pages[i]; 605 size_t num_pages = 1; 606 607 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 608 if (++p != ttm_dma->pages[j]) 609 break; 610 611 ++num_pages; 612 } 613 614 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], 615 num_pages * PAGE_SIZE, DMA_FROM_DEVICE); 616 i += num_pages; 617 } 618 } 619 620 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo) 621 { 622 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 623 struct nouveau_bo *nvbo = nouveau_bo(bo); 624 625 mutex_lock(&drm->ttm.io_reserve_mutex); 626 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru); 627 mutex_unlock(&drm->ttm.io_reserve_mutex); 628 } 629 630 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo) 631 { 632 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 633 struct nouveau_bo *nvbo = nouveau_bo(bo); 634 635 mutex_lock(&drm->ttm.io_reserve_mutex); 636 list_del_init(&nvbo->io_reserve_lru); 637 mutex_unlock(&drm->ttm.io_reserve_mutex); 638 } 639 640 int 641 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, 642 bool no_wait_gpu) 643 { 644 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; 645 int ret; 646 647 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); 648 if (ret) 649 return ret; 650 651 nouveau_bo_sync_for_device(nvbo); 652 653 return 0; 654 } 655 656 void 657 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) 658 { 659 bool is_iomem; 660 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 661 662 mem += index; 663 664 if (is_iomem) 665 iowrite16_native(val, (void __force __iomem *)mem); 666 else 667 *mem = val; 668 } 669 670 u32 671 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) 672 { 673 bool is_iomem; 674 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 675 676 mem += index; 677 678 if (is_iomem) 679 return ioread32_native((void __force __iomem *)mem); 680 else 681 return *mem; 682 } 683 684 void 685 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) 686 { 687 bool is_iomem; 688 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 689 690 mem += index; 691 692 if (is_iomem) 693 iowrite32_native(val, (void __force __iomem *)mem); 694 else 695 *mem = val; 696 } 697 698 static struct ttm_tt * 699 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) 700 { 701 #if IS_ENABLED(CONFIG_AGP) 702 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 703 704 if (drm->agp.bridge) { 705 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); 706 } 707 #endif 708 709 return nouveau_sgdma_create_ttm(bo, page_flags); 710 } 711 712 static int 713 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 714 struct ttm_resource *reg) 715 { 716 #if IS_ENABLED(CONFIG_AGP) 717 struct nouveau_drm *drm = nouveau_bdev(bdev); 718 #endif 719 if (!reg) 720 return -EINVAL; 721 #if IS_ENABLED(CONFIG_AGP) 722 if (drm->agp.bridge) 723 return ttm_agp_bind(ttm, reg); 724 #endif 725 return nouveau_sgdma_bind(bdev, ttm, reg); 726 } 727 728 static void 729 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) 730 { 731 #if IS_ENABLED(CONFIG_AGP) 732 struct nouveau_drm *drm = nouveau_bdev(bdev); 733 734 if (drm->agp.bridge) { 735 ttm_agp_unbind(ttm); 736 return; 737 } 738 #endif 739 nouveau_sgdma_unbind(bdev, ttm); 740 } 741 742 static void 743 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) 744 { 745 struct nouveau_bo *nvbo = nouveau_bo(bo); 746 747 switch (bo->resource->mem_type) { 748 case TTM_PL_VRAM: 749 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 750 NOUVEAU_GEM_DOMAIN_CPU); 751 break; 752 default: 753 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0); 754 break; 755 } 756 757 *pl = nvbo->placement; 758 } 759 760 static int 761 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, 762 struct ttm_resource *reg) 763 { 764 struct nouveau_mem *old_mem = nouveau_mem(bo->resource); 765 struct nouveau_mem *new_mem = nouveau_mem(reg); 766 struct nvif_vmm *vmm = &drm->client.vmm.vmm; 767 int ret; 768 769 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, 770 old_mem->mem.size, &old_mem->vma[0]); 771 if (ret) 772 return ret; 773 774 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, 775 new_mem->mem.size, &old_mem->vma[1]); 776 if (ret) 777 goto done; 778 779 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); 780 if (ret) 781 goto done; 782 783 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); 784 done: 785 if (ret) { 786 nvif_vmm_put(vmm, &old_mem->vma[1]); 787 nvif_vmm_put(vmm, &old_mem->vma[0]); 788 } 789 return 0; 790 } 791 792 static int 793 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, 794 struct ttm_operation_ctx *ctx, 795 struct ttm_resource *new_reg) 796 { 797 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 798 struct nouveau_channel *chan = drm->ttm.chan; 799 struct nouveau_cli *cli = (void *)chan->user.client; 800 struct nouveau_fence *fence; 801 int ret; 802 803 /* create temporary vmas for the transfer and attach them to the 804 * old nvkm_mem node, these will get cleaned up after ttm has 805 * destroyed the ttm_resource 806 */ 807 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 808 ret = nouveau_bo_move_prep(drm, bo, new_reg); 809 if (ret) 810 return ret; 811 } 812 813 if (drm_drv_uses_atomic_modeset(drm->dev)) 814 mutex_lock(&cli->mutex); 815 else 816 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); 817 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible); 818 if (ret == 0) { 819 ret = drm->ttm.move(chan, bo, bo->resource, new_reg); 820 if (ret == 0) { 821 ret = nouveau_fence_new(chan, false, &fence); 822 if (ret == 0) { 823 ret = ttm_bo_move_accel_cleanup(bo, 824 &fence->base, 825 evict, false, 826 new_reg); 827 nouveau_fence_unref(&fence); 828 } 829 } 830 } 831 mutex_unlock(&cli->mutex); 832 return ret; 833 } 834 835 void 836 nouveau_bo_move_init(struct nouveau_drm *drm) 837 { 838 static const struct _method_table { 839 const char *name; 840 int engine; 841 s32 oclass; 842 int (*exec)(struct nouveau_channel *, 843 struct ttm_buffer_object *, 844 struct ttm_resource *, struct ttm_resource *); 845 int (*init)(struct nouveau_channel *, u32 handle); 846 } _methods[] = { 847 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init }, 848 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, 849 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, 850 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, 851 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, 852 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, 853 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, 854 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, 855 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 856 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, 857 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 858 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, 859 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 860 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, 861 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, 862 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, 863 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, 864 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, 865 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, 866 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, 867 {}, 868 }; 869 const struct _method_table *mthd = _methods; 870 const char *name = "CPU"; 871 int ret; 872 873 do { 874 struct nouveau_channel *chan; 875 876 if (mthd->engine) 877 chan = drm->cechan; 878 else 879 chan = drm->channel; 880 if (chan == NULL) 881 continue; 882 883 ret = nvif_object_ctor(&chan->user, "ttmBoMove", 884 mthd->oclass | (mthd->engine << 16), 885 mthd->oclass, NULL, 0, 886 &drm->ttm.copy); 887 if (ret == 0) { 888 ret = mthd->init(chan, drm->ttm.copy.handle); 889 if (ret) { 890 nvif_object_dtor(&drm->ttm.copy); 891 continue; 892 } 893 894 drm->ttm.move = mthd->exec; 895 drm->ttm.chan = chan; 896 name = mthd->name; 897 break; 898 } 899 } while ((++mthd)->exec); 900 901 NV_INFO(drm, "MM: using %s for buffer copies\n", name); 902 } 903 904 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, 905 struct ttm_resource *new_reg) 906 { 907 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; 908 struct nouveau_bo *nvbo = nouveau_bo(bo); 909 struct nouveau_vma *vma; 910 911 /* ttm can now (stupidly) pass the driver bos it didn't create... */ 912 if (bo->destroy != nouveau_bo_del_ttm) 913 return; 914 915 nouveau_bo_del_io_reserve_lru(bo); 916 917 if (mem && new_reg->mem_type != TTM_PL_SYSTEM && 918 mem->mem.page == nvbo->page) { 919 list_for_each_entry(vma, &nvbo->vma_list, head) { 920 nouveau_vma_map(vma, mem); 921 } 922 } else { 923 list_for_each_entry(vma, &nvbo->vma_list, head) { 924 WARN_ON(ttm_bo_wait(bo, false, false)); 925 nouveau_vma_unmap(vma); 926 } 927 } 928 929 if (new_reg) 930 nvbo->offset = (new_reg->start << PAGE_SHIFT); 931 932 } 933 934 static int 935 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg, 936 struct nouveau_drm_tile **new_tile) 937 { 938 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 939 struct drm_device *dev = drm->dev; 940 struct nouveau_bo *nvbo = nouveau_bo(bo); 941 u64 offset = new_reg->start << PAGE_SHIFT; 942 943 *new_tile = NULL; 944 if (new_reg->mem_type != TTM_PL_VRAM) 945 return 0; 946 947 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { 948 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size, 949 nvbo->mode, nvbo->zeta); 950 } 951 952 return 0; 953 } 954 955 static void 956 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, 957 struct nouveau_drm_tile *new_tile, 958 struct nouveau_drm_tile **old_tile) 959 { 960 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 961 struct drm_device *dev = drm->dev; 962 struct dma_fence *fence = dma_resv_excl_fence(bo->base.resv); 963 964 nv10_bo_put_tile_region(dev, *old_tile, fence); 965 *old_tile = new_tile; 966 } 967 968 static int 969 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, 970 struct ttm_operation_ctx *ctx, 971 struct ttm_resource *new_reg, 972 struct ttm_place *hop) 973 { 974 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 975 struct nouveau_bo *nvbo = nouveau_bo(bo); 976 struct ttm_resource *old_reg = bo->resource; 977 struct nouveau_drm_tile *new_tile = NULL; 978 int ret = 0; 979 980 981 if (new_reg->mem_type == TTM_PL_TT) { 982 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg); 983 if (ret) 984 return ret; 985 } 986 987 nouveau_bo_move_ntfy(bo, new_reg); 988 ret = ttm_bo_wait_ctx(bo, ctx); 989 if (ret) 990 goto out_ntfy; 991 992 if (nvbo->bo.pin_count) 993 NV_WARN(drm, "Moving pinned object %p!\n", nvbo); 994 995 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 996 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); 997 if (ret) 998 goto out_ntfy; 999 } 1000 1001 /* Fake bo copy. */ 1002 if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) { 1003 ttm_bo_move_null(bo, new_reg); 1004 goto out; 1005 } 1006 1007 if (old_reg->mem_type == TTM_PL_SYSTEM && 1008 new_reg->mem_type == TTM_PL_TT) { 1009 ttm_bo_move_null(bo, new_reg); 1010 goto out; 1011 } 1012 1013 if (old_reg->mem_type == TTM_PL_TT && 1014 new_reg->mem_type == TTM_PL_SYSTEM) { 1015 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm); 1016 ttm_resource_free(bo, &bo->resource); 1017 ttm_bo_assign_mem(bo, new_reg); 1018 goto out; 1019 } 1020 1021 /* Hardware assisted copy. */ 1022 if (drm->ttm.move) { 1023 if ((old_reg->mem_type == TTM_PL_SYSTEM && 1024 new_reg->mem_type == TTM_PL_VRAM) || 1025 (old_reg->mem_type == TTM_PL_VRAM && 1026 new_reg->mem_type == TTM_PL_SYSTEM)) { 1027 hop->fpfn = 0; 1028 hop->lpfn = 0; 1029 hop->mem_type = TTM_PL_TT; 1030 hop->flags = 0; 1031 return -EMULTIHOP; 1032 } 1033 ret = nouveau_bo_move_m2mf(bo, evict, ctx, 1034 new_reg); 1035 } else 1036 ret = -ENODEV; 1037 1038 if (ret) { 1039 /* Fallback to software copy. */ 1040 ret = ttm_bo_move_memcpy(bo, ctx, new_reg); 1041 } 1042 1043 out: 1044 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1045 if (ret) 1046 nouveau_bo_vm_cleanup(bo, NULL, &new_tile); 1047 else 1048 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); 1049 } 1050 out_ntfy: 1051 if (ret) { 1052 nouveau_bo_move_ntfy(bo, bo->resource); 1053 } 1054 return ret; 1055 } 1056 1057 static void 1058 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm, 1059 struct ttm_resource *reg) 1060 { 1061 struct nouveau_mem *mem = nouveau_mem(reg); 1062 1063 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1064 switch (reg->mem_type) { 1065 case TTM_PL_TT: 1066 if (mem->kind) 1067 nvif_object_unmap_handle(&mem->mem.object); 1068 break; 1069 case TTM_PL_VRAM: 1070 nvif_object_unmap_handle(&mem->mem.object); 1071 break; 1072 default: 1073 break; 1074 } 1075 } 1076 } 1077 1078 static int 1079 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg) 1080 { 1081 struct nouveau_drm *drm = nouveau_bdev(bdev); 1082 struct nvkm_device *device = nvxx_device(&drm->client.device); 1083 struct nouveau_mem *mem = nouveau_mem(reg); 1084 struct nvif_mmu *mmu = &drm->client.mmu; 1085 int ret; 1086 1087 mutex_lock(&drm->ttm.io_reserve_mutex); 1088 retry: 1089 switch (reg->mem_type) { 1090 case TTM_PL_SYSTEM: 1091 /* System memory */ 1092 ret = 0; 1093 goto out; 1094 case TTM_PL_TT: 1095 #if IS_ENABLED(CONFIG_AGP) 1096 if (drm->agp.bridge) { 1097 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1098 drm->agp.base; 1099 reg->bus.is_iomem = !drm->agp.cma; 1100 reg->bus.caching = ttm_write_combined; 1101 } 1102 #endif 1103 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || 1104 !mem->kind) { 1105 /* untiled */ 1106 ret = 0; 1107 break; 1108 } 1109 fallthrough; /* tiled memory */ 1110 case TTM_PL_VRAM: 1111 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1112 device->func->resource_addr(device, 1); 1113 reg->bus.is_iomem = true; 1114 1115 /* Some BARs do not support being ioremapped WC */ 1116 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 1117 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED) 1118 reg->bus.caching = ttm_uncached; 1119 else 1120 reg->bus.caching = ttm_write_combined; 1121 1122 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1123 union { 1124 struct nv50_mem_map_v0 nv50; 1125 struct gf100_mem_map_v0 gf100; 1126 } args; 1127 u64 handle, length; 1128 u32 argc = 0; 1129 1130 switch (mem->mem.object.oclass) { 1131 case NVIF_CLASS_MEM_NV50: 1132 args.nv50.version = 0; 1133 args.nv50.ro = 0; 1134 args.nv50.kind = mem->kind; 1135 args.nv50.comp = mem->comp; 1136 argc = sizeof(args.nv50); 1137 break; 1138 case NVIF_CLASS_MEM_GF100: 1139 args.gf100.version = 0; 1140 args.gf100.ro = 0; 1141 args.gf100.kind = mem->kind; 1142 argc = sizeof(args.gf100); 1143 break; 1144 default: 1145 WARN_ON(1); 1146 break; 1147 } 1148 1149 ret = nvif_object_map_handle(&mem->mem.object, 1150 &args, argc, 1151 &handle, &length); 1152 if (ret != 1) { 1153 if (WARN_ON(ret == 0)) 1154 ret = -EINVAL; 1155 goto out; 1156 } 1157 1158 reg->bus.offset = handle; 1159 } 1160 ret = 0; 1161 break; 1162 default: 1163 ret = -EINVAL; 1164 } 1165 1166 out: 1167 if (ret == -ENOSPC) { 1168 struct nouveau_bo *nvbo; 1169 1170 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru, 1171 typeof(*nvbo), 1172 io_reserve_lru); 1173 if (nvbo) { 1174 list_del_init(&nvbo->io_reserve_lru); 1175 drm_vma_node_unmap(&nvbo->bo.base.vma_node, 1176 bdev->dev_mapping); 1177 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource); 1178 goto retry; 1179 } 1180 1181 } 1182 mutex_unlock(&drm->ttm.io_reserve_mutex); 1183 return ret; 1184 } 1185 1186 static void 1187 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg) 1188 { 1189 struct nouveau_drm *drm = nouveau_bdev(bdev); 1190 1191 mutex_lock(&drm->ttm.io_reserve_mutex); 1192 nouveau_ttm_io_mem_free_locked(drm, reg); 1193 mutex_unlock(&drm->ttm.io_reserve_mutex); 1194 } 1195 1196 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) 1197 { 1198 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1199 struct nouveau_bo *nvbo = nouveau_bo(bo); 1200 struct nvkm_device *device = nvxx_device(&drm->client.device); 1201 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; 1202 int i, ret; 1203 1204 /* as long as the bo isn't in vram, and isn't tiled, we've got 1205 * nothing to do here. 1206 */ 1207 if (bo->resource->mem_type != TTM_PL_VRAM) { 1208 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || 1209 !nvbo->kind) 1210 return 0; 1211 1212 if (bo->resource->mem_type != TTM_PL_SYSTEM) 1213 return 0; 1214 1215 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 1216 1217 } else { 1218 /* make sure bo is in mappable vram */ 1219 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || 1220 bo->resource->start + bo->resource->num_pages < mappable) 1221 return 0; 1222 1223 for (i = 0; i < nvbo->placement.num_placement; ++i) { 1224 nvbo->placements[i].fpfn = 0; 1225 nvbo->placements[i].lpfn = mappable; 1226 } 1227 1228 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 1229 nvbo->busy_placements[i].fpfn = 0; 1230 nvbo->busy_placements[i].lpfn = mappable; 1231 } 1232 1233 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0); 1234 } 1235 1236 ret = nouveau_bo_validate(nvbo, false, false); 1237 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS)) 1238 return VM_FAULT_NOPAGE; 1239 else if (unlikely(ret)) 1240 return VM_FAULT_SIGBUS; 1241 1242 ttm_bo_move_to_lru_tail_unlocked(bo); 1243 return 0; 1244 } 1245 1246 static int 1247 nouveau_ttm_tt_populate(struct ttm_device *bdev, 1248 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 1249 { 1250 struct ttm_tt *ttm_dma = (void *)ttm; 1251 struct nouveau_drm *drm; 1252 struct device *dev; 1253 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1254 1255 if (ttm_tt_is_populated(ttm)) 1256 return 0; 1257 1258 if (slave && ttm->sg) { 1259 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address, 1260 ttm->num_pages); 1261 return 0; 1262 } 1263 1264 drm = nouveau_bdev(bdev); 1265 dev = drm->dev->dev; 1266 1267 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx); 1268 } 1269 1270 static void 1271 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev, 1272 struct ttm_tt *ttm) 1273 { 1274 struct nouveau_drm *drm; 1275 struct device *dev; 1276 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1277 1278 if (slave) 1279 return; 1280 1281 drm = nouveau_bdev(bdev); 1282 dev = drm->dev->dev; 1283 1284 return ttm_pool_free(&drm->ttm.bdev.pool, ttm); 1285 } 1286 1287 static void 1288 nouveau_ttm_tt_destroy(struct ttm_device *bdev, 1289 struct ttm_tt *ttm) 1290 { 1291 #if IS_ENABLED(CONFIG_AGP) 1292 struct nouveau_drm *drm = nouveau_bdev(bdev); 1293 if (drm->agp.bridge) { 1294 ttm_agp_unbind(ttm); 1295 ttm_tt_destroy_common(bdev, ttm); 1296 ttm_agp_destroy(ttm); 1297 return; 1298 } 1299 #endif 1300 nouveau_sgdma_destroy(bdev, ttm); 1301 } 1302 1303 void 1304 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) 1305 { 1306 struct dma_resv *resv = nvbo->bo.base.resv; 1307 1308 if (exclusive) 1309 dma_resv_add_excl_fence(resv, &fence->base); 1310 else if (fence) 1311 dma_resv_add_shared_fence(resv, &fence->base); 1312 } 1313 1314 static void 1315 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1316 { 1317 nouveau_bo_move_ntfy(bo, NULL); 1318 } 1319 1320 struct ttm_device_funcs nouveau_bo_driver = { 1321 .ttm_tt_create = &nouveau_ttm_tt_create, 1322 .ttm_tt_populate = &nouveau_ttm_tt_populate, 1323 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, 1324 .ttm_tt_destroy = &nouveau_ttm_tt_destroy, 1325 .eviction_valuable = ttm_bo_eviction_valuable, 1326 .evict_flags = nouveau_bo_evict_flags, 1327 .delete_mem_notify = nouveau_bo_delete_mem_notify, 1328 .move = nouveau_bo_move, 1329 .io_mem_reserve = &nouveau_ttm_io_mem_reserve, 1330 .io_mem_free = &nouveau_ttm_io_mem_free, 1331 }; 1332