1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 
32 #include "nouveau_drv.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 
36 #include "nouveau_bo.h"
37 #include "nouveau_ttm.h"
38 #include "nouveau_gem.h"
39 #include "nouveau_mem.h"
40 #include "nouveau_vmm.h"
41 
42 #include <nvif/class.h>
43 #include <nvif/if500b.h>
44 #include <nvif/if900b.h>
45 
46 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
47 			       struct ttm_resource *reg);
48 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
49 
50 /*
51  * NV10-NV40 tiling helpers
52  */
53 
54 static void
55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
56 			   u32 addr, u32 size, u32 pitch, u32 flags)
57 {
58 	struct nouveau_drm *drm = nouveau_drm(dev);
59 	int i = reg - drm->tile.reg;
60 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
61 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
62 
63 	nouveau_fence_unref(&reg->fence);
64 
65 	if (tile->pitch)
66 		nvkm_fb_tile_fini(fb, i, tile);
67 
68 	if (pitch)
69 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
70 
71 	nvkm_fb_tile_prog(fb, i, tile);
72 }
73 
74 static struct nouveau_drm_tile *
75 nv10_bo_get_tile_region(struct drm_device *dev, int i)
76 {
77 	struct nouveau_drm *drm = nouveau_drm(dev);
78 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
79 
80 	spin_lock(&drm->tile.lock);
81 
82 	if (!tile->used &&
83 	    (!tile->fence || nouveau_fence_done(tile->fence)))
84 		tile->used = true;
85 	else
86 		tile = NULL;
87 
88 	spin_unlock(&drm->tile.lock);
89 	return tile;
90 }
91 
92 static void
93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
94 			struct dma_fence *fence)
95 {
96 	struct nouveau_drm *drm = nouveau_drm(dev);
97 
98 	if (tile) {
99 		spin_lock(&drm->tile.lock);
100 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
101 		tile->used = false;
102 		spin_unlock(&drm->tile.lock);
103 	}
104 }
105 
106 static struct nouveau_drm_tile *
107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
108 		   u32 size, u32 pitch, u32 zeta)
109 {
110 	struct nouveau_drm *drm = nouveau_drm(dev);
111 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
112 	struct nouveau_drm_tile *tile, *found = NULL;
113 	int i;
114 
115 	for (i = 0; i < fb->tile.regions; i++) {
116 		tile = nv10_bo_get_tile_region(dev, i);
117 
118 		if (pitch && !found) {
119 			found = tile;
120 			continue;
121 
122 		} else if (tile && fb->tile.region[i].pitch) {
123 			/* Kill an unused tile region. */
124 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
125 		}
126 
127 		nv10_bo_put_tile_region(dev, tile, NULL);
128 	}
129 
130 	if (found)
131 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
132 	return found;
133 }
134 
135 static void
136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
137 {
138 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
139 	struct drm_device *dev = drm->dev;
140 	struct nouveau_bo *nvbo = nouveau_bo(bo);
141 
142 	WARN_ON(nvbo->bo.pin_count > 0);
143 	nouveau_bo_del_io_reserve_lru(bo);
144 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
145 
146 	/*
147 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
148 	 * initialized, so don't attempt to release it.
149 	 */
150 	if (bo->base.dev)
151 		drm_gem_object_release(&bo->base);
152 	else
153 		dma_resv_fini(&bo->base._resv);
154 
155 	kfree(nvbo);
156 }
157 
158 static inline u64
159 roundup_64(u64 x, u32 y)
160 {
161 	x += y - 1;
162 	do_div(x, y);
163 	return x * y;
164 }
165 
166 static void
167 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
168 {
169 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
170 	struct nvif_device *device = &drm->client.device;
171 
172 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
173 		if (nvbo->mode) {
174 			if (device->info.chipset >= 0x40) {
175 				*align = 65536;
176 				*size = roundup_64(*size, 64 * nvbo->mode);
177 
178 			} else if (device->info.chipset >= 0x30) {
179 				*align = 32768;
180 				*size = roundup_64(*size, 64 * nvbo->mode);
181 
182 			} else if (device->info.chipset >= 0x20) {
183 				*align = 16384;
184 				*size = roundup_64(*size, 64 * nvbo->mode);
185 
186 			} else if (device->info.chipset >= 0x10) {
187 				*align = 16384;
188 				*size = roundup_64(*size, 32 * nvbo->mode);
189 			}
190 		}
191 	} else {
192 		*size = roundup_64(*size, (1 << nvbo->page));
193 		*align = max((1 <<  nvbo->page), *align);
194 	}
195 
196 	*size = roundup_64(*size, PAGE_SIZE);
197 }
198 
199 struct nouveau_bo *
200 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
201 		 u32 tile_mode, u32 tile_flags)
202 {
203 	struct nouveau_drm *drm = cli->drm;
204 	struct nouveau_bo *nvbo;
205 	struct nvif_mmu *mmu = &cli->mmu;
206 	struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
207 	int i, pi = -1;
208 
209 	if (!*size) {
210 		NV_WARN(drm, "skipped size %016llx\n", *size);
211 		return ERR_PTR(-EINVAL);
212 	}
213 
214 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
215 	if (!nvbo)
216 		return ERR_PTR(-ENOMEM);
217 	INIT_LIST_HEAD(&nvbo->head);
218 	INIT_LIST_HEAD(&nvbo->entry);
219 	INIT_LIST_HEAD(&nvbo->vma_list);
220 	nvbo->bo.bdev = &drm->ttm.bdev;
221 
222 	/* This is confusing, and doesn't actually mean we want an uncached
223 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
224 	 * into in nouveau_gem_new().
225 	 */
226 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
227 		/* Determine if we can get a cache-coherent map, forcing
228 		 * uncached mapping if we can't.
229 		 */
230 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
231 			nvbo->force_coherent = true;
232 	}
233 
234 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
235 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
236 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
237 			kfree(nvbo);
238 			return ERR_PTR(-EINVAL);
239 		}
240 
241 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
242 	} else
243 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
244 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
245 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
246 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
247 			kfree(nvbo);
248 			return ERR_PTR(-EINVAL);
249 		}
250 	} else {
251 		nvbo->zeta = (tile_flags & 0x00000007);
252 	}
253 	nvbo->mode = tile_mode;
254 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
255 
256 	/* Determine the desirable target GPU page size for the buffer. */
257 	for (i = 0; i < vmm->page_nr; i++) {
258 		/* Because we cannot currently allow VMM maps to fail
259 		 * during buffer migration, we need to determine page
260 		 * size for the buffer up-front, and pre-allocate its
261 		 * page tables.
262 		 *
263 		 * Skip page sizes that can't support needed domains.
264 		 */
265 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
266 		    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
267 			continue;
268 		if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
269 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
270 			continue;
271 
272 		/* Select this page size if it's the first that supports
273 		 * the potential memory domains, or when it's compatible
274 		 * with the requested compression settings.
275 		 */
276 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
277 			pi = i;
278 
279 		/* Stop once the buffer is larger than the current page size. */
280 		if (*size >= 1ULL << vmm->page[i].shift)
281 			break;
282 	}
283 
284 	if (WARN_ON(pi < 0))
285 		return ERR_PTR(-EINVAL);
286 
287 	/* Disable compression if suitable settings couldn't be found. */
288 	if (nvbo->comp && !vmm->page[pi].comp) {
289 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
290 			nvbo->kind = mmu->kind[nvbo->kind];
291 		nvbo->comp = 0;
292 	}
293 	nvbo->page = vmm->page[pi].shift;
294 
295 	nouveau_bo_fixup_align(nvbo, align, size);
296 
297 	return nvbo;
298 }
299 
300 int
301 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
302 		struct sg_table *sg, struct dma_resv *robj)
303 {
304 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
305 	int ret;
306 
307 	nouveau_bo_placement_set(nvbo, domain, 0);
308 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
309 
310 	ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
311 			  &nvbo->placement, align >> PAGE_SHIFT, false, sg,
312 			  robj, nouveau_bo_del_ttm);
313 	if (ret) {
314 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
315 		return ret;
316 	}
317 
318 	return 0;
319 }
320 
321 int
322 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
323 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
324 	       struct sg_table *sg, struct dma_resv *robj,
325 	       struct nouveau_bo **pnvbo)
326 {
327 	struct nouveau_bo *nvbo;
328 	int ret;
329 
330 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
331 				tile_flags);
332 	if (IS_ERR(nvbo))
333 		return PTR_ERR(nvbo);
334 
335 	nvbo->bo.base.size = size;
336 	dma_resv_init(&nvbo->bo.base._resv);
337 	drm_vma_node_reset(&nvbo->bo.base.vma_node);
338 
339 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
340 	if (ret)
341 		return ret;
342 
343 	*pnvbo = nvbo;
344 	return 0;
345 }
346 
347 static void
348 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
349 {
350 	*n = 0;
351 
352 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
353 		pl[*n].mem_type = TTM_PL_VRAM;
354 		pl[*n].flags = 0;
355 		(*n)++;
356 	}
357 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
358 		pl[*n].mem_type = TTM_PL_TT;
359 		pl[*n].flags = 0;
360 		(*n)++;
361 	}
362 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
363 		pl[*n].mem_type = TTM_PL_SYSTEM;
364 		pl[(*n)++].flags = 0;
365 	}
366 }
367 
368 static void
369 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
370 {
371 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
372 	u64 vram_size = drm->client.device.info.ram_size;
373 	unsigned i, fpfn, lpfn;
374 
375 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
376 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
377 	    nvbo->bo.base.size < vram_size / 4) {
378 		/*
379 		 * Make sure that the color and depth buffers are handled
380 		 * by independent memory controller units. Up to a 9x
381 		 * speed up when alpha-blending and depth-test are enabled
382 		 * at the same time.
383 		 */
384 		if (nvbo->zeta) {
385 			fpfn = (vram_size / 2) >> PAGE_SHIFT;
386 			lpfn = ~0;
387 		} else {
388 			fpfn = 0;
389 			lpfn = (vram_size / 2) >> PAGE_SHIFT;
390 		}
391 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
392 			nvbo->placements[i].fpfn = fpfn;
393 			nvbo->placements[i].lpfn = lpfn;
394 		}
395 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
396 			nvbo->busy_placements[i].fpfn = fpfn;
397 			nvbo->busy_placements[i].lpfn = lpfn;
398 		}
399 	}
400 }
401 
402 void
403 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
404 			 uint32_t busy)
405 {
406 	struct ttm_placement *pl = &nvbo->placement;
407 
408 	pl->placement = nvbo->placements;
409 	set_placement_list(nvbo->placements, &pl->num_placement, domain);
410 
411 	pl->busy_placement = nvbo->busy_placements;
412 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
413 			   domain | busy);
414 
415 	set_placement_range(nvbo, domain);
416 }
417 
418 int
419 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
420 {
421 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
422 	struct ttm_buffer_object *bo = &nvbo->bo;
423 	bool force = false, evict = false;
424 	int ret;
425 
426 	ret = ttm_bo_reserve(bo, false, false, NULL);
427 	if (ret)
428 		return ret;
429 
430 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
431 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
432 		if (!nvbo->contig) {
433 			nvbo->contig = true;
434 			force = true;
435 			evict = true;
436 		}
437 	}
438 
439 	if (nvbo->bo.pin_count) {
440 		bool error = evict;
441 
442 		switch (bo->resource->mem_type) {
443 		case TTM_PL_VRAM:
444 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
445 			break;
446 		case TTM_PL_TT:
447 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
448 			break;
449 		default:
450 			break;
451 		}
452 
453 		if (error) {
454 			NV_ERROR(drm, "bo %p pinned elsewhere: "
455 				      "0x%08x vs 0x%08x\n", bo,
456 				 bo->resource->mem_type, domain);
457 			ret = -EBUSY;
458 		}
459 		ttm_bo_pin(&nvbo->bo);
460 		goto out;
461 	}
462 
463 	if (evict) {
464 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
465 		ret = nouveau_bo_validate(nvbo, false, false);
466 		if (ret)
467 			goto out;
468 	}
469 
470 	nouveau_bo_placement_set(nvbo, domain, 0);
471 	ret = nouveau_bo_validate(nvbo, false, false);
472 	if (ret)
473 		goto out;
474 
475 	ttm_bo_pin(&nvbo->bo);
476 
477 	switch (bo->resource->mem_type) {
478 	case TTM_PL_VRAM:
479 		drm->gem.vram_available -= bo->base.size;
480 		break;
481 	case TTM_PL_TT:
482 		drm->gem.gart_available -= bo->base.size;
483 		break;
484 	default:
485 		break;
486 	}
487 
488 out:
489 	if (force && ret)
490 		nvbo->contig = false;
491 	ttm_bo_unreserve(bo);
492 	return ret;
493 }
494 
495 int
496 nouveau_bo_unpin(struct nouveau_bo *nvbo)
497 {
498 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
499 	struct ttm_buffer_object *bo = &nvbo->bo;
500 	int ret;
501 
502 	ret = ttm_bo_reserve(bo, false, false, NULL);
503 	if (ret)
504 		return ret;
505 
506 	ttm_bo_unpin(&nvbo->bo);
507 	if (!nvbo->bo.pin_count) {
508 		switch (bo->resource->mem_type) {
509 		case TTM_PL_VRAM:
510 			drm->gem.vram_available += bo->base.size;
511 			break;
512 		case TTM_PL_TT:
513 			drm->gem.gart_available += bo->base.size;
514 			break;
515 		default:
516 			break;
517 		}
518 	}
519 
520 	ttm_bo_unreserve(bo);
521 	return 0;
522 }
523 
524 int
525 nouveau_bo_map(struct nouveau_bo *nvbo)
526 {
527 	int ret;
528 
529 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
530 	if (ret)
531 		return ret;
532 
533 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.resource->num_pages, &nvbo->kmap);
534 
535 	ttm_bo_unreserve(&nvbo->bo);
536 	return ret;
537 }
538 
539 void
540 nouveau_bo_unmap(struct nouveau_bo *nvbo)
541 {
542 	if (!nvbo)
543 		return;
544 
545 	ttm_bo_kunmap(&nvbo->kmap);
546 }
547 
548 void
549 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
550 {
551 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
552 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
553 	int i, j;
554 
555 	if (!ttm_dma || !ttm_dma->dma_address)
556 		return;
557 	if (!ttm_dma->pages) {
558 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
559 		return;
560 	}
561 
562 	/* Don't waste time looping if the object is coherent */
563 	if (nvbo->force_coherent)
564 		return;
565 
566 	i = 0;
567 	while (i < ttm_dma->num_pages) {
568 		struct page *p = ttm_dma->pages[i];
569 		size_t num_pages = 1;
570 
571 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
572 			if (++p != ttm_dma->pages[j])
573 				break;
574 
575 			++num_pages;
576 		}
577 		dma_sync_single_for_device(drm->dev->dev,
578 					   ttm_dma->dma_address[i],
579 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
580 		i += num_pages;
581 	}
582 }
583 
584 void
585 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
586 {
587 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
588 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
589 	int i, j;
590 
591 	if (!ttm_dma || !ttm_dma->dma_address)
592 		return;
593 	if (!ttm_dma->pages) {
594 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
595 		return;
596 	}
597 
598 	/* Don't waste time looping if the object is coherent */
599 	if (nvbo->force_coherent)
600 		return;
601 
602 	i = 0;
603 	while (i < ttm_dma->num_pages) {
604 		struct page *p = ttm_dma->pages[i];
605 		size_t num_pages = 1;
606 
607 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
608 			if (++p != ttm_dma->pages[j])
609 				break;
610 
611 			++num_pages;
612 		}
613 
614 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
615 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
616 		i += num_pages;
617 	}
618 }
619 
620 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
621 {
622 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
623 	struct nouveau_bo *nvbo = nouveau_bo(bo);
624 
625 	mutex_lock(&drm->ttm.io_reserve_mutex);
626 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
627 	mutex_unlock(&drm->ttm.io_reserve_mutex);
628 }
629 
630 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
631 {
632 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
633 	struct nouveau_bo *nvbo = nouveau_bo(bo);
634 
635 	mutex_lock(&drm->ttm.io_reserve_mutex);
636 	list_del_init(&nvbo->io_reserve_lru);
637 	mutex_unlock(&drm->ttm.io_reserve_mutex);
638 }
639 
640 int
641 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
642 		    bool no_wait_gpu)
643 {
644 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
645 	int ret;
646 
647 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
648 	if (ret)
649 		return ret;
650 
651 	nouveau_bo_sync_for_device(nvbo);
652 
653 	return 0;
654 }
655 
656 void
657 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
658 {
659 	bool is_iomem;
660 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
661 
662 	mem += index;
663 
664 	if (is_iomem)
665 		iowrite16_native(val, (void __force __iomem *)mem);
666 	else
667 		*mem = val;
668 }
669 
670 u32
671 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
672 {
673 	bool is_iomem;
674 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
675 
676 	mem += index;
677 
678 	if (is_iomem)
679 		return ioread32_native((void __force __iomem *)mem);
680 	else
681 		return *mem;
682 }
683 
684 void
685 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
686 {
687 	bool is_iomem;
688 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
689 
690 	mem += index;
691 
692 	if (is_iomem)
693 		iowrite32_native(val, (void __force __iomem *)mem);
694 	else
695 		*mem = val;
696 }
697 
698 static struct ttm_tt *
699 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
700 {
701 #if IS_ENABLED(CONFIG_AGP)
702 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
703 
704 	if (drm->agp.bridge) {
705 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
706 	}
707 #endif
708 
709 	return nouveau_sgdma_create_ttm(bo, page_flags);
710 }
711 
712 static int
713 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
714 		    struct ttm_resource *reg)
715 {
716 #if IS_ENABLED(CONFIG_AGP)
717 	struct nouveau_drm *drm = nouveau_bdev(bdev);
718 #endif
719 	if (!reg)
720 		return -EINVAL;
721 #if IS_ENABLED(CONFIG_AGP)
722 	if (drm->agp.bridge)
723 		return ttm_agp_bind(ttm, reg);
724 #endif
725 	return nouveau_sgdma_bind(bdev, ttm, reg);
726 }
727 
728 static void
729 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
730 {
731 #if IS_ENABLED(CONFIG_AGP)
732 	struct nouveau_drm *drm = nouveau_bdev(bdev);
733 
734 	if (drm->agp.bridge) {
735 		ttm_agp_unbind(ttm);
736 		return;
737 	}
738 #endif
739 	nouveau_sgdma_unbind(bdev, ttm);
740 }
741 
742 static void
743 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
744 {
745 	struct nouveau_bo *nvbo = nouveau_bo(bo);
746 
747 	switch (bo->resource->mem_type) {
748 	case TTM_PL_VRAM:
749 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
750 					 NOUVEAU_GEM_DOMAIN_CPU);
751 		break;
752 	default:
753 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
754 		break;
755 	}
756 
757 	*pl = nvbo->placement;
758 }
759 
760 static int
761 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
762 		     struct ttm_resource *reg)
763 {
764 	struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
765 	struct nouveau_mem *new_mem = nouveau_mem(reg);
766 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
767 	int ret;
768 
769 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
770 			   old_mem->mem.size, &old_mem->vma[0]);
771 	if (ret)
772 		return ret;
773 
774 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
775 			   new_mem->mem.size, &old_mem->vma[1]);
776 	if (ret)
777 		goto done;
778 
779 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
780 	if (ret)
781 		goto done;
782 
783 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
784 done:
785 	if (ret) {
786 		nvif_vmm_put(vmm, &old_mem->vma[1]);
787 		nvif_vmm_put(vmm, &old_mem->vma[0]);
788 	}
789 	return 0;
790 }
791 
792 static int
793 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
794 		     struct ttm_operation_ctx *ctx,
795 		     struct ttm_resource *new_reg)
796 {
797 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
798 	struct nouveau_channel *chan = drm->ttm.chan;
799 	struct nouveau_cli *cli = (void *)chan->user.client;
800 	struct nouveau_fence *fence;
801 	int ret;
802 
803 	/* create temporary vmas for the transfer and attach them to the
804 	 * old nvkm_mem node, these will get cleaned up after ttm has
805 	 * destroyed the ttm_resource
806 	 */
807 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
808 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
809 		if (ret)
810 			return ret;
811 	}
812 
813 	if (drm_drv_uses_atomic_modeset(drm->dev))
814 		mutex_lock(&cli->mutex);
815 	else
816 		mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
817 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
818 	if (ret == 0) {
819 		ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
820 		if (ret == 0) {
821 			ret = nouveau_fence_new(chan, false, &fence);
822 			if (ret == 0) {
823 				ret = ttm_bo_move_accel_cleanup(bo,
824 								&fence->base,
825 								evict, false,
826 								new_reg);
827 				nouveau_fence_unref(&fence);
828 			}
829 		}
830 	}
831 	mutex_unlock(&cli->mutex);
832 	return ret;
833 }
834 
835 void
836 nouveau_bo_move_init(struct nouveau_drm *drm)
837 {
838 	static const struct _method_table {
839 		const char *name;
840 		int engine;
841 		s32 oclass;
842 		int (*exec)(struct nouveau_channel *,
843 			    struct ttm_buffer_object *,
844 			    struct ttm_resource *, struct ttm_resource *);
845 		int (*init)(struct nouveau_channel *, u32 handle);
846 	} _methods[] = {
847 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
848 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
849 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
850 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
851 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
852 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
853 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
854 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
855 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
856 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
857 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
858 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
859 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
860 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
861 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
862 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
863 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
864 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
865 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
866 		{},
867 	};
868 	const struct _method_table *mthd = _methods;
869 	const char *name = "CPU";
870 	int ret;
871 
872 	do {
873 		struct nouveau_channel *chan;
874 
875 		if (mthd->engine)
876 			chan = drm->cechan;
877 		else
878 			chan = drm->channel;
879 		if (chan == NULL)
880 			continue;
881 
882 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
883 				       mthd->oclass | (mthd->engine << 16),
884 				       mthd->oclass, NULL, 0,
885 				       &drm->ttm.copy);
886 		if (ret == 0) {
887 			ret = mthd->init(chan, drm->ttm.copy.handle);
888 			if (ret) {
889 				nvif_object_dtor(&drm->ttm.copy);
890 				continue;
891 			}
892 
893 			drm->ttm.move = mthd->exec;
894 			drm->ttm.chan = chan;
895 			name = mthd->name;
896 			break;
897 		}
898 	} while ((++mthd)->exec);
899 
900 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
901 }
902 
903 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
904 				 struct ttm_resource *new_reg)
905 {
906 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
907 	struct nouveau_bo *nvbo = nouveau_bo(bo);
908 	struct nouveau_vma *vma;
909 
910 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
911 	if (bo->destroy != nouveau_bo_del_ttm)
912 		return;
913 
914 	nouveau_bo_del_io_reserve_lru(bo);
915 
916 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
917 	    mem->mem.page == nvbo->page) {
918 		list_for_each_entry(vma, &nvbo->vma_list, head) {
919 			nouveau_vma_map(vma, mem);
920 		}
921 	} else {
922 		list_for_each_entry(vma, &nvbo->vma_list, head) {
923 			WARN_ON(ttm_bo_wait(bo, false, false));
924 			nouveau_vma_unmap(vma);
925 		}
926 	}
927 
928 	if (new_reg)
929 		nvbo->offset = (new_reg->start << PAGE_SHIFT);
930 
931 }
932 
933 static int
934 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
935 		   struct nouveau_drm_tile **new_tile)
936 {
937 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
938 	struct drm_device *dev = drm->dev;
939 	struct nouveau_bo *nvbo = nouveau_bo(bo);
940 	u64 offset = new_reg->start << PAGE_SHIFT;
941 
942 	*new_tile = NULL;
943 	if (new_reg->mem_type != TTM_PL_VRAM)
944 		return 0;
945 
946 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
947 		*new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
948 					       nvbo->mode, nvbo->zeta);
949 	}
950 
951 	return 0;
952 }
953 
954 static void
955 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
956 		      struct nouveau_drm_tile *new_tile,
957 		      struct nouveau_drm_tile **old_tile)
958 {
959 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
960 	struct drm_device *dev = drm->dev;
961 	struct dma_fence *fence = dma_resv_excl_fence(bo->base.resv);
962 
963 	nv10_bo_put_tile_region(dev, *old_tile, fence);
964 	*old_tile = new_tile;
965 }
966 
967 static int
968 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
969 		struct ttm_operation_ctx *ctx,
970 		struct ttm_resource *new_reg,
971 		struct ttm_place *hop)
972 {
973 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
974 	struct nouveau_bo *nvbo = nouveau_bo(bo);
975 	struct ttm_resource *old_reg = bo->resource;
976 	struct nouveau_drm_tile *new_tile = NULL;
977 	int ret = 0;
978 
979 
980 	if (new_reg->mem_type == TTM_PL_TT) {
981 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
982 		if (ret)
983 			return ret;
984 	}
985 
986 	nouveau_bo_move_ntfy(bo, new_reg);
987 	ret = ttm_bo_wait_ctx(bo, ctx);
988 	if (ret)
989 		goto out_ntfy;
990 
991 	if (nvbo->bo.pin_count)
992 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
993 
994 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
995 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
996 		if (ret)
997 			goto out_ntfy;
998 	}
999 
1000 	/* Fake bo copy. */
1001 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1002 		ttm_bo_move_null(bo, new_reg);
1003 		goto out;
1004 	}
1005 
1006 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
1007 	    new_reg->mem_type == TTM_PL_TT) {
1008 		ttm_bo_move_null(bo, new_reg);
1009 		goto out;
1010 	}
1011 
1012 	if (old_reg->mem_type == TTM_PL_TT &&
1013 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1014 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1015 		ttm_resource_free(bo, &bo->resource);
1016 		ttm_bo_assign_mem(bo, new_reg);
1017 		goto out;
1018 	}
1019 
1020 	/* Hardware assisted copy. */
1021 	if (drm->ttm.move) {
1022 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1023 		     new_reg->mem_type == TTM_PL_VRAM) ||
1024 		    (old_reg->mem_type == TTM_PL_VRAM &&
1025 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1026 			hop->fpfn = 0;
1027 			hop->lpfn = 0;
1028 			hop->mem_type = TTM_PL_TT;
1029 			hop->flags = 0;
1030 			return -EMULTIHOP;
1031 		}
1032 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1033 					   new_reg);
1034 	} else
1035 		ret = -ENODEV;
1036 
1037 	if (ret) {
1038 		/* Fallback to software copy. */
1039 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1040 	}
1041 
1042 out:
1043 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1044 		if (ret)
1045 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1046 		else
1047 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1048 	}
1049 out_ntfy:
1050 	if (ret) {
1051 		nouveau_bo_move_ntfy(bo, bo->resource);
1052 	}
1053 	return ret;
1054 }
1055 
1056 static void
1057 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1058 			       struct ttm_resource *reg)
1059 {
1060 	struct nouveau_mem *mem = nouveau_mem(reg);
1061 
1062 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1063 		switch (reg->mem_type) {
1064 		case TTM_PL_TT:
1065 			if (mem->kind)
1066 				nvif_object_unmap_handle(&mem->mem.object);
1067 			break;
1068 		case TTM_PL_VRAM:
1069 			nvif_object_unmap_handle(&mem->mem.object);
1070 			break;
1071 		default:
1072 			break;
1073 		}
1074 	}
1075 }
1076 
1077 static int
1078 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1079 {
1080 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1081 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1082 	struct nouveau_mem *mem = nouveau_mem(reg);
1083 	struct nvif_mmu *mmu = &drm->client.mmu;
1084 	int ret;
1085 
1086 	mutex_lock(&drm->ttm.io_reserve_mutex);
1087 retry:
1088 	switch (reg->mem_type) {
1089 	case TTM_PL_SYSTEM:
1090 		/* System memory */
1091 		ret = 0;
1092 		goto out;
1093 	case TTM_PL_TT:
1094 #if IS_ENABLED(CONFIG_AGP)
1095 		if (drm->agp.bridge) {
1096 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1097 				drm->agp.base;
1098 			reg->bus.is_iomem = !drm->agp.cma;
1099 			reg->bus.caching = ttm_write_combined;
1100 		}
1101 #endif
1102 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1103 		    !mem->kind) {
1104 			/* untiled */
1105 			ret = 0;
1106 			break;
1107 		}
1108 		fallthrough;	/* tiled memory */
1109 	case TTM_PL_VRAM:
1110 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1111 			device->func->resource_addr(device, 1);
1112 		reg->bus.is_iomem = true;
1113 
1114 		/* Some BARs do not support being ioremapped WC */
1115 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1116 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1117 			reg->bus.caching = ttm_uncached;
1118 		else
1119 			reg->bus.caching = ttm_write_combined;
1120 
1121 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1122 			union {
1123 				struct nv50_mem_map_v0 nv50;
1124 				struct gf100_mem_map_v0 gf100;
1125 			} args;
1126 			u64 handle, length;
1127 			u32 argc = 0;
1128 
1129 			switch (mem->mem.object.oclass) {
1130 			case NVIF_CLASS_MEM_NV50:
1131 				args.nv50.version = 0;
1132 				args.nv50.ro = 0;
1133 				args.nv50.kind = mem->kind;
1134 				args.nv50.comp = mem->comp;
1135 				argc = sizeof(args.nv50);
1136 				break;
1137 			case NVIF_CLASS_MEM_GF100:
1138 				args.gf100.version = 0;
1139 				args.gf100.ro = 0;
1140 				args.gf100.kind = mem->kind;
1141 				argc = sizeof(args.gf100);
1142 				break;
1143 			default:
1144 				WARN_ON(1);
1145 				break;
1146 			}
1147 
1148 			ret = nvif_object_map_handle(&mem->mem.object,
1149 						     &args, argc,
1150 						     &handle, &length);
1151 			if (ret != 1) {
1152 				if (WARN_ON(ret == 0))
1153 					ret = -EINVAL;
1154 				goto out;
1155 			}
1156 
1157 			reg->bus.offset = handle;
1158 		}
1159 		ret = 0;
1160 		break;
1161 	default:
1162 		ret = -EINVAL;
1163 	}
1164 
1165 out:
1166 	if (ret == -ENOSPC) {
1167 		struct nouveau_bo *nvbo;
1168 
1169 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1170 						typeof(*nvbo),
1171 						io_reserve_lru);
1172 		if (nvbo) {
1173 			list_del_init(&nvbo->io_reserve_lru);
1174 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1175 					   bdev->dev_mapping);
1176 			nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1177 			goto retry;
1178 		}
1179 
1180 	}
1181 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1182 	return ret;
1183 }
1184 
1185 static void
1186 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1187 {
1188 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1189 
1190 	mutex_lock(&drm->ttm.io_reserve_mutex);
1191 	nouveau_ttm_io_mem_free_locked(drm, reg);
1192 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1193 }
1194 
1195 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1196 {
1197 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1198 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1199 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1200 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1201 	int i, ret;
1202 
1203 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1204 	 * nothing to do here.
1205 	 */
1206 	if (bo->resource->mem_type != TTM_PL_VRAM) {
1207 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1208 		    !nvbo->kind)
1209 			return 0;
1210 
1211 		if (bo->resource->mem_type != TTM_PL_SYSTEM)
1212 			return 0;
1213 
1214 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1215 
1216 	} else {
1217 		/* make sure bo is in mappable vram */
1218 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1219 		    bo->resource->start + bo->resource->num_pages < mappable)
1220 			return 0;
1221 
1222 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1223 			nvbo->placements[i].fpfn = 0;
1224 			nvbo->placements[i].lpfn = mappable;
1225 		}
1226 
1227 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1228 			nvbo->busy_placements[i].fpfn = 0;
1229 			nvbo->busy_placements[i].lpfn = mappable;
1230 		}
1231 
1232 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1233 	}
1234 
1235 	ret = nouveau_bo_validate(nvbo, false, false);
1236 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1237 		return VM_FAULT_NOPAGE;
1238 	else if (unlikely(ret))
1239 		return VM_FAULT_SIGBUS;
1240 
1241 	ttm_bo_move_to_lru_tail_unlocked(bo);
1242 	return 0;
1243 }
1244 
1245 static int
1246 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1247 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1248 {
1249 	struct ttm_tt *ttm_dma = (void *)ttm;
1250 	struct nouveau_drm *drm;
1251 	struct device *dev;
1252 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1253 
1254 	if (ttm_tt_is_populated(ttm))
1255 		return 0;
1256 
1257 	if (slave && ttm->sg) {
1258 		drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1259 					       ttm->num_pages);
1260 		return 0;
1261 	}
1262 
1263 	drm = nouveau_bdev(bdev);
1264 	dev = drm->dev->dev;
1265 
1266 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1267 }
1268 
1269 static void
1270 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1271 			  struct ttm_tt *ttm)
1272 {
1273 	struct nouveau_drm *drm;
1274 	struct device *dev;
1275 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1276 
1277 	if (slave)
1278 		return;
1279 
1280 	drm = nouveau_bdev(bdev);
1281 	dev = drm->dev->dev;
1282 
1283 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1284 }
1285 
1286 static void
1287 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1288 		       struct ttm_tt *ttm)
1289 {
1290 #if IS_ENABLED(CONFIG_AGP)
1291 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1292 	if (drm->agp.bridge) {
1293 		ttm_agp_unbind(ttm);
1294 		ttm_tt_destroy_common(bdev, ttm);
1295 		ttm_agp_destroy(ttm);
1296 		return;
1297 	}
1298 #endif
1299 	nouveau_sgdma_destroy(bdev, ttm);
1300 }
1301 
1302 void
1303 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1304 {
1305 	struct dma_resv *resv = nvbo->bo.base.resv;
1306 
1307 	if (exclusive)
1308 		dma_resv_add_excl_fence(resv, &fence->base);
1309 	else if (fence)
1310 		dma_resv_add_shared_fence(resv, &fence->base);
1311 }
1312 
1313 static void
1314 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1315 {
1316 	nouveau_bo_move_ntfy(bo, NULL);
1317 }
1318 
1319 struct ttm_device_funcs nouveau_bo_driver = {
1320 	.ttm_tt_create = &nouveau_ttm_tt_create,
1321 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1322 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1323 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1324 	.eviction_valuable = ttm_bo_eviction_valuable,
1325 	.evict_flags = nouveau_bo_evict_flags,
1326 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1327 	.move = nouveau_bo_move,
1328 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1329 	.io_mem_free = &nouveau_ttm_io_mem_free,
1330 };
1331