1 /* 2 * Copyright 2007 Dave Airlied 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Authors: Dave Airlied <airlied@linux.ie> 26 * Ben Skeggs <darktama@iinet.net.au> 27 * Jeremy Kolb <jkolb@brandeis.edu> 28 */ 29 30 #include <linux/dma-mapping.h> 31 32 #include "nouveau_drv.h" 33 #include "nouveau_chan.h" 34 #include "nouveau_fence.h" 35 36 #include "nouveau_bo.h" 37 #include "nouveau_ttm.h" 38 #include "nouveau_gem.h" 39 #include "nouveau_mem.h" 40 #include "nouveau_vmm.h" 41 42 #include <nvif/class.h> 43 #include <nvif/if500b.h> 44 #include <nvif/if900b.h> 45 46 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 47 struct ttm_resource *reg); 48 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); 49 50 /* 51 * NV10-NV40 tiling helpers 52 */ 53 54 static void 55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, 56 u32 addr, u32 size, u32 pitch, u32 flags) 57 { 58 struct nouveau_drm *drm = nouveau_drm(dev); 59 int i = reg - drm->tile.reg; 60 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 61 struct nvkm_fb_tile *tile = &fb->tile.region[i]; 62 63 nouveau_fence_unref(®->fence); 64 65 if (tile->pitch) 66 nvkm_fb_tile_fini(fb, i, tile); 67 68 if (pitch) 69 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); 70 71 nvkm_fb_tile_prog(fb, i, tile); 72 } 73 74 static struct nouveau_drm_tile * 75 nv10_bo_get_tile_region(struct drm_device *dev, int i) 76 { 77 struct nouveau_drm *drm = nouveau_drm(dev); 78 struct nouveau_drm_tile *tile = &drm->tile.reg[i]; 79 80 spin_lock(&drm->tile.lock); 81 82 if (!tile->used && 83 (!tile->fence || nouveau_fence_done(tile->fence))) 84 tile->used = true; 85 else 86 tile = NULL; 87 88 spin_unlock(&drm->tile.lock); 89 return tile; 90 } 91 92 static void 93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, 94 struct dma_fence *fence) 95 { 96 struct nouveau_drm *drm = nouveau_drm(dev); 97 98 if (tile) { 99 spin_lock(&drm->tile.lock); 100 tile->fence = (struct nouveau_fence *)dma_fence_get(fence); 101 tile->used = false; 102 spin_unlock(&drm->tile.lock); 103 } 104 } 105 106 static struct nouveau_drm_tile * 107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr, 108 u32 size, u32 pitch, u32 zeta) 109 { 110 struct nouveau_drm *drm = nouveau_drm(dev); 111 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 112 struct nouveau_drm_tile *tile, *found = NULL; 113 int i; 114 115 for (i = 0; i < fb->tile.regions; i++) { 116 tile = nv10_bo_get_tile_region(dev, i); 117 118 if (pitch && !found) { 119 found = tile; 120 continue; 121 122 } else if (tile && fb->tile.region[i].pitch) { 123 /* Kill an unused tile region. */ 124 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); 125 } 126 127 nv10_bo_put_tile_region(dev, tile, NULL); 128 } 129 130 if (found) 131 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); 132 return found; 133 } 134 135 static void 136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo) 137 { 138 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 139 struct drm_device *dev = drm->dev; 140 struct nouveau_bo *nvbo = nouveau_bo(bo); 141 142 WARN_ON(nvbo->bo.pin_count > 0); 143 nouveau_bo_del_io_reserve_lru(bo); 144 nv10_bo_put_tile_region(dev, nvbo->tile, NULL); 145 146 /* 147 * If nouveau_bo_new() allocated this buffer, the GEM object was never 148 * initialized, so don't attempt to release it. 149 */ 150 if (bo->base.dev) 151 drm_gem_object_release(&bo->base); 152 else 153 dma_resv_fini(&bo->base._resv); 154 155 kfree(nvbo); 156 } 157 158 static inline u64 159 roundup_64(u64 x, u32 y) 160 { 161 x += y - 1; 162 do_div(x, y); 163 return x * y; 164 } 165 166 static void 167 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size) 168 { 169 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 170 struct nvif_device *device = &drm->client.device; 171 172 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { 173 if (nvbo->mode) { 174 if (device->info.chipset >= 0x40) { 175 *align = 65536; 176 *size = roundup_64(*size, 64 * nvbo->mode); 177 178 } else if (device->info.chipset >= 0x30) { 179 *align = 32768; 180 *size = roundup_64(*size, 64 * nvbo->mode); 181 182 } else if (device->info.chipset >= 0x20) { 183 *align = 16384; 184 *size = roundup_64(*size, 64 * nvbo->mode); 185 186 } else if (device->info.chipset >= 0x10) { 187 *align = 16384; 188 *size = roundup_64(*size, 32 * nvbo->mode); 189 } 190 } 191 } else { 192 *size = roundup_64(*size, (1 << nvbo->page)); 193 *align = max((1 << nvbo->page), *align); 194 } 195 196 *size = roundup_64(*size, PAGE_SIZE); 197 } 198 199 struct nouveau_bo * 200 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain, 201 u32 tile_mode, u32 tile_flags) 202 { 203 struct nouveau_drm *drm = cli->drm; 204 struct nouveau_bo *nvbo; 205 struct nvif_mmu *mmu = &cli->mmu; 206 struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm; 207 int i, pi = -1; 208 209 if (!*size) { 210 NV_WARN(drm, "skipped size %016llx\n", *size); 211 return ERR_PTR(-EINVAL); 212 } 213 214 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); 215 if (!nvbo) 216 return ERR_PTR(-ENOMEM); 217 INIT_LIST_HEAD(&nvbo->head); 218 INIT_LIST_HEAD(&nvbo->entry); 219 INIT_LIST_HEAD(&nvbo->vma_list); 220 nvbo->bo.bdev = &drm->ttm.bdev; 221 222 /* This is confusing, and doesn't actually mean we want an uncached 223 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated 224 * into in nouveau_gem_new(). 225 */ 226 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) { 227 /* Determine if we can get a cache-coherent map, forcing 228 * uncached mapping if we can't. 229 */ 230 if (!nouveau_drm_use_coherent_gpu_mapping(drm)) 231 nvbo->force_coherent = true; 232 } 233 234 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { 235 nvbo->kind = (tile_flags & 0x0000ff00) >> 8; 236 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 237 kfree(nvbo); 238 return ERR_PTR(-EINVAL); 239 } 240 241 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; 242 } else 243 if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 244 nvbo->kind = (tile_flags & 0x00007f00) >> 8; 245 nvbo->comp = (tile_flags & 0x00030000) >> 16; 246 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 247 kfree(nvbo); 248 return ERR_PTR(-EINVAL); 249 } 250 } else { 251 nvbo->zeta = (tile_flags & 0x00000007); 252 } 253 nvbo->mode = tile_mode; 254 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); 255 256 /* Determine the desirable target GPU page size for the buffer. */ 257 for (i = 0; i < vmm->page_nr; i++) { 258 /* Because we cannot currently allow VMM maps to fail 259 * during buffer migration, we need to determine page 260 * size for the buffer up-front, and pre-allocate its 261 * page tables. 262 * 263 * Skip page sizes that can't support needed domains. 264 */ 265 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && 266 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 267 continue; 268 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 269 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 270 continue; 271 272 /* Select this page size if it's the first that supports 273 * the potential memory domains, or when it's compatible 274 * with the requested compression settings. 275 */ 276 if (pi < 0 || !nvbo->comp || vmm->page[i].comp) 277 pi = i; 278 279 /* Stop once the buffer is larger than the current page size. */ 280 if (*size >= 1ULL << vmm->page[i].shift) 281 break; 282 } 283 284 if (WARN_ON(pi < 0)) 285 return ERR_PTR(-EINVAL); 286 287 /* Disable compression if suitable settings couldn't be found. */ 288 if (nvbo->comp && !vmm->page[pi].comp) { 289 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) 290 nvbo->kind = mmu->kind[nvbo->kind]; 291 nvbo->comp = 0; 292 } 293 nvbo->page = vmm->page[pi].shift; 294 295 nouveau_bo_fixup_align(nvbo, align, size); 296 297 return nvbo; 298 } 299 300 int 301 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain, 302 struct sg_table *sg, struct dma_resv *robj) 303 { 304 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device; 305 int ret; 306 307 nouveau_bo_placement_set(nvbo, domain, 0); 308 INIT_LIST_HEAD(&nvbo->io_reserve_lru); 309 310 ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type, 311 &nvbo->placement, align >> PAGE_SHIFT, false, sg, 312 robj, nouveau_bo_del_ttm); 313 if (ret) { 314 /* ttm will call nouveau_bo_del_ttm if it fails.. */ 315 return ret; 316 } 317 318 return 0; 319 } 320 321 int 322 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, 323 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags, 324 struct sg_table *sg, struct dma_resv *robj, 325 struct nouveau_bo **pnvbo) 326 { 327 struct nouveau_bo *nvbo; 328 int ret; 329 330 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode, 331 tile_flags); 332 if (IS_ERR(nvbo)) 333 return PTR_ERR(nvbo); 334 335 nvbo->bo.base.size = size; 336 dma_resv_init(&nvbo->bo.base._resv); 337 drm_vma_node_reset(&nvbo->bo.base.vma_node); 338 339 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj); 340 if (ret) 341 return ret; 342 343 *pnvbo = nvbo; 344 return 0; 345 } 346 347 static void 348 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain) 349 { 350 *n = 0; 351 352 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) { 353 pl[*n].mem_type = TTM_PL_VRAM; 354 pl[*n].flags = 0; 355 (*n)++; 356 } 357 if (domain & NOUVEAU_GEM_DOMAIN_GART) { 358 pl[*n].mem_type = TTM_PL_TT; 359 pl[*n].flags = 0; 360 (*n)++; 361 } 362 if (domain & NOUVEAU_GEM_DOMAIN_CPU) { 363 pl[*n].mem_type = TTM_PL_SYSTEM; 364 pl[(*n)++].flags = 0; 365 } 366 } 367 368 static void 369 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain) 370 { 371 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 372 u64 vram_size = drm->client.device.info.ram_size; 373 unsigned i, fpfn, lpfn; 374 375 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && 376 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) && 377 nvbo->bo.base.size < vram_size / 4) { 378 /* 379 * Make sure that the color and depth buffers are handled 380 * by independent memory controller units. Up to a 9x 381 * speed up when alpha-blending and depth-test are enabled 382 * at the same time. 383 */ 384 if (nvbo->zeta) { 385 fpfn = (vram_size / 2) >> PAGE_SHIFT; 386 lpfn = ~0; 387 } else { 388 fpfn = 0; 389 lpfn = (vram_size / 2) >> PAGE_SHIFT; 390 } 391 for (i = 0; i < nvbo->placement.num_placement; ++i) { 392 nvbo->placements[i].fpfn = fpfn; 393 nvbo->placements[i].lpfn = lpfn; 394 } 395 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 396 nvbo->busy_placements[i].fpfn = fpfn; 397 nvbo->busy_placements[i].lpfn = lpfn; 398 } 399 } 400 } 401 402 void 403 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain, 404 uint32_t busy) 405 { 406 struct ttm_placement *pl = &nvbo->placement; 407 408 pl->placement = nvbo->placements; 409 set_placement_list(nvbo->placements, &pl->num_placement, domain); 410 411 pl->busy_placement = nvbo->busy_placements; 412 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, 413 domain | busy); 414 415 set_placement_range(nvbo, domain); 416 } 417 418 int 419 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 420 { 421 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 422 struct ttm_buffer_object *bo = &nvbo->bo; 423 bool force = false, evict = false; 424 int ret; 425 426 ret = ttm_bo_reserve(bo, false, false, NULL); 427 if (ret) 428 return ret; 429 430 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 431 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) { 432 if (!nvbo->contig) { 433 nvbo->contig = true; 434 force = true; 435 evict = true; 436 } 437 } 438 439 if (nvbo->bo.pin_count) { 440 bool error = evict; 441 442 switch (bo->resource->mem_type) { 443 case TTM_PL_VRAM: 444 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM); 445 break; 446 case TTM_PL_TT: 447 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART); 448 break; 449 default: 450 break; 451 } 452 453 if (error) { 454 NV_ERROR(drm, "bo %p pinned elsewhere: " 455 "0x%08x vs 0x%08x\n", bo, 456 bo->resource->mem_type, domain); 457 ret = -EBUSY; 458 } 459 ttm_bo_pin(&nvbo->bo); 460 goto out; 461 } 462 463 if (evict) { 464 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 465 ret = nouveau_bo_validate(nvbo, false, false); 466 if (ret) 467 goto out; 468 } 469 470 nouveau_bo_placement_set(nvbo, domain, 0); 471 ret = nouveau_bo_validate(nvbo, false, false); 472 if (ret) 473 goto out; 474 475 ttm_bo_pin(&nvbo->bo); 476 477 switch (bo->resource->mem_type) { 478 case TTM_PL_VRAM: 479 drm->gem.vram_available -= bo->base.size; 480 break; 481 case TTM_PL_TT: 482 drm->gem.gart_available -= bo->base.size; 483 break; 484 default: 485 break; 486 } 487 488 out: 489 if (force && ret) 490 nvbo->contig = false; 491 ttm_bo_unreserve(bo); 492 return ret; 493 } 494 495 int 496 nouveau_bo_unpin(struct nouveau_bo *nvbo) 497 { 498 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 499 struct ttm_buffer_object *bo = &nvbo->bo; 500 int ret; 501 502 ret = ttm_bo_reserve(bo, false, false, NULL); 503 if (ret) 504 return ret; 505 506 ttm_bo_unpin(&nvbo->bo); 507 if (!nvbo->bo.pin_count) { 508 switch (bo->resource->mem_type) { 509 case TTM_PL_VRAM: 510 drm->gem.vram_available += bo->base.size; 511 break; 512 case TTM_PL_TT: 513 drm->gem.gart_available += bo->base.size; 514 break; 515 default: 516 break; 517 } 518 } 519 520 ttm_bo_unreserve(bo); 521 return 0; 522 } 523 524 int 525 nouveau_bo_map(struct nouveau_bo *nvbo) 526 { 527 int ret; 528 529 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); 530 if (ret) 531 return ret; 532 533 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.resource->num_pages, &nvbo->kmap); 534 535 ttm_bo_unreserve(&nvbo->bo); 536 return ret; 537 } 538 539 void 540 nouveau_bo_unmap(struct nouveau_bo *nvbo) 541 { 542 if (!nvbo) 543 return; 544 545 ttm_bo_kunmap(&nvbo->kmap); 546 } 547 548 void 549 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) 550 { 551 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 552 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 553 int i, j; 554 555 if (!ttm_dma || !ttm_dma->dma_address) 556 return; 557 if (!ttm_dma->pages) { 558 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 559 return; 560 } 561 562 /* Don't waste time looping if the object is coherent */ 563 if (nvbo->force_coherent) 564 return; 565 566 i = 0; 567 while (i < ttm_dma->num_pages) { 568 struct page *p = ttm_dma->pages[i]; 569 size_t num_pages = 1; 570 571 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 572 if (++p != ttm_dma->pages[j]) 573 break; 574 575 ++num_pages; 576 } 577 dma_sync_single_for_device(drm->dev->dev, 578 ttm_dma->dma_address[i], 579 num_pages * PAGE_SIZE, DMA_TO_DEVICE); 580 i += num_pages; 581 } 582 } 583 584 void 585 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) 586 { 587 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 588 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 589 int i, j; 590 591 if (!ttm_dma || !ttm_dma->dma_address) 592 return; 593 if (!ttm_dma->pages) { 594 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 595 return; 596 } 597 598 /* Don't waste time looping if the object is coherent */ 599 if (nvbo->force_coherent) 600 return; 601 602 i = 0; 603 while (i < ttm_dma->num_pages) { 604 struct page *p = ttm_dma->pages[i]; 605 size_t num_pages = 1; 606 607 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 608 if (++p != ttm_dma->pages[j]) 609 break; 610 611 ++num_pages; 612 } 613 614 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], 615 num_pages * PAGE_SIZE, DMA_FROM_DEVICE); 616 i += num_pages; 617 } 618 } 619 620 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo) 621 { 622 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 623 struct nouveau_bo *nvbo = nouveau_bo(bo); 624 625 mutex_lock(&drm->ttm.io_reserve_mutex); 626 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru); 627 mutex_unlock(&drm->ttm.io_reserve_mutex); 628 } 629 630 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo) 631 { 632 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 633 struct nouveau_bo *nvbo = nouveau_bo(bo); 634 635 mutex_lock(&drm->ttm.io_reserve_mutex); 636 list_del_init(&nvbo->io_reserve_lru); 637 mutex_unlock(&drm->ttm.io_reserve_mutex); 638 } 639 640 int 641 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, 642 bool no_wait_gpu) 643 { 644 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; 645 int ret; 646 647 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); 648 if (ret) 649 return ret; 650 651 nouveau_bo_sync_for_device(nvbo); 652 653 return 0; 654 } 655 656 void 657 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) 658 { 659 bool is_iomem; 660 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 661 662 mem += index; 663 664 if (is_iomem) 665 iowrite16_native(val, (void __force __iomem *)mem); 666 else 667 *mem = val; 668 } 669 670 u32 671 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) 672 { 673 bool is_iomem; 674 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 675 676 mem += index; 677 678 if (is_iomem) 679 return ioread32_native((void __force __iomem *)mem); 680 else 681 return *mem; 682 } 683 684 void 685 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) 686 { 687 bool is_iomem; 688 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 689 690 mem += index; 691 692 if (is_iomem) 693 iowrite32_native(val, (void __force __iomem *)mem); 694 else 695 *mem = val; 696 } 697 698 static struct ttm_tt * 699 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) 700 { 701 #if IS_ENABLED(CONFIG_AGP) 702 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 703 704 if (drm->agp.bridge) { 705 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); 706 } 707 #endif 708 709 return nouveau_sgdma_create_ttm(bo, page_flags); 710 } 711 712 static int 713 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 714 struct ttm_resource *reg) 715 { 716 #if IS_ENABLED(CONFIG_AGP) 717 struct nouveau_drm *drm = nouveau_bdev(bdev); 718 #endif 719 if (!reg) 720 return -EINVAL; 721 #if IS_ENABLED(CONFIG_AGP) 722 if (drm->agp.bridge) 723 return ttm_agp_bind(ttm, reg); 724 #endif 725 return nouveau_sgdma_bind(bdev, ttm, reg); 726 } 727 728 static void 729 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) 730 { 731 #if IS_ENABLED(CONFIG_AGP) 732 struct nouveau_drm *drm = nouveau_bdev(bdev); 733 734 if (drm->agp.bridge) { 735 ttm_agp_unbind(ttm); 736 return; 737 } 738 #endif 739 nouveau_sgdma_unbind(bdev, ttm); 740 } 741 742 static void 743 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) 744 { 745 struct nouveau_bo *nvbo = nouveau_bo(bo); 746 747 switch (bo->resource->mem_type) { 748 case TTM_PL_VRAM: 749 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 750 NOUVEAU_GEM_DOMAIN_CPU); 751 break; 752 default: 753 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0); 754 break; 755 } 756 757 *pl = nvbo->placement; 758 } 759 760 static int 761 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, 762 struct ttm_resource *reg) 763 { 764 struct nouveau_mem *old_mem = nouveau_mem(bo->resource); 765 struct nouveau_mem *new_mem = nouveau_mem(reg); 766 struct nvif_vmm *vmm = &drm->client.vmm.vmm; 767 int ret; 768 769 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, 770 old_mem->mem.size, &old_mem->vma[0]); 771 if (ret) 772 return ret; 773 774 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, 775 new_mem->mem.size, &old_mem->vma[1]); 776 if (ret) 777 goto done; 778 779 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); 780 if (ret) 781 goto done; 782 783 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); 784 done: 785 if (ret) { 786 nvif_vmm_put(vmm, &old_mem->vma[1]); 787 nvif_vmm_put(vmm, &old_mem->vma[0]); 788 } 789 return 0; 790 } 791 792 static int 793 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, 794 struct ttm_operation_ctx *ctx, 795 struct ttm_resource *new_reg) 796 { 797 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 798 struct nouveau_channel *chan = drm->ttm.chan; 799 struct nouveau_cli *cli = (void *)chan->user.client; 800 struct nouveau_fence *fence; 801 int ret; 802 803 /* create temporary vmas for the transfer and attach them to the 804 * old nvkm_mem node, these will get cleaned up after ttm has 805 * destroyed the ttm_resource 806 */ 807 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 808 ret = nouveau_bo_move_prep(drm, bo, new_reg); 809 if (ret) 810 return ret; 811 } 812 813 if (drm_drv_uses_atomic_modeset(drm->dev)) 814 mutex_lock(&cli->mutex); 815 else 816 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); 817 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible); 818 if (ret == 0) { 819 ret = drm->ttm.move(chan, bo, bo->resource, new_reg); 820 if (ret == 0) { 821 ret = nouveau_fence_new(chan, false, &fence); 822 if (ret == 0) { 823 ret = ttm_bo_move_accel_cleanup(bo, 824 &fence->base, 825 evict, false, 826 new_reg); 827 nouveau_fence_unref(&fence); 828 } 829 } 830 } 831 mutex_unlock(&cli->mutex); 832 return ret; 833 } 834 835 void 836 nouveau_bo_move_init(struct nouveau_drm *drm) 837 { 838 static const struct _method_table { 839 const char *name; 840 int engine; 841 s32 oclass; 842 int (*exec)(struct nouveau_channel *, 843 struct ttm_buffer_object *, 844 struct ttm_resource *, struct ttm_resource *); 845 int (*init)(struct nouveau_channel *, u32 handle); 846 } _methods[] = { 847 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, 848 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, 849 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, 850 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, 851 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, 852 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, 853 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, 854 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 855 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, 856 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 857 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, 858 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 859 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, 860 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, 861 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, 862 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, 863 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, 864 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, 865 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, 866 {}, 867 }; 868 const struct _method_table *mthd = _methods; 869 const char *name = "CPU"; 870 int ret; 871 872 do { 873 struct nouveau_channel *chan; 874 875 if (mthd->engine) 876 chan = drm->cechan; 877 else 878 chan = drm->channel; 879 if (chan == NULL) 880 continue; 881 882 ret = nvif_object_ctor(&chan->user, "ttmBoMove", 883 mthd->oclass | (mthd->engine << 16), 884 mthd->oclass, NULL, 0, 885 &drm->ttm.copy); 886 if (ret == 0) { 887 ret = mthd->init(chan, drm->ttm.copy.handle); 888 if (ret) { 889 nvif_object_dtor(&drm->ttm.copy); 890 continue; 891 } 892 893 drm->ttm.move = mthd->exec; 894 drm->ttm.chan = chan; 895 name = mthd->name; 896 break; 897 } 898 } while ((++mthd)->exec); 899 900 NV_INFO(drm, "MM: using %s for buffer copies\n", name); 901 } 902 903 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, 904 struct ttm_resource *new_reg) 905 { 906 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; 907 struct nouveau_bo *nvbo = nouveau_bo(bo); 908 struct nouveau_vma *vma; 909 910 /* ttm can now (stupidly) pass the driver bos it didn't create... */ 911 if (bo->destroy != nouveau_bo_del_ttm) 912 return; 913 914 nouveau_bo_del_io_reserve_lru(bo); 915 916 if (mem && new_reg->mem_type != TTM_PL_SYSTEM && 917 mem->mem.page == nvbo->page) { 918 list_for_each_entry(vma, &nvbo->vma_list, head) { 919 nouveau_vma_map(vma, mem); 920 } 921 } else { 922 list_for_each_entry(vma, &nvbo->vma_list, head) { 923 WARN_ON(ttm_bo_wait(bo, false, false)); 924 nouveau_vma_unmap(vma); 925 } 926 } 927 928 if (new_reg) 929 nvbo->offset = (new_reg->start << PAGE_SHIFT); 930 931 } 932 933 static int 934 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg, 935 struct nouveau_drm_tile **new_tile) 936 { 937 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 938 struct drm_device *dev = drm->dev; 939 struct nouveau_bo *nvbo = nouveau_bo(bo); 940 u64 offset = new_reg->start << PAGE_SHIFT; 941 942 *new_tile = NULL; 943 if (new_reg->mem_type != TTM_PL_VRAM) 944 return 0; 945 946 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { 947 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size, 948 nvbo->mode, nvbo->zeta); 949 } 950 951 return 0; 952 } 953 954 static void 955 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, 956 struct nouveau_drm_tile *new_tile, 957 struct nouveau_drm_tile **old_tile) 958 { 959 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 960 struct drm_device *dev = drm->dev; 961 struct dma_fence *fence = dma_resv_excl_fence(bo->base.resv); 962 963 nv10_bo_put_tile_region(dev, *old_tile, fence); 964 *old_tile = new_tile; 965 } 966 967 static int 968 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, 969 struct ttm_operation_ctx *ctx, 970 struct ttm_resource *new_reg, 971 struct ttm_place *hop) 972 { 973 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 974 struct nouveau_bo *nvbo = nouveau_bo(bo); 975 struct ttm_resource *old_reg = bo->resource; 976 struct nouveau_drm_tile *new_tile = NULL; 977 int ret = 0; 978 979 980 if (new_reg->mem_type == TTM_PL_TT) { 981 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg); 982 if (ret) 983 return ret; 984 } 985 986 nouveau_bo_move_ntfy(bo, new_reg); 987 ret = ttm_bo_wait_ctx(bo, ctx); 988 if (ret) 989 goto out_ntfy; 990 991 if (nvbo->bo.pin_count) 992 NV_WARN(drm, "Moving pinned object %p!\n", nvbo); 993 994 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 995 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); 996 if (ret) 997 goto out_ntfy; 998 } 999 1000 /* Fake bo copy. */ 1001 if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) { 1002 ttm_bo_move_null(bo, new_reg); 1003 goto out; 1004 } 1005 1006 if (old_reg->mem_type == TTM_PL_SYSTEM && 1007 new_reg->mem_type == TTM_PL_TT) { 1008 ttm_bo_move_null(bo, new_reg); 1009 goto out; 1010 } 1011 1012 if (old_reg->mem_type == TTM_PL_TT && 1013 new_reg->mem_type == TTM_PL_SYSTEM) { 1014 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm); 1015 ttm_resource_free(bo, &bo->resource); 1016 ttm_bo_assign_mem(bo, new_reg); 1017 goto out; 1018 } 1019 1020 /* Hardware assisted copy. */ 1021 if (drm->ttm.move) { 1022 if ((old_reg->mem_type == TTM_PL_SYSTEM && 1023 new_reg->mem_type == TTM_PL_VRAM) || 1024 (old_reg->mem_type == TTM_PL_VRAM && 1025 new_reg->mem_type == TTM_PL_SYSTEM)) { 1026 hop->fpfn = 0; 1027 hop->lpfn = 0; 1028 hop->mem_type = TTM_PL_TT; 1029 hop->flags = 0; 1030 return -EMULTIHOP; 1031 } 1032 ret = nouveau_bo_move_m2mf(bo, evict, ctx, 1033 new_reg); 1034 } else 1035 ret = -ENODEV; 1036 1037 if (ret) { 1038 /* Fallback to software copy. */ 1039 ret = ttm_bo_move_memcpy(bo, ctx, new_reg); 1040 } 1041 1042 out: 1043 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1044 if (ret) 1045 nouveau_bo_vm_cleanup(bo, NULL, &new_tile); 1046 else 1047 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); 1048 } 1049 out_ntfy: 1050 if (ret) { 1051 nouveau_bo_move_ntfy(bo, bo->resource); 1052 } 1053 return ret; 1054 } 1055 1056 static void 1057 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm, 1058 struct ttm_resource *reg) 1059 { 1060 struct nouveau_mem *mem = nouveau_mem(reg); 1061 1062 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1063 switch (reg->mem_type) { 1064 case TTM_PL_TT: 1065 if (mem->kind) 1066 nvif_object_unmap_handle(&mem->mem.object); 1067 break; 1068 case TTM_PL_VRAM: 1069 nvif_object_unmap_handle(&mem->mem.object); 1070 break; 1071 default: 1072 break; 1073 } 1074 } 1075 } 1076 1077 static int 1078 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg) 1079 { 1080 struct nouveau_drm *drm = nouveau_bdev(bdev); 1081 struct nvkm_device *device = nvxx_device(&drm->client.device); 1082 struct nouveau_mem *mem = nouveau_mem(reg); 1083 struct nvif_mmu *mmu = &drm->client.mmu; 1084 int ret; 1085 1086 mutex_lock(&drm->ttm.io_reserve_mutex); 1087 retry: 1088 switch (reg->mem_type) { 1089 case TTM_PL_SYSTEM: 1090 /* System memory */ 1091 ret = 0; 1092 goto out; 1093 case TTM_PL_TT: 1094 #if IS_ENABLED(CONFIG_AGP) 1095 if (drm->agp.bridge) { 1096 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1097 drm->agp.base; 1098 reg->bus.is_iomem = !drm->agp.cma; 1099 reg->bus.caching = ttm_write_combined; 1100 } 1101 #endif 1102 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || 1103 !mem->kind) { 1104 /* untiled */ 1105 ret = 0; 1106 break; 1107 } 1108 fallthrough; /* tiled memory */ 1109 case TTM_PL_VRAM: 1110 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1111 device->func->resource_addr(device, 1); 1112 reg->bus.is_iomem = true; 1113 1114 /* Some BARs do not support being ioremapped WC */ 1115 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 1116 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED) 1117 reg->bus.caching = ttm_uncached; 1118 else 1119 reg->bus.caching = ttm_write_combined; 1120 1121 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1122 union { 1123 struct nv50_mem_map_v0 nv50; 1124 struct gf100_mem_map_v0 gf100; 1125 } args; 1126 u64 handle, length; 1127 u32 argc = 0; 1128 1129 switch (mem->mem.object.oclass) { 1130 case NVIF_CLASS_MEM_NV50: 1131 args.nv50.version = 0; 1132 args.nv50.ro = 0; 1133 args.nv50.kind = mem->kind; 1134 args.nv50.comp = mem->comp; 1135 argc = sizeof(args.nv50); 1136 break; 1137 case NVIF_CLASS_MEM_GF100: 1138 args.gf100.version = 0; 1139 args.gf100.ro = 0; 1140 args.gf100.kind = mem->kind; 1141 argc = sizeof(args.gf100); 1142 break; 1143 default: 1144 WARN_ON(1); 1145 break; 1146 } 1147 1148 ret = nvif_object_map_handle(&mem->mem.object, 1149 &args, argc, 1150 &handle, &length); 1151 if (ret != 1) { 1152 if (WARN_ON(ret == 0)) 1153 ret = -EINVAL; 1154 goto out; 1155 } 1156 1157 reg->bus.offset = handle; 1158 } 1159 ret = 0; 1160 break; 1161 default: 1162 ret = -EINVAL; 1163 } 1164 1165 out: 1166 if (ret == -ENOSPC) { 1167 struct nouveau_bo *nvbo; 1168 1169 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru, 1170 typeof(*nvbo), 1171 io_reserve_lru); 1172 if (nvbo) { 1173 list_del_init(&nvbo->io_reserve_lru); 1174 drm_vma_node_unmap(&nvbo->bo.base.vma_node, 1175 bdev->dev_mapping); 1176 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource); 1177 goto retry; 1178 } 1179 1180 } 1181 mutex_unlock(&drm->ttm.io_reserve_mutex); 1182 return ret; 1183 } 1184 1185 static void 1186 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg) 1187 { 1188 struct nouveau_drm *drm = nouveau_bdev(bdev); 1189 1190 mutex_lock(&drm->ttm.io_reserve_mutex); 1191 nouveau_ttm_io_mem_free_locked(drm, reg); 1192 mutex_unlock(&drm->ttm.io_reserve_mutex); 1193 } 1194 1195 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) 1196 { 1197 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1198 struct nouveau_bo *nvbo = nouveau_bo(bo); 1199 struct nvkm_device *device = nvxx_device(&drm->client.device); 1200 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; 1201 int i, ret; 1202 1203 /* as long as the bo isn't in vram, and isn't tiled, we've got 1204 * nothing to do here. 1205 */ 1206 if (bo->resource->mem_type != TTM_PL_VRAM) { 1207 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || 1208 !nvbo->kind) 1209 return 0; 1210 1211 if (bo->resource->mem_type != TTM_PL_SYSTEM) 1212 return 0; 1213 1214 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 1215 1216 } else { 1217 /* make sure bo is in mappable vram */ 1218 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || 1219 bo->resource->start + bo->resource->num_pages < mappable) 1220 return 0; 1221 1222 for (i = 0; i < nvbo->placement.num_placement; ++i) { 1223 nvbo->placements[i].fpfn = 0; 1224 nvbo->placements[i].lpfn = mappable; 1225 } 1226 1227 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 1228 nvbo->busy_placements[i].fpfn = 0; 1229 nvbo->busy_placements[i].lpfn = mappable; 1230 } 1231 1232 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0); 1233 } 1234 1235 ret = nouveau_bo_validate(nvbo, false, false); 1236 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS)) 1237 return VM_FAULT_NOPAGE; 1238 else if (unlikely(ret)) 1239 return VM_FAULT_SIGBUS; 1240 1241 ttm_bo_move_to_lru_tail_unlocked(bo); 1242 return 0; 1243 } 1244 1245 static int 1246 nouveau_ttm_tt_populate(struct ttm_device *bdev, 1247 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 1248 { 1249 struct ttm_tt *ttm_dma = (void *)ttm; 1250 struct nouveau_drm *drm; 1251 struct device *dev; 1252 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1253 1254 if (ttm_tt_is_populated(ttm)) 1255 return 0; 1256 1257 if (slave && ttm->sg) { 1258 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address, 1259 ttm->num_pages); 1260 return 0; 1261 } 1262 1263 drm = nouveau_bdev(bdev); 1264 dev = drm->dev->dev; 1265 1266 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx); 1267 } 1268 1269 static void 1270 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev, 1271 struct ttm_tt *ttm) 1272 { 1273 struct nouveau_drm *drm; 1274 struct device *dev; 1275 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1276 1277 if (slave) 1278 return; 1279 1280 drm = nouveau_bdev(bdev); 1281 dev = drm->dev->dev; 1282 1283 return ttm_pool_free(&drm->ttm.bdev.pool, ttm); 1284 } 1285 1286 static void 1287 nouveau_ttm_tt_destroy(struct ttm_device *bdev, 1288 struct ttm_tt *ttm) 1289 { 1290 #if IS_ENABLED(CONFIG_AGP) 1291 struct nouveau_drm *drm = nouveau_bdev(bdev); 1292 if (drm->agp.bridge) { 1293 ttm_agp_unbind(ttm); 1294 ttm_tt_destroy_common(bdev, ttm); 1295 ttm_agp_destroy(ttm); 1296 return; 1297 } 1298 #endif 1299 nouveau_sgdma_destroy(bdev, ttm); 1300 } 1301 1302 void 1303 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) 1304 { 1305 struct dma_resv *resv = nvbo->bo.base.resv; 1306 1307 if (exclusive) 1308 dma_resv_add_excl_fence(resv, &fence->base); 1309 else if (fence) 1310 dma_resv_add_shared_fence(resv, &fence->base); 1311 } 1312 1313 static void 1314 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1315 { 1316 nouveau_bo_move_ntfy(bo, NULL); 1317 } 1318 1319 struct ttm_device_funcs nouveau_bo_driver = { 1320 .ttm_tt_create = &nouveau_ttm_tt_create, 1321 .ttm_tt_populate = &nouveau_ttm_tt_populate, 1322 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, 1323 .ttm_tt_destroy = &nouveau_ttm_tt_destroy, 1324 .eviction_valuable = ttm_bo_eviction_valuable, 1325 .evict_flags = nouveau_bo_evict_flags, 1326 .delete_mem_notify = nouveau_bo_delete_mem_notify, 1327 .move = nouveau_bo_move, 1328 .io_mem_reserve = &nouveau_ttm_io_mem_reserve, 1329 .io_mem_free = &nouveau_ttm_io_mem_free, 1330 }; 1331