1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 /*
48  * NV10-NV40 tiling helpers
49  */
50 
51 static void
52 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
53 			   u32 addr, u32 size, u32 pitch, u32 flags)
54 {
55 	struct nouveau_drm *drm = nouveau_drm(dev);
56 	int i = reg - drm->tile.reg;
57 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
58 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
59 
60 	nouveau_fence_unref(&reg->fence);
61 
62 	if (tile->pitch)
63 		nvkm_fb_tile_fini(fb, i, tile);
64 
65 	if (pitch)
66 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
67 
68 	nvkm_fb_tile_prog(fb, i, tile);
69 }
70 
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
73 {
74 	struct nouveau_drm *drm = nouveau_drm(dev);
75 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
76 
77 	spin_lock(&drm->tile.lock);
78 
79 	if (!tile->used &&
80 	    (!tile->fence || nouveau_fence_done(tile->fence)))
81 		tile->used = true;
82 	else
83 		tile = NULL;
84 
85 	spin_unlock(&drm->tile.lock);
86 	return tile;
87 }
88 
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 			struct dma_fence *fence)
92 {
93 	struct nouveau_drm *drm = nouveau_drm(dev);
94 
95 	if (tile) {
96 		spin_lock(&drm->tile.lock);
97 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
98 		tile->used = false;
99 		spin_unlock(&drm->tile.lock);
100 	}
101 }
102 
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 		   u32 size, u32 pitch, u32 zeta)
106 {
107 	struct nouveau_drm *drm = nouveau_drm(dev);
108 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
109 	struct nouveau_drm_tile *tile, *found = NULL;
110 	int i;
111 
112 	for (i = 0; i < fb->tile.regions; i++) {
113 		tile = nv10_bo_get_tile_region(dev, i);
114 
115 		if (pitch && !found) {
116 			found = tile;
117 			continue;
118 
119 		} else if (tile && fb->tile.region[i].pitch) {
120 			/* Kill an unused tile region. */
121 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
122 		}
123 
124 		nv10_bo_put_tile_region(dev, tile, NULL);
125 	}
126 
127 	if (found)
128 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
129 	return found;
130 }
131 
132 static void
133 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
134 {
135 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
136 	struct drm_device *dev = drm->dev;
137 	struct nouveau_bo *nvbo = nouveau_bo(bo);
138 
139 	if (unlikely(nvbo->gem.filp))
140 		DRM_ERROR("bo %p still attached to GEM object\n", bo);
141 	WARN_ON(nvbo->pin_refcnt > 0);
142 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
143 	kfree(nvbo);
144 }
145 
146 static inline u64
147 roundup_64(u64 x, u32 y)
148 {
149 	x += y - 1;
150 	do_div(x, y);
151 	return x * y;
152 }
153 
154 static void
155 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
156 		       int *align, u64 *size)
157 {
158 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
159 	struct nvif_device *device = &drm->client.device;
160 
161 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
162 		if (nvbo->mode) {
163 			if (device->info.chipset >= 0x40) {
164 				*align = 65536;
165 				*size = roundup_64(*size, 64 * nvbo->mode);
166 
167 			} else if (device->info.chipset >= 0x30) {
168 				*align = 32768;
169 				*size = roundup_64(*size, 64 * nvbo->mode);
170 
171 			} else if (device->info.chipset >= 0x20) {
172 				*align = 16384;
173 				*size = roundup_64(*size, 64 * nvbo->mode);
174 
175 			} else if (device->info.chipset >= 0x10) {
176 				*align = 16384;
177 				*size = roundup_64(*size, 32 * nvbo->mode);
178 			}
179 		}
180 	} else {
181 		*size = roundup_64(*size, (1 << nvbo->page));
182 		*align = max((1 <<  nvbo->page), *align);
183 	}
184 
185 	*size = roundup_64(*size, PAGE_SIZE);
186 }
187 
188 int
189 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
190 	       uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
191 	       struct sg_table *sg, struct reservation_object *robj,
192 	       struct nouveau_bo **pnvbo)
193 {
194 	struct nouveau_drm *drm = cli->drm;
195 	struct nouveau_bo *nvbo;
196 	struct nvif_mmu *mmu = &cli->mmu;
197 	struct nvif_vmm *vmm = &cli->vmm.vmm;
198 	size_t acc_size;
199 	int type = ttm_bo_type_device;
200 	int ret, i, pi = -1;
201 
202 	if (!size) {
203 		NV_WARN(drm, "skipped size %016llx\n", size);
204 		return -EINVAL;
205 	}
206 
207 	if (sg)
208 		type = ttm_bo_type_sg;
209 
210 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
211 	if (!nvbo)
212 		return -ENOMEM;
213 	INIT_LIST_HEAD(&nvbo->head);
214 	INIT_LIST_HEAD(&nvbo->entry);
215 	INIT_LIST_HEAD(&nvbo->vma_list);
216 	nvbo->bo.bdev = &drm->ttm.bdev;
217 	nvbo->cli = cli;
218 
219 	/* This is confusing, and doesn't actually mean we want an uncached
220 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
221 	 * into in nouveau_gem_new().
222 	 */
223 	if (flags & TTM_PL_FLAG_UNCACHED) {
224 		/* Determine if we can get a cache-coherent map, forcing
225 		 * uncached mapping if we can't.
226 		 */
227 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
228 			nvbo->force_coherent = true;
229 	}
230 
231 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
232 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
233 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
234 			kfree(nvbo);
235 			return -EINVAL;
236 		}
237 
238 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
239 	} else
240 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
241 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
242 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
243 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
244 			kfree(nvbo);
245 			return -EINVAL;
246 		}
247 	} else {
248 		nvbo->zeta = (tile_flags & 0x00000007);
249 	}
250 	nvbo->mode = tile_mode;
251 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
252 
253 	/* Determine the desirable target GPU page size for the buffer. */
254 	for (i = 0; i < vmm->page_nr; i++) {
255 		/* Because we cannot currently allow VMM maps to fail
256 		 * during buffer migration, we need to determine page
257 		 * size for the buffer up-front, and pre-allocate its
258 		 * page tables.
259 		 *
260 		 * Skip page sizes that can't support needed domains.
261 		 */
262 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
263 		    (flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
264 			continue;
265 		if ((flags & TTM_PL_FLAG_TT) &&
266 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
267 			continue;
268 
269 		/* Select this page size if it's the first that supports
270 		 * the potential memory domains, or when it's compatible
271 		 * with the requested compression settings.
272 		 */
273 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
274 			pi = i;
275 
276 		/* Stop once the buffer is larger than the current page size. */
277 		if (size >= 1ULL << vmm->page[i].shift)
278 			break;
279 	}
280 
281 	if (WARN_ON(pi < 0))
282 		return -EINVAL;
283 
284 	/* Disable compression if suitable settings couldn't be found. */
285 	if (nvbo->comp && !vmm->page[pi].comp) {
286 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
287 			nvbo->kind = mmu->kind[nvbo->kind];
288 		nvbo->comp = 0;
289 	}
290 	nvbo->page = vmm->page[pi].shift;
291 
292 	nouveau_bo_fixup_align(nvbo, flags, &align, &size);
293 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
294 	nouveau_bo_placement_set(nvbo, flags, 0);
295 
296 	acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
297 				       sizeof(struct nouveau_bo));
298 
299 	ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
300 			  type, &nvbo->placement,
301 			  align >> PAGE_SHIFT, false, NULL, acc_size, sg,
302 			  robj, nouveau_bo_del_ttm);
303 	if (ret) {
304 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
305 		return ret;
306 	}
307 
308 	*pnvbo = nvbo;
309 	return 0;
310 }
311 
312 static void
313 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
314 {
315 	*n = 0;
316 
317 	if (type & TTM_PL_FLAG_VRAM)
318 		pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
319 	if (type & TTM_PL_FLAG_TT)
320 		pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
321 	if (type & TTM_PL_FLAG_SYSTEM)
322 		pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
323 }
324 
325 static void
326 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
327 {
328 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
329 	u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
330 	unsigned i, fpfn, lpfn;
331 
332 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
333 	    nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
334 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
335 		/*
336 		 * Make sure that the color and depth buffers are handled
337 		 * by independent memory controller units. Up to a 9x
338 		 * speed up when alpha-blending and depth-test are enabled
339 		 * at the same time.
340 		 */
341 		if (nvbo->zeta) {
342 			fpfn = vram_pages / 2;
343 			lpfn = ~0;
344 		} else {
345 			fpfn = 0;
346 			lpfn = vram_pages / 2;
347 		}
348 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
349 			nvbo->placements[i].fpfn = fpfn;
350 			nvbo->placements[i].lpfn = lpfn;
351 		}
352 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
353 			nvbo->busy_placements[i].fpfn = fpfn;
354 			nvbo->busy_placements[i].lpfn = lpfn;
355 		}
356 	}
357 }
358 
359 void
360 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
361 {
362 	struct ttm_placement *pl = &nvbo->placement;
363 	uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
364 						 TTM_PL_MASK_CACHING) |
365 			 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
366 
367 	pl->placement = nvbo->placements;
368 	set_placement_list(nvbo->placements, &pl->num_placement,
369 			   type, flags);
370 
371 	pl->busy_placement = nvbo->busy_placements;
372 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
373 			   type | busy, flags);
374 
375 	set_placement_range(nvbo, type);
376 }
377 
378 int
379 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
380 {
381 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
382 	struct ttm_buffer_object *bo = &nvbo->bo;
383 	bool force = false, evict = false;
384 	int ret;
385 
386 	ret = ttm_bo_reserve(bo, false, false, NULL);
387 	if (ret)
388 		return ret;
389 
390 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
391 	    memtype == TTM_PL_FLAG_VRAM && contig) {
392 		if (!nvbo->contig) {
393 			nvbo->contig = true;
394 			force = true;
395 			evict = true;
396 		}
397 	}
398 
399 	if (nvbo->pin_refcnt) {
400 		if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
401 			NV_ERROR(drm, "bo %p pinned elsewhere: "
402 				      "0x%08x vs 0x%08x\n", bo,
403 				 1 << bo->mem.mem_type, memtype);
404 			ret = -EBUSY;
405 		}
406 		nvbo->pin_refcnt++;
407 		goto out;
408 	}
409 
410 	if (evict) {
411 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
412 		ret = nouveau_bo_validate(nvbo, false, false);
413 		if (ret)
414 			goto out;
415 	}
416 
417 	nvbo->pin_refcnt++;
418 	nouveau_bo_placement_set(nvbo, memtype, 0);
419 
420 	/* drop pin_refcnt temporarily, so we don't trip the assertion
421 	 * in nouveau_bo_move() that makes sure we're not trying to
422 	 * move a pinned buffer
423 	 */
424 	nvbo->pin_refcnt--;
425 	ret = nouveau_bo_validate(nvbo, false, false);
426 	if (ret)
427 		goto out;
428 	nvbo->pin_refcnt++;
429 
430 	switch (bo->mem.mem_type) {
431 	case TTM_PL_VRAM:
432 		drm->gem.vram_available -= bo->mem.size;
433 		break;
434 	case TTM_PL_TT:
435 		drm->gem.gart_available -= bo->mem.size;
436 		break;
437 	default:
438 		break;
439 	}
440 
441 out:
442 	if (force && ret)
443 		nvbo->contig = false;
444 	ttm_bo_unreserve(bo);
445 	return ret;
446 }
447 
448 int
449 nouveau_bo_unpin(struct nouveau_bo *nvbo)
450 {
451 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
452 	struct ttm_buffer_object *bo = &nvbo->bo;
453 	int ret, ref;
454 
455 	ret = ttm_bo_reserve(bo, false, false, NULL);
456 	if (ret)
457 		return ret;
458 
459 	ref = --nvbo->pin_refcnt;
460 	WARN_ON_ONCE(ref < 0);
461 	if (ref)
462 		goto out;
463 
464 	nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
465 
466 	ret = nouveau_bo_validate(nvbo, false, false);
467 	if (ret == 0) {
468 		switch (bo->mem.mem_type) {
469 		case TTM_PL_VRAM:
470 			drm->gem.vram_available += bo->mem.size;
471 			break;
472 		case TTM_PL_TT:
473 			drm->gem.gart_available += bo->mem.size;
474 			break;
475 		default:
476 			break;
477 		}
478 	}
479 
480 out:
481 	ttm_bo_unreserve(bo);
482 	return ret;
483 }
484 
485 int
486 nouveau_bo_map(struct nouveau_bo *nvbo)
487 {
488 	int ret;
489 
490 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
491 	if (ret)
492 		return ret;
493 
494 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
495 
496 	ttm_bo_unreserve(&nvbo->bo);
497 	return ret;
498 }
499 
500 void
501 nouveau_bo_unmap(struct nouveau_bo *nvbo)
502 {
503 	if (!nvbo)
504 		return;
505 
506 	ttm_bo_kunmap(&nvbo->kmap);
507 }
508 
509 void
510 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
511 {
512 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
513 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
514 	int i;
515 
516 	if (!ttm_dma)
517 		return;
518 
519 	/* Don't waste time looping if the object is coherent */
520 	if (nvbo->force_coherent)
521 		return;
522 
523 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
524 		dma_sync_single_for_device(drm->dev->dev,
525 					   ttm_dma->dma_address[i],
526 					   PAGE_SIZE, DMA_TO_DEVICE);
527 }
528 
529 void
530 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
531 {
532 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
533 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
534 	int i;
535 
536 	if (!ttm_dma)
537 		return;
538 
539 	/* Don't waste time looping if the object is coherent */
540 	if (nvbo->force_coherent)
541 		return;
542 
543 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
544 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
545 					PAGE_SIZE, DMA_FROM_DEVICE);
546 }
547 
548 int
549 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
550 		    bool no_wait_gpu)
551 {
552 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
553 	int ret;
554 
555 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
556 	if (ret)
557 		return ret;
558 
559 	nouveau_bo_sync_for_device(nvbo);
560 
561 	return 0;
562 }
563 
564 void
565 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
566 {
567 	bool is_iomem;
568 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
569 
570 	mem += index;
571 
572 	if (is_iomem)
573 		iowrite16_native(val, (void __force __iomem *)mem);
574 	else
575 		*mem = val;
576 }
577 
578 u32
579 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
580 {
581 	bool is_iomem;
582 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
583 
584 	mem += index;
585 
586 	if (is_iomem)
587 		return ioread32_native((void __force __iomem *)mem);
588 	else
589 		return *mem;
590 }
591 
592 void
593 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
594 {
595 	bool is_iomem;
596 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
597 
598 	mem += index;
599 
600 	if (is_iomem)
601 		iowrite32_native(val, (void __force __iomem *)mem);
602 	else
603 		*mem = val;
604 }
605 
606 static struct ttm_tt *
607 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
608 		      uint32_t page_flags, struct page *dummy_read)
609 {
610 #if IS_ENABLED(CONFIG_AGP)
611 	struct nouveau_drm *drm = nouveau_bdev(bdev);
612 
613 	if (drm->agp.bridge) {
614 		return ttm_agp_tt_create(bdev, drm->agp.bridge, size,
615 					 page_flags, dummy_read);
616 	}
617 #endif
618 
619 	return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
620 }
621 
622 static int
623 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
624 {
625 	/* We'll do this from user space. */
626 	return 0;
627 }
628 
629 static int
630 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
631 			 struct ttm_mem_type_manager *man)
632 {
633 	struct nouveau_drm *drm = nouveau_bdev(bdev);
634 	struct nvif_mmu *mmu = &drm->client.mmu;
635 
636 	switch (type) {
637 	case TTM_PL_SYSTEM:
638 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
639 		man->available_caching = TTM_PL_MASK_CACHING;
640 		man->default_caching = TTM_PL_FLAG_CACHED;
641 		break;
642 	case TTM_PL_VRAM:
643 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
644 			     TTM_MEMTYPE_FLAG_MAPPABLE;
645 		man->available_caching = TTM_PL_FLAG_UNCACHED |
646 					 TTM_PL_FLAG_WC;
647 		man->default_caching = TTM_PL_FLAG_WC;
648 
649 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
650 			/* Some BARs do not support being ioremapped WC */
651 			const u8 type = mmu->type[drm->ttm.type_vram].type;
652 			if (type & NVIF_MEM_UNCACHED) {
653 				man->available_caching = TTM_PL_FLAG_UNCACHED;
654 				man->default_caching = TTM_PL_FLAG_UNCACHED;
655 			}
656 
657 			man->func = &nouveau_vram_manager;
658 			man->io_reserve_fastpath = false;
659 			man->use_io_reserve_lru = true;
660 		} else {
661 			man->func = &ttm_bo_manager_func;
662 		}
663 		break;
664 	case TTM_PL_TT:
665 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
666 			man->func = &nouveau_gart_manager;
667 		else
668 		if (!drm->agp.bridge)
669 			man->func = &nv04_gart_manager;
670 		else
671 			man->func = &ttm_bo_manager_func;
672 
673 		if (drm->agp.bridge) {
674 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
675 			man->available_caching = TTM_PL_FLAG_UNCACHED |
676 				TTM_PL_FLAG_WC;
677 			man->default_caching = TTM_PL_FLAG_WC;
678 		} else {
679 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
680 				     TTM_MEMTYPE_FLAG_CMA;
681 			man->available_caching = TTM_PL_MASK_CACHING;
682 			man->default_caching = TTM_PL_FLAG_CACHED;
683 		}
684 
685 		break;
686 	default:
687 		return -EINVAL;
688 	}
689 	return 0;
690 }
691 
692 static void
693 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
694 {
695 	struct nouveau_bo *nvbo = nouveau_bo(bo);
696 
697 	switch (bo->mem.mem_type) {
698 	case TTM_PL_VRAM:
699 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
700 					 TTM_PL_FLAG_SYSTEM);
701 		break;
702 	default:
703 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
704 		break;
705 	}
706 
707 	*pl = nvbo->placement;
708 }
709 
710 
711 static int
712 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
713 {
714 	int ret = RING_SPACE(chan, 2);
715 	if (ret == 0) {
716 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
717 		OUT_RING  (chan, handle & 0x0000ffff);
718 		FIRE_RING (chan);
719 	}
720 	return ret;
721 }
722 
723 static int
724 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
725 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
726 {
727 	struct nouveau_mem *mem = nouveau_mem(old_reg);
728 	int ret = RING_SPACE(chan, 10);
729 	if (ret == 0) {
730 		BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
731 		OUT_RING  (chan, upper_32_bits(mem->vma[0].addr));
732 		OUT_RING  (chan, lower_32_bits(mem->vma[0].addr));
733 		OUT_RING  (chan, upper_32_bits(mem->vma[1].addr));
734 		OUT_RING  (chan, lower_32_bits(mem->vma[1].addr));
735 		OUT_RING  (chan, PAGE_SIZE);
736 		OUT_RING  (chan, PAGE_SIZE);
737 		OUT_RING  (chan, PAGE_SIZE);
738 		OUT_RING  (chan, new_reg->num_pages);
739 		BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
740 	}
741 	return ret;
742 }
743 
744 static int
745 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
746 {
747 	int ret = RING_SPACE(chan, 2);
748 	if (ret == 0) {
749 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
750 		OUT_RING  (chan, handle);
751 	}
752 	return ret;
753 }
754 
755 static int
756 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
757 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
758 {
759 	struct nouveau_mem *mem = nouveau_mem(old_reg);
760 	u64 src_offset = mem->vma[0].addr;
761 	u64 dst_offset = mem->vma[1].addr;
762 	u32 page_count = new_reg->num_pages;
763 	int ret;
764 
765 	page_count = new_reg->num_pages;
766 	while (page_count) {
767 		int line_count = (page_count > 8191) ? 8191 : page_count;
768 
769 		ret = RING_SPACE(chan, 11);
770 		if (ret)
771 			return ret;
772 
773 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
774 		OUT_RING  (chan, upper_32_bits(src_offset));
775 		OUT_RING  (chan, lower_32_bits(src_offset));
776 		OUT_RING  (chan, upper_32_bits(dst_offset));
777 		OUT_RING  (chan, lower_32_bits(dst_offset));
778 		OUT_RING  (chan, PAGE_SIZE);
779 		OUT_RING  (chan, PAGE_SIZE);
780 		OUT_RING  (chan, PAGE_SIZE);
781 		OUT_RING  (chan, line_count);
782 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
783 		OUT_RING  (chan, 0x00000110);
784 
785 		page_count -= line_count;
786 		src_offset += (PAGE_SIZE * line_count);
787 		dst_offset += (PAGE_SIZE * line_count);
788 	}
789 
790 	return 0;
791 }
792 
793 static int
794 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
795 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
796 {
797 	struct nouveau_mem *mem = nouveau_mem(old_reg);
798 	u64 src_offset = mem->vma[0].addr;
799 	u64 dst_offset = mem->vma[1].addr;
800 	u32 page_count = new_reg->num_pages;
801 	int ret;
802 
803 	page_count = new_reg->num_pages;
804 	while (page_count) {
805 		int line_count = (page_count > 2047) ? 2047 : page_count;
806 
807 		ret = RING_SPACE(chan, 12);
808 		if (ret)
809 			return ret;
810 
811 		BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
812 		OUT_RING  (chan, upper_32_bits(dst_offset));
813 		OUT_RING  (chan, lower_32_bits(dst_offset));
814 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
815 		OUT_RING  (chan, upper_32_bits(src_offset));
816 		OUT_RING  (chan, lower_32_bits(src_offset));
817 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
818 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
819 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
820 		OUT_RING  (chan, line_count);
821 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
822 		OUT_RING  (chan, 0x00100110);
823 
824 		page_count -= line_count;
825 		src_offset += (PAGE_SIZE * line_count);
826 		dst_offset += (PAGE_SIZE * line_count);
827 	}
828 
829 	return 0;
830 }
831 
832 static int
833 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
834 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
835 {
836 	struct nouveau_mem *mem = nouveau_mem(old_reg);
837 	u64 src_offset = mem->vma[0].addr;
838 	u64 dst_offset = mem->vma[1].addr;
839 	u32 page_count = new_reg->num_pages;
840 	int ret;
841 
842 	page_count = new_reg->num_pages;
843 	while (page_count) {
844 		int line_count = (page_count > 8191) ? 8191 : page_count;
845 
846 		ret = RING_SPACE(chan, 11);
847 		if (ret)
848 			return ret;
849 
850 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
851 		OUT_RING  (chan, upper_32_bits(src_offset));
852 		OUT_RING  (chan, lower_32_bits(src_offset));
853 		OUT_RING  (chan, upper_32_bits(dst_offset));
854 		OUT_RING  (chan, lower_32_bits(dst_offset));
855 		OUT_RING  (chan, PAGE_SIZE);
856 		OUT_RING  (chan, PAGE_SIZE);
857 		OUT_RING  (chan, PAGE_SIZE);
858 		OUT_RING  (chan, line_count);
859 		BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
860 		OUT_RING  (chan, 0x00000110);
861 
862 		page_count -= line_count;
863 		src_offset += (PAGE_SIZE * line_count);
864 		dst_offset += (PAGE_SIZE * line_count);
865 	}
866 
867 	return 0;
868 }
869 
870 static int
871 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
872 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
873 {
874 	struct nouveau_mem *mem = nouveau_mem(old_reg);
875 	int ret = RING_SPACE(chan, 7);
876 	if (ret == 0) {
877 		BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
878 		OUT_RING  (chan, upper_32_bits(mem->vma[0].addr));
879 		OUT_RING  (chan, lower_32_bits(mem->vma[0].addr));
880 		OUT_RING  (chan, upper_32_bits(mem->vma[1].addr));
881 		OUT_RING  (chan, lower_32_bits(mem->vma[1].addr));
882 		OUT_RING  (chan, 0x00000000 /* COPY */);
883 		OUT_RING  (chan, new_reg->num_pages << PAGE_SHIFT);
884 	}
885 	return ret;
886 }
887 
888 static int
889 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
890 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
891 {
892 	struct nouveau_mem *mem = nouveau_mem(old_reg);
893 	int ret = RING_SPACE(chan, 7);
894 	if (ret == 0) {
895 		BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
896 		OUT_RING  (chan, new_reg->num_pages << PAGE_SHIFT);
897 		OUT_RING  (chan, upper_32_bits(mem->vma[0].addr));
898 		OUT_RING  (chan, lower_32_bits(mem->vma[0].addr));
899 		OUT_RING  (chan, upper_32_bits(mem->vma[1].addr));
900 		OUT_RING  (chan, lower_32_bits(mem->vma[1].addr));
901 		OUT_RING  (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
902 	}
903 	return ret;
904 }
905 
906 static int
907 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
908 {
909 	int ret = RING_SPACE(chan, 6);
910 	if (ret == 0) {
911 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
912 		OUT_RING  (chan, handle);
913 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
914 		OUT_RING  (chan, chan->drm->ntfy.handle);
915 		OUT_RING  (chan, chan->vram.handle);
916 		OUT_RING  (chan, chan->vram.handle);
917 	}
918 
919 	return ret;
920 }
921 
922 static int
923 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
924 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
925 {
926 	struct nouveau_mem *mem = nouveau_mem(old_reg);
927 	u64 length = (new_reg->num_pages << PAGE_SHIFT);
928 	u64 src_offset = mem->vma[0].addr;
929 	u64 dst_offset = mem->vma[1].addr;
930 	int src_tiled = !!mem->kind;
931 	int dst_tiled = !!nouveau_mem(new_reg)->kind;
932 	int ret;
933 
934 	while (length) {
935 		u32 amount, stride, height;
936 
937 		ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
938 		if (ret)
939 			return ret;
940 
941 		amount  = min(length, (u64)(4 * 1024 * 1024));
942 		stride  = 16 * 4;
943 		height  = amount / stride;
944 
945 		if (src_tiled) {
946 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
947 			OUT_RING  (chan, 0);
948 			OUT_RING  (chan, 0);
949 			OUT_RING  (chan, stride);
950 			OUT_RING  (chan, height);
951 			OUT_RING  (chan, 1);
952 			OUT_RING  (chan, 0);
953 			OUT_RING  (chan, 0);
954 		} else {
955 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
956 			OUT_RING  (chan, 1);
957 		}
958 		if (dst_tiled) {
959 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
960 			OUT_RING  (chan, 0);
961 			OUT_RING  (chan, 0);
962 			OUT_RING  (chan, stride);
963 			OUT_RING  (chan, height);
964 			OUT_RING  (chan, 1);
965 			OUT_RING  (chan, 0);
966 			OUT_RING  (chan, 0);
967 		} else {
968 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
969 			OUT_RING  (chan, 1);
970 		}
971 
972 		BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
973 		OUT_RING  (chan, upper_32_bits(src_offset));
974 		OUT_RING  (chan, upper_32_bits(dst_offset));
975 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
976 		OUT_RING  (chan, lower_32_bits(src_offset));
977 		OUT_RING  (chan, lower_32_bits(dst_offset));
978 		OUT_RING  (chan, stride);
979 		OUT_RING  (chan, stride);
980 		OUT_RING  (chan, stride);
981 		OUT_RING  (chan, height);
982 		OUT_RING  (chan, 0x00000101);
983 		OUT_RING  (chan, 0x00000000);
984 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
985 		OUT_RING  (chan, 0);
986 
987 		length -= amount;
988 		src_offset += amount;
989 		dst_offset += amount;
990 	}
991 
992 	return 0;
993 }
994 
995 static int
996 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
997 {
998 	int ret = RING_SPACE(chan, 4);
999 	if (ret == 0) {
1000 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
1001 		OUT_RING  (chan, handle);
1002 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
1003 		OUT_RING  (chan, chan->drm->ntfy.handle);
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 static inline uint32_t
1010 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
1011 		      struct nouveau_channel *chan, struct ttm_mem_reg *reg)
1012 {
1013 	if (reg->mem_type == TTM_PL_TT)
1014 		return NvDmaTT;
1015 	return chan->vram.handle;
1016 }
1017 
1018 static int
1019 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
1020 		  struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
1021 {
1022 	u32 src_offset = old_reg->start << PAGE_SHIFT;
1023 	u32 dst_offset = new_reg->start << PAGE_SHIFT;
1024 	u32 page_count = new_reg->num_pages;
1025 	int ret;
1026 
1027 	ret = RING_SPACE(chan, 3);
1028 	if (ret)
1029 		return ret;
1030 
1031 	BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
1032 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg));
1033 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg));
1034 
1035 	page_count = new_reg->num_pages;
1036 	while (page_count) {
1037 		int line_count = (page_count > 2047) ? 2047 : page_count;
1038 
1039 		ret = RING_SPACE(chan, 11);
1040 		if (ret)
1041 			return ret;
1042 
1043 		BEGIN_NV04(chan, NvSubCopy,
1044 				 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1045 		OUT_RING  (chan, src_offset);
1046 		OUT_RING  (chan, dst_offset);
1047 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
1048 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
1049 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
1050 		OUT_RING  (chan, line_count);
1051 		OUT_RING  (chan, 0x00000101);
1052 		OUT_RING  (chan, 0x00000000);
1053 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1054 		OUT_RING  (chan, 0);
1055 
1056 		page_count -= line_count;
1057 		src_offset += (PAGE_SIZE * line_count);
1058 		dst_offset += (PAGE_SIZE * line_count);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static int
1065 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1066 		     struct ttm_mem_reg *reg)
1067 {
1068 	struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
1069 	struct nouveau_mem *new_mem = nouveau_mem(reg);
1070 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
1071 	int ret;
1072 
1073 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
1074 			   old_mem->mem.size, &old_mem->vma[0]);
1075 	if (ret)
1076 		return ret;
1077 
1078 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
1079 			   new_mem->mem.size, &old_mem->vma[1]);
1080 	if (ret)
1081 		goto done;
1082 
1083 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
1084 	if (ret)
1085 		goto done;
1086 
1087 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
1088 done:
1089 	if (ret) {
1090 		nvif_vmm_put(vmm, &old_mem->vma[1]);
1091 		nvif_vmm_put(vmm, &old_mem->vma[0]);
1092 	}
1093 	return 0;
1094 }
1095 
1096 static int
1097 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1098 		     bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1099 {
1100 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1101 	struct nouveau_channel *chan = drm->ttm.chan;
1102 	struct nouveau_cli *cli = (void *)chan->user.client;
1103 	struct nouveau_fence *fence;
1104 	int ret;
1105 
1106 	/* create temporary vmas for the transfer and attach them to the
1107 	 * old nvkm_mem node, these will get cleaned up after ttm has
1108 	 * destroyed the ttm_mem_reg
1109 	 */
1110 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1111 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
1112 		if (ret)
1113 			return ret;
1114 	}
1115 
1116 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1117 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1118 	if (ret == 0) {
1119 		ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
1120 		if (ret == 0) {
1121 			ret = nouveau_fence_new(chan, false, &fence);
1122 			if (ret == 0) {
1123 				ret = ttm_bo_move_accel_cleanup(bo,
1124 								&fence->base,
1125 								evict,
1126 								new_reg);
1127 				nouveau_fence_unref(&fence);
1128 			}
1129 		}
1130 	}
1131 	mutex_unlock(&cli->mutex);
1132 	return ret;
1133 }
1134 
1135 void
1136 nouveau_bo_move_init(struct nouveau_drm *drm)
1137 {
1138 	static const struct {
1139 		const char *name;
1140 		int engine;
1141 		s32 oclass;
1142 		int (*exec)(struct nouveau_channel *,
1143 			    struct ttm_buffer_object *,
1144 			    struct ttm_mem_reg *, struct ttm_mem_reg *);
1145 		int (*init)(struct nouveau_channel *, u32 handle);
1146 	} _methods[] = {
1147 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
1148 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
1149 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
1150 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1151 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1152 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1153 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1154 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1155 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1156 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1157 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1158 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1159 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1160 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1161 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1162 		{},
1163 		{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1164 	}, *mthd = _methods;
1165 	const char *name = "CPU";
1166 	int ret;
1167 
1168 	do {
1169 		struct nouveau_channel *chan;
1170 
1171 		if (mthd->engine)
1172 			chan = drm->cechan;
1173 		else
1174 			chan = drm->channel;
1175 		if (chan == NULL)
1176 			continue;
1177 
1178 		ret = nvif_object_init(&chan->user,
1179 				       mthd->oclass | (mthd->engine << 16),
1180 				       mthd->oclass, NULL, 0,
1181 				       &drm->ttm.copy);
1182 		if (ret == 0) {
1183 			ret = mthd->init(chan, drm->ttm.copy.handle);
1184 			if (ret) {
1185 				nvif_object_fini(&drm->ttm.copy);
1186 				continue;
1187 			}
1188 
1189 			drm->ttm.move = mthd->exec;
1190 			drm->ttm.chan = chan;
1191 			name = mthd->name;
1192 			break;
1193 		}
1194 	} while ((++mthd)->exec);
1195 
1196 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1197 }
1198 
1199 static int
1200 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1201 		      bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1202 {
1203 	struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1204 	struct ttm_place placement_memtype = {
1205 		.fpfn = 0,
1206 		.lpfn = 0,
1207 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1208 	};
1209 	struct ttm_placement placement;
1210 	struct ttm_mem_reg tmp_reg;
1211 	int ret;
1212 
1213 	placement.num_placement = placement.num_busy_placement = 1;
1214 	placement.placement = placement.busy_placement = &placement_memtype;
1215 
1216 	tmp_reg = *new_reg;
1217 	tmp_reg.mm_node = NULL;
1218 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1219 	if (ret)
1220 		return ret;
1221 
1222 	ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx);
1223 	if (ret)
1224 		goto out;
1225 
1226 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
1227 	if (ret)
1228 		goto out;
1229 
1230 	ret = ttm_bo_move_ttm(bo, &ctx, new_reg);
1231 out:
1232 	ttm_bo_mem_put(bo, &tmp_reg);
1233 	return ret;
1234 }
1235 
1236 static int
1237 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1238 		      bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1239 {
1240 	struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1241 	struct ttm_place placement_memtype = {
1242 		.fpfn = 0,
1243 		.lpfn = 0,
1244 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1245 	};
1246 	struct ttm_placement placement;
1247 	struct ttm_mem_reg tmp_reg;
1248 	int ret;
1249 
1250 	placement.num_placement = placement.num_busy_placement = 1;
1251 	placement.placement = placement.busy_placement = &placement_memtype;
1252 
1253 	tmp_reg = *new_reg;
1254 	tmp_reg.mm_node = NULL;
1255 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1256 	if (ret)
1257 		return ret;
1258 
1259 	ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg);
1260 	if (ret)
1261 		goto out;
1262 
1263 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
1264 	if (ret)
1265 		goto out;
1266 
1267 out:
1268 	ttm_bo_mem_put(bo, &tmp_reg);
1269 	return ret;
1270 }
1271 
1272 static void
1273 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
1274 		     struct ttm_mem_reg *new_reg)
1275 {
1276 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
1277 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1278 	struct nouveau_vma *vma;
1279 
1280 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
1281 	if (bo->destroy != nouveau_bo_del_ttm)
1282 		return;
1283 
1284 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
1285 	    mem->mem.page == nvbo->page) {
1286 		list_for_each_entry(vma, &nvbo->vma_list, head) {
1287 			nouveau_vma_map(vma, mem);
1288 		}
1289 	} else {
1290 		list_for_each_entry(vma, &nvbo->vma_list, head) {
1291 			WARN_ON(ttm_bo_wait(bo, false, false));
1292 			nouveau_vma_unmap(vma);
1293 		}
1294 	}
1295 }
1296 
1297 static int
1298 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
1299 		   struct nouveau_drm_tile **new_tile)
1300 {
1301 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1302 	struct drm_device *dev = drm->dev;
1303 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1304 	u64 offset = new_reg->start << PAGE_SHIFT;
1305 
1306 	*new_tile = NULL;
1307 	if (new_reg->mem_type != TTM_PL_VRAM)
1308 		return 0;
1309 
1310 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1311 		*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
1312 					       nvbo->mode, nvbo->zeta);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void
1319 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1320 		      struct nouveau_drm_tile *new_tile,
1321 		      struct nouveau_drm_tile **old_tile)
1322 {
1323 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1324 	struct drm_device *dev = drm->dev;
1325 	struct dma_fence *fence = reservation_object_get_excl(bo->resv);
1326 
1327 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1328 	*old_tile = new_tile;
1329 }
1330 
1331 static int
1332 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1333 		struct ttm_operation_ctx *ctx,
1334 		struct ttm_mem_reg *new_reg)
1335 {
1336 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1337 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1338 	struct ttm_mem_reg *old_reg = &bo->mem;
1339 	struct nouveau_drm_tile *new_tile = NULL;
1340 	int ret = 0;
1341 
1342 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1343 	if (ret)
1344 		return ret;
1345 
1346 	if (nvbo->pin_refcnt)
1347 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1348 
1349 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1350 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1351 		if (ret)
1352 			return ret;
1353 	}
1354 
1355 	/* Fake bo copy. */
1356 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1357 		BUG_ON(bo->mem.mm_node != NULL);
1358 		bo->mem = *new_reg;
1359 		new_reg->mm_node = NULL;
1360 		goto out;
1361 	}
1362 
1363 	/* Hardware assisted copy. */
1364 	if (drm->ttm.move) {
1365 		if (new_reg->mem_type == TTM_PL_SYSTEM)
1366 			ret = nouveau_bo_move_flipd(bo, evict,
1367 						    ctx->interruptible,
1368 						    ctx->no_wait_gpu, new_reg);
1369 		else if (old_reg->mem_type == TTM_PL_SYSTEM)
1370 			ret = nouveau_bo_move_flips(bo, evict,
1371 						    ctx->interruptible,
1372 						    ctx->no_wait_gpu, new_reg);
1373 		else
1374 			ret = nouveau_bo_move_m2mf(bo, evict,
1375 						   ctx->interruptible,
1376 						   ctx->no_wait_gpu, new_reg);
1377 		if (!ret)
1378 			goto out;
1379 	}
1380 
1381 	/* Fallback to software copy. */
1382 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1383 	if (ret == 0)
1384 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1385 
1386 out:
1387 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1388 		if (ret)
1389 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1390 		else
1391 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1392 	}
1393 
1394 	return ret;
1395 }
1396 
1397 static int
1398 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1399 {
1400 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1401 
1402 	return drm_vma_node_verify_access(&nvbo->gem.vma_node,
1403 					  filp->private_data);
1404 }
1405 
1406 static int
1407 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1408 {
1409 	struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type];
1410 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1411 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1412 	struct nouveau_mem *mem = nouveau_mem(reg);
1413 
1414 	reg->bus.addr = NULL;
1415 	reg->bus.offset = 0;
1416 	reg->bus.size = reg->num_pages << PAGE_SHIFT;
1417 	reg->bus.base = 0;
1418 	reg->bus.is_iomem = false;
1419 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1420 		return -EINVAL;
1421 	switch (reg->mem_type) {
1422 	case TTM_PL_SYSTEM:
1423 		/* System memory */
1424 		return 0;
1425 	case TTM_PL_TT:
1426 #if IS_ENABLED(CONFIG_AGP)
1427 		if (drm->agp.bridge) {
1428 			reg->bus.offset = reg->start << PAGE_SHIFT;
1429 			reg->bus.base = drm->agp.base;
1430 			reg->bus.is_iomem = !drm->agp.cma;
1431 		}
1432 #endif
1433 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
1434 			/* untiled */
1435 			break;
1436 		/* fallthrough, tiled memory */
1437 	case TTM_PL_VRAM:
1438 		reg->bus.offset = reg->start << PAGE_SHIFT;
1439 		reg->bus.base = device->func->resource_addr(device, 1);
1440 		reg->bus.is_iomem = true;
1441 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1442 			union {
1443 				struct nv50_mem_map_v0 nv50;
1444 				struct gf100_mem_map_v0 gf100;
1445 			} args;
1446 			u64 handle, length;
1447 			u32 argc = 0;
1448 			int ret;
1449 
1450 			switch (mem->mem.object.oclass) {
1451 			case NVIF_CLASS_MEM_NV50:
1452 				args.nv50.version = 0;
1453 				args.nv50.ro = 0;
1454 				args.nv50.kind = mem->kind;
1455 				args.nv50.comp = mem->comp;
1456 				argc = sizeof(args.nv50);
1457 				break;
1458 			case NVIF_CLASS_MEM_GF100:
1459 				args.gf100.version = 0;
1460 				args.gf100.ro = 0;
1461 				args.gf100.kind = mem->kind;
1462 				argc = sizeof(args.gf100);
1463 				break;
1464 			default:
1465 				WARN_ON(1);
1466 				break;
1467 			}
1468 
1469 			ret = nvif_object_map_handle(&mem->mem.object,
1470 						     &args, argc,
1471 						     &handle, &length);
1472 			if (ret != 1)
1473 				return ret ? ret : -EINVAL;
1474 
1475 			reg->bus.base = 0;
1476 			reg->bus.offset = handle;
1477 		}
1478 		break;
1479 	default:
1480 		return -EINVAL;
1481 	}
1482 	return 0;
1483 }
1484 
1485 static void
1486 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1487 {
1488 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1489 	struct nouveau_mem *mem = nouveau_mem(reg);
1490 
1491 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1492 		switch (reg->mem_type) {
1493 		case TTM_PL_TT:
1494 			if (mem->kind)
1495 				nvif_object_unmap_handle(&mem->mem.object);
1496 			break;
1497 		case TTM_PL_VRAM:
1498 			nvif_object_unmap_handle(&mem->mem.object);
1499 			break;
1500 		default:
1501 			break;
1502 		}
1503 	}
1504 }
1505 
1506 static int
1507 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1508 {
1509 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1510 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1511 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1512 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1513 	int i, ret;
1514 
1515 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1516 	 * nothing to do here.
1517 	 */
1518 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1519 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1520 		    !nvbo->kind)
1521 			return 0;
1522 
1523 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1524 			nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1525 
1526 			ret = nouveau_bo_validate(nvbo, false, false);
1527 			if (ret)
1528 				return ret;
1529 		}
1530 		return 0;
1531 	}
1532 
1533 	/* make sure bo is in mappable vram */
1534 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1535 	    bo->mem.start + bo->mem.num_pages < mappable)
1536 		return 0;
1537 
1538 	for (i = 0; i < nvbo->placement.num_placement; ++i) {
1539 		nvbo->placements[i].fpfn = 0;
1540 		nvbo->placements[i].lpfn = mappable;
1541 	}
1542 
1543 	for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1544 		nvbo->busy_placements[i].fpfn = 0;
1545 		nvbo->busy_placements[i].lpfn = mappable;
1546 	}
1547 
1548 	nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1549 	return nouveau_bo_validate(nvbo, false, false);
1550 }
1551 
1552 static int
1553 nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1554 {
1555 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1556 	struct nouveau_drm *drm;
1557 	struct device *dev;
1558 	unsigned i;
1559 	int r;
1560 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1561 
1562 	if (ttm->state != tt_unpopulated)
1563 		return 0;
1564 
1565 	if (slave && ttm->sg) {
1566 		/* make userspace faulting work */
1567 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1568 						 ttm_dma->dma_address, ttm->num_pages);
1569 		ttm->state = tt_unbound;
1570 		return 0;
1571 	}
1572 
1573 	drm = nouveau_bdev(ttm->bdev);
1574 	dev = drm->dev->dev;
1575 
1576 #if IS_ENABLED(CONFIG_AGP)
1577 	if (drm->agp.bridge) {
1578 		return ttm_agp_tt_populate(ttm, ctx);
1579 	}
1580 #endif
1581 
1582 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1583 	if (swiotlb_nr_tbl()) {
1584 		return ttm_dma_populate((void *)ttm, dev, ctx);
1585 	}
1586 #endif
1587 
1588 	r = ttm_pool_populate(ttm, ctx);
1589 	if (r) {
1590 		return r;
1591 	}
1592 
1593 	for (i = 0; i < ttm->num_pages; i++) {
1594 		dma_addr_t addr;
1595 
1596 		addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
1597 				    DMA_BIDIRECTIONAL);
1598 
1599 		if (dma_mapping_error(dev, addr)) {
1600 			while (i--) {
1601 				dma_unmap_page(dev, ttm_dma->dma_address[i],
1602 					       PAGE_SIZE, DMA_BIDIRECTIONAL);
1603 				ttm_dma->dma_address[i] = 0;
1604 			}
1605 			ttm_pool_unpopulate(ttm);
1606 			return -EFAULT;
1607 		}
1608 
1609 		ttm_dma->dma_address[i] = addr;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static void
1615 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1616 {
1617 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1618 	struct nouveau_drm *drm;
1619 	struct device *dev;
1620 	unsigned i;
1621 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1622 
1623 	if (slave)
1624 		return;
1625 
1626 	drm = nouveau_bdev(ttm->bdev);
1627 	dev = drm->dev->dev;
1628 
1629 #if IS_ENABLED(CONFIG_AGP)
1630 	if (drm->agp.bridge) {
1631 		ttm_agp_tt_unpopulate(ttm);
1632 		return;
1633 	}
1634 #endif
1635 
1636 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1637 	if (swiotlb_nr_tbl()) {
1638 		ttm_dma_unpopulate((void *)ttm, dev);
1639 		return;
1640 	}
1641 #endif
1642 
1643 	for (i = 0; i < ttm->num_pages; i++) {
1644 		if (ttm_dma->dma_address[i]) {
1645 			dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
1646 				       DMA_BIDIRECTIONAL);
1647 		}
1648 	}
1649 
1650 	ttm_pool_unpopulate(ttm);
1651 }
1652 
1653 void
1654 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1655 {
1656 	struct reservation_object *resv = nvbo->bo.resv;
1657 
1658 	if (exclusive)
1659 		reservation_object_add_excl_fence(resv, &fence->base);
1660 	else if (fence)
1661 		reservation_object_add_shared_fence(resv, &fence->base);
1662 }
1663 
1664 struct ttm_bo_driver nouveau_bo_driver = {
1665 	.ttm_tt_create = &nouveau_ttm_tt_create,
1666 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1667 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1668 	.invalidate_caches = nouveau_bo_invalidate_caches,
1669 	.init_mem_type = nouveau_bo_init_mem_type,
1670 	.eviction_valuable = ttm_bo_eviction_valuable,
1671 	.evict_flags = nouveau_bo_evict_flags,
1672 	.move_notify = nouveau_bo_move_ntfy,
1673 	.move = nouveau_bo_move,
1674 	.verify_access = nouveau_bo_verify_access,
1675 	.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1676 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1677 	.io_mem_free = &nouveau_ttm_io_mem_free,
1678 };
1679