1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 static int nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
48 			       struct ttm_resource *reg);
49 
50 /*
51  * NV10-NV40 tiling helpers
52  */
53 
54 static void
55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
56 			   u32 addr, u32 size, u32 pitch, u32 flags)
57 {
58 	struct nouveau_drm *drm = nouveau_drm(dev);
59 	int i = reg - drm->tile.reg;
60 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
61 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
62 
63 	nouveau_fence_unref(&reg->fence);
64 
65 	if (tile->pitch)
66 		nvkm_fb_tile_fini(fb, i, tile);
67 
68 	if (pitch)
69 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
70 
71 	nvkm_fb_tile_prog(fb, i, tile);
72 }
73 
74 static struct nouveau_drm_tile *
75 nv10_bo_get_tile_region(struct drm_device *dev, int i)
76 {
77 	struct nouveau_drm *drm = nouveau_drm(dev);
78 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
79 
80 	spin_lock(&drm->tile.lock);
81 
82 	if (!tile->used &&
83 	    (!tile->fence || nouveau_fence_done(tile->fence)))
84 		tile->used = true;
85 	else
86 		tile = NULL;
87 
88 	spin_unlock(&drm->tile.lock);
89 	return tile;
90 }
91 
92 static void
93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
94 			struct dma_fence *fence)
95 {
96 	struct nouveau_drm *drm = nouveau_drm(dev);
97 
98 	if (tile) {
99 		spin_lock(&drm->tile.lock);
100 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
101 		tile->used = false;
102 		spin_unlock(&drm->tile.lock);
103 	}
104 }
105 
106 static struct nouveau_drm_tile *
107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
108 		   u32 size, u32 pitch, u32 zeta)
109 {
110 	struct nouveau_drm *drm = nouveau_drm(dev);
111 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
112 	struct nouveau_drm_tile *tile, *found = NULL;
113 	int i;
114 
115 	for (i = 0; i < fb->tile.regions; i++) {
116 		tile = nv10_bo_get_tile_region(dev, i);
117 
118 		if (pitch && !found) {
119 			found = tile;
120 			continue;
121 
122 		} else if (tile && fb->tile.region[i].pitch) {
123 			/* Kill an unused tile region. */
124 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
125 		}
126 
127 		nv10_bo_put_tile_region(dev, tile, NULL);
128 	}
129 
130 	if (found)
131 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
132 	return found;
133 }
134 
135 static void
136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
137 {
138 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
139 	struct drm_device *dev = drm->dev;
140 	struct nouveau_bo *nvbo = nouveau_bo(bo);
141 
142 	WARN_ON(nvbo->bo.pin_count > 0);
143 	nouveau_bo_del_io_reserve_lru(bo);
144 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
145 
146 	/*
147 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
148 	 * initialized, so don't attempt to release it.
149 	 */
150 	if (bo->base.dev)
151 		drm_gem_object_release(&bo->base);
152 
153 	kfree(nvbo);
154 }
155 
156 static inline u64
157 roundup_64(u64 x, u32 y)
158 {
159 	x += y - 1;
160 	do_div(x, y);
161 	return x * y;
162 }
163 
164 static void
165 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
166 {
167 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
168 	struct nvif_device *device = &drm->client.device;
169 
170 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
171 		if (nvbo->mode) {
172 			if (device->info.chipset >= 0x40) {
173 				*align = 65536;
174 				*size = roundup_64(*size, 64 * nvbo->mode);
175 
176 			} else if (device->info.chipset >= 0x30) {
177 				*align = 32768;
178 				*size = roundup_64(*size, 64 * nvbo->mode);
179 
180 			} else if (device->info.chipset >= 0x20) {
181 				*align = 16384;
182 				*size = roundup_64(*size, 64 * nvbo->mode);
183 
184 			} else if (device->info.chipset >= 0x10) {
185 				*align = 16384;
186 				*size = roundup_64(*size, 32 * nvbo->mode);
187 			}
188 		}
189 	} else {
190 		*size = roundup_64(*size, (1 << nvbo->page));
191 		*align = max((1 <<  nvbo->page), *align);
192 	}
193 
194 	*size = roundup_64(*size, PAGE_SIZE);
195 }
196 
197 struct nouveau_bo *
198 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
199 		 u32 tile_mode, u32 tile_flags)
200 {
201 	struct nouveau_drm *drm = cli->drm;
202 	struct nouveau_bo *nvbo;
203 	struct nvif_mmu *mmu = &cli->mmu;
204 	struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
205 	int i, pi = -1;
206 
207 	if (!*size) {
208 		NV_WARN(drm, "skipped size %016llx\n", *size);
209 		return ERR_PTR(-EINVAL);
210 	}
211 
212 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
213 	if (!nvbo)
214 		return ERR_PTR(-ENOMEM);
215 	INIT_LIST_HEAD(&nvbo->head);
216 	INIT_LIST_HEAD(&nvbo->entry);
217 	INIT_LIST_HEAD(&nvbo->vma_list);
218 	nvbo->bo.bdev = &drm->ttm.bdev;
219 
220 	/* This is confusing, and doesn't actually mean we want an uncached
221 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
222 	 * into in nouveau_gem_new().
223 	 */
224 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
225 		/* Determine if we can get a cache-coherent map, forcing
226 		 * uncached mapping if we can't.
227 		 */
228 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
229 			nvbo->force_coherent = true;
230 	}
231 
232 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
233 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
234 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
235 			kfree(nvbo);
236 			return ERR_PTR(-EINVAL);
237 		}
238 
239 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
240 	} else
241 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
242 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
243 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
244 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
245 			kfree(nvbo);
246 			return ERR_PTR(-EINVAL);
247 		}
248 	} else {
249 		nvbo->zeta = (tile_flags & 0x00000007);
250 	}
251 	nvbo->mode = tile_mode;
252 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
253 
254 	/* Determine the desirable target GPU page size for the buffer. */
255 	for (i = 0; i < vmm->page_nr; i++) {
256 		/* Because we cannot currently allow VMM maps to fail
257 		 * during buffer migration, we need to determine page
258 		 * size for the buffer up-front, and pre-allocate its
259 		 * page tables.
260 		 *
261 		 * Skip page sizes that can't support needed domains.
262 		 */
263 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
264 		    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
265 			continue;
266 		if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
267 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
268 			continue;
269 
270 		/* Select this page size if it's the first that supports
271 		 * the potential memory domains, or when it's compatible
272 		 * with the requested compression settings.
273 		 */
274 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
275 			pi = i;
276 
277 		/* Stop once the buffer is larger than the current page size. */
278 		if (*size >= 1ULL << vmm->page[i].shift)
279 			break;
280 	}
281 
282 	if (WARN_ON(pi < 0))
283 		return ERR_PTR(-EINVAL);
284 
285 	/* Disable compression if suitable settings couldn't be found. */
286 	if (nvbo->comp && !vmm->page[pi].comp) {
287 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
288 			nvbo->kind = mmu->kind[nvbo->kind];
289 		nvbo->comp = 0;
290 	}
291 	nvbo->page = vmm->page[pi].shift;
292 
293 	nouveau_bo_fixup_align(nvbo, align, size);
294 
295 	return nvbo;
296 }
297 
298 int
299 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
300 		struct sg_table *sg, struct dma_resv *robj)
301 {
302 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
303 	size_t acc_size;
304 	int ret;
305 
306 	acc_size = ttm_bo_dma_acc_size(nvbo->bo.bdev, size, sizeof(*nvbo));
307 
308 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
309 	nouveau_bo_placement_set(nvbo, domain, 0);
310 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
311 
312 	ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
313 			  &nvbo->placement, align >> PAGE_SHIFT, false,
314 			  acc_size, sg, robj, nouveau_bo_del_ttm);
315 	if (ret) {
316 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
317 		return ret;
318 	}
319 
320 	return 0;
321 }
322 
323 int
324 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
325 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
326 	       struct sg_table *sg, struct dma_resv *robj,
327 	       struct nouveau_bo **pnvbo)
328 {
329 	struct nouveau_bo *nvbo;
330 	int ret;
331 
332 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
333 				tile_flags);
334 	if (IS_ERR(nvbo))
335 		return PTR_ERR(nvbo);
336 
337 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
338 	if (ret)
339 		return ret;
340 
341 	*pnvbo = nvbo;
342 	return 0;
343 }
344 
345 static void
346 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
347 {
348 	*n = 0;
349 
350 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
351 		pl[*n].mem_type = TTM_PL_VRAM;
352 		pl[*n].flags = 0;
353 		(*n)++;
354 	}
355 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
356 		pl[*n].mem_type = TTM_PL_TT;
357 		pl[*n].flags = 0;
358 		(*n)++;
359 	}
360 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
361 		pl[*n].mem_type = TTM_PL_SYSTEM;
362 		pl[(*n)++].flags = 0;
363 	}
364 }
365 
366 static void
367 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
368 {
369 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
370 	u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
371 	unsigned i, fpfn, lpfn;
372 
373 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
374 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
375 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
376 		/*
377 		 * Make sure that the color and depth buffers are handled
378 		 * by independent memory controller units. Up to a 9x
379 		 * speed up when alpha-blending and depth-test are enabled
380 		 * at the same time.
381 		 */
382 		if (nvbo->zeta) {
383 			fpfn = vram_pages / 2;
384 			lpfn = ~0;
385 		} else {
386 			fpfn = 0;
387 			lpfn = vram_pages / 2;
388 		}
389 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
390 			nvbo->placements[i].fpfn = fpfn;
391 			nvbo->placements[i].lpfn = lpfn;
392 		}
393 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
394 			nvbo->busy_placements[i].fpfn = fpfn;
395 			nvbo->busy_placements[i].lpfn = lpfn;
396 		}
397 	}
398 }
399 
400 void
401 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
402 			 uint32_t busy)
403 {
404 	struct ttm_placement *pl = &nvbo->placement;
405 
406 	pl->placement = nvbo->placements;
407 	set_placement_list(nvbo->placements, &pl->num_placement, domain);
408 
409 	pl->busy_placement = nvbo->busy_placements;
410 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
411 			   domain | busy);
412 
413 	set_placement_range(nvbo, domain);
414 }
415 
416 int
417 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
418 {
419 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
420 	struct ttm_buffer_object *bo = &nvbo->bo;
421 	bool force = false, evict = false;
422 	int ret;
423 
424 	ret = ttm_bo_reserve(bo, false, false, NULL);
425 	if (ret)
426 		return ret;
427 
428 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
429 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
430 		if (!nvbo->contig) {
431 			nvbo->contig = true;
432 			force = true;
433 			evict = true;
434 		}
435 	}
436 
437 	if (nvbo->bo.pin_count) {
438 		bool error = evict;
439 
440 		switch (bo->mem.mem_type) {
441 		case TTM_PL_VRAM:
442 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
443 			break;
444 		case TTM_PL_TT:
445 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
446 		default:
447 			break;
448 		}
449 
450 		if (error) {
451 			NV_ERROR(drm, "bo %p pinned elsewhere: "
452 				      "0x%08x vs 0x%08x\n", bo,
453 				 bo->mem.mem_type, domain);
454 			ret = -EBUSY;
455 		}
456 		ttm_bo_pin(&nvbo->bo);
457 		goto out;
458 	}
459 
460 	if (evict) {
461 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
462 		ret = nouveau_bo_validate(nvbo, false, false);
463 		if (ret)
464 			goto out;
465 	}
466 
467 	nouveau_bo_placement_set(nvbo, domain, 0);
468 	ret = nouveau_bo_validate(nvbo, false, false);
469 	if (ret)
470 		goto out;
471 
472 	ttm_bo_pin(&nvbo->bo);
473 
474 	switch (bo->mem.mem_type) {
475 	case TTM_PL_VRAM:
476 		drm->gem.vram_available -= bo->mem.size;
477 		break;
478 	case TTM_PL_TT:
479 		drm->gem.gart_available -= bo->mem.size;
480 		break;
481 	default:
482 		break;
483 	}
484 
485 out:
486 	if (force && ret)
487 		nvbo->contig = false;
488 	ttm_bo_unreserve(bo);
489 	return ret;
490 }
491 
492 int
493 nouveau_bo_unpin(struct nouveau_bo *nvbo)
494 {
495 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
496 	struct ttm_buffer_object *bo = &nvbo->bo;
497 	int ret;
498 
499 	ret = ttm_bo_reserve(bo, false, false, NULL);
500 	if (ret)
501 		return ret;
502 
503 	ttm_bo_unpin(&nvbo->bo);
504 	if (!nvbo->bo.pin_count) {
505 		switch (bo->mem.mem_type) {
506 		case TTM_PL_VRAM:
507 			drm->gem.vram_available += bo->mem.size;
508 			break;
509 		case TTM_PL_TT:
510 			drm->gem.gart_available += bo->mem.size;
511 			break;
512 		default:
513 			break;
514 		}
515 	}
516 
517 	ttm_bo_unreserve(bo);
518 	return 0;
519 }
520 
521 int
522 nouveau_bo_map(struct nouveau_bo *nvbo)
523 {
524 	int ret;
525 
526 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
527 	if (ret)
528 		return ret;
529 
530 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
531 
532 	ttm_bo_unreserve(&nvbo->bo);
533 	return ret;
534 }
535 
536 void
537 nouveau_bo_unmap(struct nouveau_bo *nvbo)
538 {
539 	if (!nvbo)
540 		return;
541 
542 	ttm_bo_kunmap(&nvbo->kmap);
543 }
544 
545 void
546 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
547 {
548 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
549 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
550 	int i;
551 
552 	if (!ttm_dma)
553 		return;
554 
555 	/* Don't waste time looping if the object is coherent */
556 	if (nvbo->force_coherent)
557 		return;
558 
559 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
560 		dma_sync_single_for_device(drm->dev->dev,
561 					   ttm_dma->dma_address[i],
562 					   PAGE_SIZE, DMA_TO_DEVICE);
563 }
564 
565 void
566 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
567 {
568 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
569 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
570 	int i;
571 
572 	if (!ttm_dma)
573 		return;
574 
575 	/* Don't waste time looping if the object is coherent */
576 	if (nvbo->force_coherent)
577 		return;
578 
579 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
580 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
581 					PAGE_SIZE, DMA_FROM_DEVICE);
582 }
583 
584 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
585 {
586 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
587 	struct nouveau_bo *nvbo = nouveau_bo(bo);
588 
589 	mutex_lock(&drm->ttm.io_reserve_mutex);
590 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
591 	mutex_unlock(&drm->ttm.io_reserve_mutex);
592 }
593 
594 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
595 {
596 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
597 	struct nouveau_bo *nvbo = nouveau_bo(bo);
598 
599 	mutex_lock(&drm->ttm.io_reserve_mutex);
600 	list_del_init(&nvbo->io_reserve_lru);
601 	mutex_unlock(&drm->ttm.io_reserve_mutex);
602 }
603 
604 int
605 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
606 		    bool no_wait_gpu)
607 {
608 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
609 	int ret;
610 
611 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
612 	if (ret)
613 		return ret;
614 
615 	nouveau_bo_sync_for_device(nvbo);
616 
617 	return 0;
618 }
619 
620 void
621 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
622 {
623 	bool is_iomem;
624 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
625 
626 	mem += index;
627 
628 	if (is_iomem)
629 		iowrite16_native(val, (void __force __iomem *)mem);
630 	else
631 		*mem = val;
632 }
633 
634 u32
635 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
636 {
637 	bool is_iomem;
638 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
639 
640 	mem += index;
641 
642 	if (is_iomem)
643 		return ioread32_native((void __force __iomem *)mem);
644 	else
645 		return *mem;
646 }
647 
648 void
649 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
650 {
651 	bool is_iomem;
652 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
653 
654 	mem += index;
655 
656 	if (is_iomem)
657 		iowrite32_native(val, (void __force __iomem *)mem);
658 	else
659 		*mem = val;
660 }
661 
662 static struct ttm_tt *
663 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
664 {
665 #if IS_ENABLED(CONFIG_AGP)
666 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
667 
668 	if (drm->agp.bridge) {
669 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
670 	}
671 #endif
672 
673 	return nouveau_sgdma_create_ttm(bo, page_flags);
674 }
675 
676 static int
677 nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
678 		    struct ttm_resource *reg)
679 {
680 #if IS_ENABLED(CONFIG_AGP)
681 	struct nouveau_drm *drm = nouveau_bdev(bdev);
682 #endif
683 	if (!reg)
684 		return -EINVAL;
685 #if IS_ENABLED(CONFIG_AGP)
686 	if (drm->agp.bridge)
687 		return ttm_agp_bind(ttm, reg);
688 #endif
689 	return nouveau_sgdma_bind(bdev, ttm, reg);
690 }
691 
692 static void
693 nouveau_ttm_tt_unbind(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
694 {
695 #if IS_ENABLED(CONFIG_AGP)
696 	struct nouveau_drm *drm = nouveau_bdev(bdev);
697 
698 	if (drm->agp.bridge) {
699 		ttm_agp_unbind(ttm);
700 		return;
701 	}
702 #endif
703 	nouveau_sgdma_unbind(bdev, ttm);
704 }
705 
706 static void
707 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
708 {
709 	struct nouveau_bo *nvbo = nouveau_bo(bo);
710 
711 	switch (bo->mem.mem_type) {
712 	case TTM_PL_VRAM:
713 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
714 					 NOUVEAU_GEM_DOMAIN_CPU);
715 		break;
716 	default:
717 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
718 		break;
719 	}
720 
721 	*pl = nvbo->placement;
722 }
723 
724 static int
725 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
726 		     struct ttm_resource *reg)
727 {
728 	struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
729 	struct nouveau_mem *new_mem = nouveau_mem(reg);
730 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
731 	int ret;
732 
733 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
734 			   old_mem->mem.size, &old_mem->vma[0]);
735 	if (ret)
736 		return ret;
737 
738 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
739 			   new_mem->mem.size, &old_mem->vma[1]);
740 	if (ret)
741 		goto done;
742 
743 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
744 	if (ret)
745 		goto done;
746 
747 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
748 done:
749 	if (ret) {
750 		nvif_vmm_put(vmm, &old_mem->vma[1]);
751 		nvif_vmm_put(vmm, &old_mem->vma[0]);
752 	}
753 	return 0;
754 }
755 
756 static int
757 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
758 		     struct ttm_operation_ctx *ctx,
759 		     struct ttm_resource *new_reg)
760 {
761 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
762 	struct nouveau_channel *chan = drm->ttm.chan;
763 	struct nouveau_cli *cli = (void *)chan->user.client;
764 	struct nouveau_fence *fence;
765 	int ret;
766 
767 	/* create temporary vmas for the transfer and attach them to the
768 	 * old nvkm_mem node, these will get cleaned up after ttm has
769 	 * destroyed the ttm_resource
770 	 */
771 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
772 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
773 		if (ret)
774 			return ret;
775 	}
776 
777 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
778 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
779 	if (ret == 0) {
780 		ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
781 		if (ret == 0) {
782 			ret = nouveau_fence_new(chan, false, &fence);
783 			if (ret == 0) {
784 				ret = ttm_bo_move_accel_cleanup(bo,
785 								&fence->base,
786 								evict, false,
787 								new_reg);
788 				nouveau_fence_unref(&fence);
789 			}
790 		}
791 	}
792 	mutex_unlock(&cli->mutex);
793 	return ret;
794 }
795 
796 void
797 nouveau_bo_move_init(struct nouveau_drm *drm)
798 {
799 	static const struct _method_table {
800 		const char *name;
801 		int engine;
802 		s32 oclass;
803 		int (*exec)(struct nouveau_channel *,
804 			    struct ttm_buffer_object *,
805 			    struct ttm_resource *, struct ttm_resource *);
806 		int (*init)(struct nouveau_channel *, u32 handle);
807 	} _methods[] = {
808 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
809 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
810 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
811 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
812 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
813 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
814 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
815 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
816 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
817 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
818 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
819 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
820 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
821 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
822 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
823 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
824 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
825 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
826 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
827 		{},
828 	};
829 	const struct _method_table *mthd = _methods;
830 	const char *name = "CPU";
831 	int ret;
832 
833 	do {
834 		struct nouveau_channel *chan;
835 
836 		if (mthd->engine)
837 			chan = drm->cechan;
838 		else
839 			chan = drm->channel;
840 		if (chan == NULL)
841 			continue;
842 
843 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
844 				       mthd->oclass | (mthd->engine << 16),
845 				       mthd->oclass, NULL, 0,
846 				       &drm->ttm.copy);
847 		if (ret == 0) {
848 			ret = mthd->init(chan, drm->ttm.copy.handle);
849 			if (ret) {
850 				nvif_object_dtor(&drm->ttm.copy);
851 				continue;
852 			}
853 
854 			drm->ttm.move = mthd->exec;
855 			drm->ttm.chan = chan;
856 			name = mthd->name;
857 			break;
858 		}
859 	} while ((++mthd)->exec);
860 
861 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
862 }
863 
864 static int
865 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict,
866 		      struct ttm_operation_ctx *ctx,
867 		      struct ttm_resource *new_reg)
868 {
869 	struct ttm_place placement_memtype = {
870 		.fpfn = 0,
871 		.lpfn = 0,
872 		.mem_type = TTM_PL_TT,
873 		.flags = 0
874 	};
875 	struct ttm_placement placement;
876 	struct ttm_resource tmp_reg;
877 	int ret;
878 
879 	placement.num_placement = placement.num_busy_placement = 1;
880 	placement.placement = placement.busy_placement = &placement_memtype;
881 
882 	tmp_reg = *new_reg;
883 	tmp_reg.mm_node = NULL;
884 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, ctx);
885 	if (ret)
886 		return ret;
887 
888 	ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
889 	if (ret)
890 		goto out;
891 
892 	ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, &tmp_reg);
893 	if (ret)
894 		goto out;
895 
896 	ret = nouveau_bo_move_m2mf(bo, true, ctx, &tmp_reg);
897 	if (ret)
898 		goto out;
899 
900 	ret = ttm_bo_move_ttm(bo, ctx, new_reg);
901 out:
902 	ttm_resource_free(bo, &tmp_reg);
903 	return ret;
904 }
905 
906 static int
907 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict,
908 		      struct ttm_operation_ctx *ctx,
909 		      struct ttm_resource *new_reg)
910 {
911 	struct ttm_place placement_memtype = {
912 		.fpfn = 0,
913 		.lpfn = 0,
914 		.mem_type = TTM_PL_TT,
915 		.flags = 0
916 	};
917 	struct ttm_placement placement;
918 	struct ttm_resource tmp_reg;
919 	int ret;
920 
921 	placement.num_placement = placement.num_busy_placement = 1;
922 	placement.placement = placement.busy_placement = &placement_memtype;
923 
924 	tmp_reg = *new_reg;
925 	tmp_reg.mm_node = NULL;
926 	ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, ctx);
927 	if (ret)
928 		return ret;
929 
930 	ret = ttm_bo_move_ttm(bo, ctx, &tmp_reg);
931 	if (ret)
932 		goto out;
933 
934 	ret = nouveau_bo_move_m2mf(bo, true, ctx, new_reg);
935 	if (ret)
936 		goto out;
937 
938 out:
939 	ttm_resource_free(bo, &tmp_reg);
940 	return ret;
941 }
942 
943 static void
944 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
945 		     struct ttm_resource *new_reg)
946 {
947 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
948 	struct nouveau_bo *nvbo = nouveau_bo(bo);
949 	struct nouveau_vma *vma;
950 
951 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
952 	if (bo->destroy != nouveau_bo_del_ttm)
953 		return;
954 
955 	nouveau_bo_del_io_reserve_lru(bo);
956 
957 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
958 	    mem->mem.page == nvbo->page) {
959 		list_for_each_entry(vma, &nvbo->vma_list, head) {
960 			nouveau_vma_map(vma, mem);
961 		}
962 	} else {
963 		list_for_each_entry(vma, &nvbo->vma_list, head) {
964 			WARN_ON(ttm_bo_wait(bo, false, false));
965 			nouveau_vma_unmap(vma);
966 		}
967 	}
968 
969 	if (new_reg) {
970 		if (new_reg->mm_node)
971 			nvbo->offset = (new_reg->start << PAGE_SHIFT);
972 		else
973 			nvbo->offset = 0;
974 	}
975 
976 }
977 
978 static int
979 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
980 		   struct nouveau_drm_tile **new_tile)
981 {
982 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
983 	struct drm_device *dev = drm->dev;
984 	struct nouveau_bo *nvbo = nouveau_bo(bo);
985 	u64 offset = new_reg->start << PAGE_SHIFT;
986 
987 	*new_tile = NULL;
988 	if (new_reg->mem_type != TTM_PL_VRAM)
989 		return 0;
990 
991 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
992 		*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
993 					       nvbo->mode, nvbo->zeta);
994 	}
995 
996 	return 0;
997 }
998 
999 static void
1000 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1001 		      struct nouveau_drm_tile *new_tile,
1002 		      struct nouveau_drm_tile **old_tile)
1003 {
1004 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1005 	struct drm_device *dev = drm->dev;
1006 	struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
1007 
1008 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1009 	*old_tile = new_tile;
1010 }
1011 
1012 static int
1013 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1014 		struct ttm_operation_ctx *ctx,
1015 		struct ttm_resource *new_reg)
1016 {
1017 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1018 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1019 	struct ttm_resource *old_reg = &bo->mem;
1020 	struct nouveau_drm_tile *new_tile = NULL;
1021 	int ret = 0;
1022 
1023 	ret = ttm_bo_wait_ctx(bo, ctx);
1024 	if (ret)
1025 		return ret;
1026 
1027 	if (nvbo->bo.pin_count)
1028 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1029 
1030 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1031 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 
1036 	/* Fake bo copy. */
1037 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1038 		ttm_bo_move_null(bo, new_reg);
1039 		goto out;
1040 	}
1041 
1042 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
1043 	    new_reg->mem_type == TTM_PL_TT) {
1044 		ttm_bo_move_null(bo, new_reg);
1045 		goto out;
1046 	}
1047 
1048 	if (old_reg->mem_type == TTM_PL_TT &&
1049 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1050 		ret = ttm_bo_move_ttm(bo, ctx, new_reg);
1051 		goto out;
1052 	}
1053 
1054 	/* Hardware assisted copy. */
1055 	if (drm->ttm.move) {
1056 		if (new_reg->mem_type == TTM_PL_SYSTEM)
1057 			ret = nouveau_bo_move_flipd(bo, evict, ctx,
1058 						    new_reg);
1059 		else if (old_reg->mem_type == TTM_PL_SYSTEM)
1060 			ret = nouveau_bo_move_flips(bo, evict, ctx,
1061 						    new_reg);
1062 		else
1063 			ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1064 						   new_reg);
1065 		if (!ret)
1066 			goto out;
1067 	}
1068 
1069 	/* Fallback to software copy. */
1070 	ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1071 
1072 out:
1073 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1074 		if (ret)
1075 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1076 		else
1077 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1078 	}
1079 
1080 	return ret;
1081 }
1082 
1083 static int
1084 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1085 {
1086 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1087 
1088 	return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
1089 					  filp->private_data);
1090 }
1091 
1092 static void
1093 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1094 			       struct ttm_resource *reg)
1095 {
1096 	struct nouveau_mem *mem = nouveau_mem(reg);
1097 
1098 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1099 		switch (reg->mem_type) {
1100 		case TTM_PL_TT:
1101 			if (mem->kind)
1102 				nvif_object_unmap_handle(&mem->mem.object);
1103 			break;
1104 		case TTM_PL_VRAM:
1105 			nvif_object_unmap_handle(&mem->mem.object);
1106 			break;
1107 		default:
1108 			break;
1109 		}
1110 	}
1111 }
1112 
1113 static int
1114 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *reg)
1115 {
1116 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1117 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1118 	struct nouveau_mem *mem = nouveau_mem(reg);
1119 	struct nvif_mmu *mmu = &drm->client.mmu;
1120 	const u8 type = mmu->type[drm->ttm.type_vram].type;
1121 	int ret;
1122 
1123 	mutex_lock(&drm->ttm.io_reserve_mutex);
1124 retry:
1125 	switch (reg->mem_type) {
1126 	case TTM_PL_SYSTEM:
1127 		/* System memory */
1128 		ret = 0;
1129 		goto out;
1130 	case TTM_PL_TT:
1131 #if IS_ENABLED(CONFIG_AGP)
1132 		if (drm->agp.bridge) {
1133 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1134 				drm->agp.base;
1135 			reg->bus.is_iomem = !drm->agp.cma;
1136 			reg->bus.caching = ttm_write_combined;
1137 		}
1138 #endif
1139 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1140 		    !mem->kind) {
1141 			/* untiled */
1142 			ret = 0;
1143 			break;
1144 		}
1145 		fallthrough;	/* tiled memory */
1146 	case TTM_PL_VRAM:
1147 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1148 			device->func->resource_addr(device, 1);
1149 		reg->bus.is_iomem = true;
1150 
1151 		/* Some BARs do not support being ioremapped WC */
1152 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1153 		    type & NVIF_MEM_UNCACHED)
1154 			reg->bus.caching = ttm_uncached;
1155 		else
1156 			reg->bus.caching = ttm_write_combined;
1157 
1158 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1159 			union {
1160 				struct nv50_mem_map_v0 nv50;
1161 				struct gf100_mem_map_v0 gf100;
1162 			} args;
1163 			u64 handle, length;
1164 			u32 argc = 0;
1165 
1166 			switch (mem->mem.object.oclass) {
1167 			case NVIF_CLASS_MEM_NV50:
1168 				args.nv50.version = 0;
1169 				args.nv50.ro = 0;
1170 				args.nv50.kind = mem->kind;
1171 				args.nv50.comp = mem->comp;
1172 				argc = sizeof(args.nv50);
1173 				break;
1174 			case NVIF_CLASS_MEM_GF100:
1175 				args.gf100.version = 0;
1176 				args.gf100.ro = 0;
1177 				args.gf100.kind = mem->kind;
1178 				argc = sizeof(args.gf100);
1179 				break;
1180 			default:
1181 				WARN_ON(1);
1182 				break;
1183 			}
1184 
1185 			ret = nvif_object_map_handle(&mem->mem.object,
1186 						     &args, argc,
1187 						     &handle, &length);
1188 			if (ret != 1) {
1189 				if (WARN_ON(ret == 0))
1190 					ret = -EINVAL;
1191 				goto out;
1192 			}
1193 
1194 			reg->bus.offset = handle;
1195 			ret = 0;
1196 		}
1197 		break;
1198 	default:
1199 		ret = -EINVAL;
1200 	}
1201 
1202 out:
1203 	if (ret == -ENOSPC) {
1204 		struct nouveau_bo *nvbo;
1205 
1206 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1207 						typeof(*nvbo),
1208 						io_reserve_lru);
1209 		if (nvbo) {
1210 			list_del_init(&nvbo->io_reserve_lru);
1211 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1212 					   bdev->dev_mapping);
1213 			nouveau_ttm_io_mem_free_locked(drm, &nvbo->bo.mem);
1214 			goto retry;
1215 		}
1216 
1217 	}
1218 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1219 	return ret;
1220 }
1221 
1222 static void
1223 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_resource *reg)
1224 {
1225 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1226 
1227 	mutex_lock(&drm->ttm.io_reserve_mutex);
1228 	nouveau_ttm_io_mem_free_locked(drm, reg);
1229 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1230 }
1231 
1232 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1233 {
1234 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1235 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1236 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1237 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1238 	int i, ret;
1239 
1240 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1241 	 * nothing to do here.
1242 	 */
1243 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1244 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1245 		    !nvbo->kind)
1246 			return 0;
1247 
1248 		if (bo->mem.mem_type != TTM_PL_SYSTEM)
1249 			return 0;
1250 
1251 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1252 
1253 	} else {
1254 		/* make sure bo is in mappable vram */
1255 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1256 		    bo->mem.start + bo->mem.num_pages < mappable)
1257 			return 0;
1258 
1259 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1260 			nvbo->placements[i].fpfn = 0;
1261 			nvbo->placements[i].lpfn = mappable;
1262 		}
1263 
1264 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1265 			nvbo->busy_placements[i].fpfn = 0;
1266 			nvbo->busy_placements[i].lpfn = mappable;
1267 		}
1268 
1269 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1270 	}
1271 
1272 	ret = nouveau_bo_validate(nvbo, false, false);
1273 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1274 		return VM_FAULT_NOPAGE;
1275 	else if (unlikely(ret))
1276 		return VM_FAULT_SIGBUS;
1277 
1278 	ttm_bo_move_to_lru_tail_unlocked(bo);
1279 	return 0;
1280 }
1281 
1282 static int
1283 nouveau_ttm_tt_populate(struct ttm_bo_device *bdev,
1284 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1285 {
1286 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1287 	struct nouveau_drm *drm;
1288 	struct device *dev;
1289 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1290 
1291 	if (ttm_tt_is_populated(ttm))
1292 		return 0;
1293 
1294 	if (slave && ttm->sg) {
1295 		/* make userspace faulting work */
1296 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1297 						 ttm_dma->dma_address, ttm->num_pages);
1298 		ttm_tt_set_populated(ttm);
1299 		return 0;
1300 	}
1301 
1302 	drm = nouveau_bdev(bdev);
1303 	dev = drm->dev->dev;
1304 
1305 #if IS_ENABLED(CONFIG_AGP)
1306 	if (drm->agp.bridge) {
1307 		return ttm_pool_populate(ttm, ctx);
1308 	}
1309 #endif
1310 
1311 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1312 	if (swiotlb_nr_tbl()) {
1313 		return ttm_dma_populate((void *)ttm, dev, ctx);
1314 	}
1315 #endif
1316 	return ttm_populate_and_map_pages(dev, ttm_dma, ctx);
1317 }
1318 
1319 static void
1320 nouveau_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
1321 			  struct ttm_tt *ttm)
1322 {
1323 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1324 	struct nouveau_drm *drm;
1325 	struct device *dev;
1326 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1327 
1328 	if (slave)
1329 		return;
1330 
1331 	drm = nouveau_bdev(bdev);
1332 	dev = drm->dev->dev;
1333 
1334 #if IS_ENABLED(CONFIG_AGP)
1335 	if (drm->agp.bridge) {
1336 		ttm_pool_unpopulate(ttm);
1337 		return;
1338 	}
1339 #endif
1340 
1341 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1342 	if (swiotlb_nr_tbl()) {
1343 		ttm_dma_unpopulate((void *)ttm, dev);
1344 		return;
1345 	}
1346 #endif
1347 
1348 	ttm_unmap_and_unpopulate_pages(dev, ttm_dma);
1349 }
1350 
1351 static void
1352 nouveau_ttm_tt_destroy(struct ttm_bo_device *bdev,
1353 		       struct ttm_tt *ttm)
1354 {
1355 #if IS_ENABLED(CONFIG_AGP)
1356 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1357 	if (drm->agp.bridge) {
1358 		ttm_agp_unbind(ttm);
1359 		ttm_tt_destroy_common(bdev, ttm);
1360 		ttm_agp_destroy(ttm);
1361 		return;
1362 	}
1363 #endif
1364 	nouveau_sgdma_destroy(bdev, ttm);
1365 }
1366 
1367 void
1368 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1369 {
1370 	struct dma_resv *resv = nvbo->bo.base.resv;
1371 
1372 	if (exclusive)
1373 		dma_resv_add_excl_fence(resv, &fence->base);
1374 	else if (fence)
1375 		dma_resv_add_shared_fence(resv, &fence->base);
1376 }
1377 
1378 struct ttm_bo_driver nouveau_bo_driver = {
1379 	.ttm_tt_create = &nouveau_ttm_tt_create,
1380 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1381 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1382 	.ttm_tt_bind = &nouveau_ttm_tt_bind,
1383 	.ttm_tt_unbind = &nouveau_ttm_tt_unbind,
1384 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1385 	.eviction_valuable = ttm_bo_eviction_valuable,
1386 	.evict_flags = nouveau_bo_evict_flags,
1387 	.move_notify = nouveau_bo_move_ntfy,
1388 	.move = nouveau_bo_move,
1389 	.verify_access = nouveau_bo_verify_access,
1390 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1391 	.io_mem_free = &nouveau_ttm_io_mem_free,
1392 };
1393