1 /* 2 * Copyright 2007 Dave Airlied 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Authors: Dave Airlied <airlied@linux.ie> 26 * Ben Skeggs <darktama@iinet.net.au> 27 * Jeremy Kolb <jkolb@brandeis.edu> 28 */ 29 30 #include <linux/dma-mapping.h> 31 #include <drm/ttm/ttm_tt.h> 32 33 #include "nouveau_drv.h" 34 #include "nouveau_chan.h" 35 #include "nouveau_fence.h" 36 37 #include "nouveau_bo.h" 38 #include "nouveau_ttm.h" 39 #include "nouveau_gem.h" 40 #include "nouveau_mem.h" 41 #include "nouveau_vmm.h" 42 43 #include <nvif/class.h> 44 #include <nvif/if500b.h> 45 #include <nvif/if900b.h> 46 47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 48 struct ttm_resource *reg); 49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); 50 51 /* 52 * NV10-NV40 tiling helpers 53 */ 54 55 static void 56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, 57 u32 addr, u32 size, u32 pitch, u32 flags) 58 { 59 struct nouveau_drm *drm = nouveau_drm(dev); 60 int i = reg - drm->tile.reg; 61 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 62 struct nvkm_fb_tile *tile = &fb->tile.region[i]; 63 64 nouveau_fence_unref(®->fence); 65 66 if (tile->pitch) 67 nvkm_fb_tile_fini(fb, i, tile); 68 69 if (pitch) 70 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); 71 72 nvkm_fb_tile_prog(fb, i, tile); 73 } 74 75 static struct nouveau_drm_tile * 76 nv10_bo_get_tile_region(struct drm_device *dev, int i) 77 { 78 struct nouveau_drm *drm = nouveau_drm(dev); 79 struct nouveau_drm_tile *tile = &drm->tile.reg[i]; 80 81 spin_lock(&drm->tile.lock); 82 83 if (!tile->used && 84 (!tile->fence || nouveau_fence_done(tile->fence))) 85 tile->used = true; 86 else 87 tile = NULL; 88 89 spin_unlock(&drm->tile.lock); 90 return tile; 91 } 92 93 static void 94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, 95 struct dma_fence *fence) 96 { 97 struct nouveau_drm *drm = nouveau_drm(dev); 98 99 if (tile) { 100 spin_lock(&drm->tile.lock); 101 tile->fence = (struct nouveau_fence *)dma_fence_get(fence); 102 tile->used = false; 103 spin_unlock(&drm->tile.lock); 104 } 105 } 106 107 static struct nouveau_drm_tile * 108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr, 109 u32 size, u32 pitch, u32 zeta) 110 { 111 struct nouveau_drm *drm = nouveau_drm(dev); 112 struct nvkm_fb *fb = nvxx_fb(&drm->client.device); 113 struct nouveau_drm_tile *tile, *found = NULL; 114 int i; 115 116 for (i = 0; i < fb->tile.regions; i++) { 117 tile = nv10_bo_get_tile_region(dev, i); 118 119 if (pitch && !found) { 120 found = tile; 121 continue; 122 123 } else if (tile && fb->tile.region[i].pitch) { 124 /* Kill an unused tile region. */ 125 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); 126 } 127 128 nv10_bo_put_tile_region(dev, tile, NULL); 129 } 130 131 if (found) 132 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); 133 return found; 134 } 135 136 static void 137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo) 138 { 139 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 140 struct drm_device *dev = drm->dev; 141 struct nouveau_bo *nvbo = nouveau_bo(bo); 142 143 WARN_ON(nvbo->bo.pin_count > 0); 144 nouveau_bo_del_io_reserve_lru(bo); 145 nv10_bo_put_tile_region(dev, nvbo->tile, NULL); 146 147 /* 148 * If nouveau_bo_new() allocated this buffer, the GEM object was never 149 * initialized, so don't attempt to release it. 150 */ 151 if (bo->base.dev) 152 drm_gem_object_release(&bo->base); 153 else 154 dma_resv_fini(&bo->base._resv); 155 156 kfree(nvbo); 157 } 158 159 static inline u64 160 roundup_64(u64 x, u32 y) 161 { 162 x += y - 1; 163 do_div(x, y); 164 return x * y; 165 } 166 167 static void 168 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size) 169 { 170 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 171 struct nvif_device *device = &drm->client.device; 172 173 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { 174 if (nvbo->mode) { 175 if (device->info.chipset >= 0x40) { 176 *align = 65536; 177 *size = roundup_64(*size, 64 * nvbo->mode); 178 179 } else if (device->info.chipset >= 0x30) { 180 *align = 32768; 181 *size = roundup_64(*size, 64 * nvbo->mode); 182 183 } else if (device->info.chipset >= 0x20) { 184 *align = 16384; 185 *size = roundup_64(*size, 64 * nvbo->mode); 186 187 } else if (device->info.chipset >= 0x10) { 188 *align = 16384; 189 *size = roundup_64(*size, 32 * nvbo->mode); 190 } 191 } 192 } else { 193 *size = roundup_64(*size, (1 << nvbo->page)); 194 *align = max((1 << nvbo->page), *align); 195 } 196 197 *size = roundup_64(*size, PAGE_SIZE); 198 } 199 200 struct nouveau_bo * 201 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain, 202 u32 tile_mode, u32 tile_flags, bool internal) 203 { 204 struct nouveau_drm *drm = cli->drm; 205 struct nouveau_bo *nvbo; 206 struct nvif_mmu *mmu = &cli->mmu; 207 struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm; 208 int i, pi = -1; 209 210 if (!*size) { 211 NV_WARN(drm, "skipped size %016llx\n", *size); 212 return ERR_PTR(-EINVAL); 213 } 214 215 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); 216 if (!nvbo) 217 return ERR_PTR(-ENOMEM); 218 219 INIT_LIST_HEAD(&nvbo->head); 220 INIT_LIST_HEAD(&nvbo->entry); 221 INIT_LIST_HEAD(&nvbo->vma_list); 222 nvbo->bo.bdev = &drm->ttm.bdev; 223 224 /* This is confusing, and doesn't actually mean we want an uncached 225 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated 226 * into in nouveau_gem_new(). 227 */ 228 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) { 229 /* Determine if we can get a cache-coherent map, forcing 230 * uncached mapping if we can't. 231 */ 232 if (!nouveau_drm_use_coherent_gpu_mapping(drm)) 233 nvbo->force_coherent = true; 234 } 235 236 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); 237 238 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { 239 nvbo->kind = (tile_flags & 0x0000ff00) >> 8; 240 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 241 kfree(nvbo); 242 return ERR_PTR(-EINVAL); 243 } 244 245 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; 246 } else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 247 nvbo->kind = (tile_flags & 0x00007f00) >> 8; 248 nvbo->comp = (tile_flags & 0x00030000) >> 16; 249 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 250 kfree(nvbo); 251 return ERR_PTR(-EINVAL); 252 } 253 } else { 254 nvbo->zeta = (tile_flags & 0x00000007); 255 } 256 nvbo->mode = tile_mode; 257 258 if (!nouveau_cli_uvmm(cli) || internal) { 259 /* Determine the desirable target GPU page size for the buffer. */ 260 for (i = 0; i < vmm->page_nr; i++) { 261 /* Because we cannot currently allow VMM maps to fail 262 * during buffer migration, we need to determine page 263 * size for the buffer up-front, and pre-allocate its 264 * page tables. 265 * 266 * Skip page sizes that can't support needed domains. 267 */ 268 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && 269 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 270 continue; 271 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 272 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 273 continue; 274 275 /* Select this page size if it's the first that supports 276 * the potential memory domains, or when it's compatible 277 * with the requested compression settings. 278 */ 279 if (pi < 0 || !nvbo->comp || vmm->page[i].comp) 280 pi = i; 281 282 /* Stop once the buffer is larger than the current page size. */ 283 if (*size >= 1ULL << vmm->page[i].shift) 284 break; 285 } 286 287 if (WARN_ON(pi < 0)) { 288 kfree(nvbo); 289 return ERR_PTR(-EINVAL); 290 } 291 292 /* Disable compression if suitable settings couldn't be found. */ 293 if (nvbo->comp && !vmm->page[pi].comp) { 294 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) 295 nvbo->kind = mmu->kind[nvbo->kind]; 296 nvbo->comp = 0; 297 } 298 nvbo->page = vmm->page[pi].shift; 299 } else { 300 /* Determine the desirable target GPU page size for the buffer. */ 301 for (i = 0; i < vmm->page_nr; i++) { 302 /* Because we cannot currently allow VMM maps to fail 303 * during buffer migration, we need to determine page 304 * size for the buffer up-front, and pre-allocate its 305 * page tables. 306 * 307 * Skip page sizes that can't support needed domains. 308 */ 309 if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 310 continue; 311 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 312 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 313 continue; 314 315 /* pick the last one as it will be smallest. */ 316 pi = i; 317 318 /* Stop once the buffer is larger than the current page size. */ 319 if (*size >= 1ULL << vmm->page[i].shift) 320 break; 321 } 322 if (WARN_ON(pi < 0)) { 323 kfree(nvbo); 324 return ERR_PTR(-EINVAL); 325 } 326 nvbo->page = vmm->page[pi].shift; 327 } 328 329 nouveau_bo_fixup_align(nvbo, align, size); 330 331 return nvbo; 332 } 333 334 int 335 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain, 336 struct sg_table *sg, struct dma_resv *robj) 337 { 338 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device; 339 int ret; 340 struct ttm_operation_ctx ctx = { 341 .interruptible = false, 342 .no_wait_gpu = false, 343 .resv = robj, 344 }; 345 346 nouveau_bo_placement_set(nvbo, domain, 0); 347 INIT_LIST_HEAD(&nvbo->io_reserve_lru); 348 349 ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type, 350 &nvbo->placement, align >> PAGE_SHIFT, &ctx, 351 sg, robj, nouveau_bo_del_ttm); 352 if (ret) { 353 /* ttm will call nouveau_bo_del_ttm if it fails.. */ 354 return ret; 355 } 356 357 if (!robj) 358 ttm_bo_unreserve(&nvbo->bo); 359 360 return 0; 361 } 362 363 int 364 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, 365 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags, 366 struct sg_table *sg, struct dma_resv *robj, 367 struct nouveau_bo **pnvbo) 368 { 369 struct nouveau_bo *nvbo; 370 int ret; 371 372 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode, 373 tile_flags, true); 374 if (IS_ERR(nvbo)) 375 return PTR_ERR(nvbo); 376 377 nvbo->bo.base.size = size; 378 dma_resv_init(&nvbo->bo.base._resv); 379 drm_vma_node_reset(&nvbo->bo.base.vma_node); 380 381 /* This must be called before ttm_bo_init_reserved(). Subsequent 382 * bo_move() callbacks might already iterate the GEMs GPUVA list. 383 */ 384 drm_gem_gpuva_init(&nvbo->bo.base); 385 386 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj); 387 if (ret) 388 return ret; 389 390 *pnvbo = nvbo; 391 return 0; 392 } 393 394 static void 395 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain) 396 { 397 *n = 0; 398 399 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) { 400 pl[*n].mem_type = TTM_PL_VRAM; 401 pl[*n].flags = 0; 402 (*n)++; 403 } 404 if (domain & NOUVEAU_GEM_DOMAIN_GART) { 405 pl[*n].mem_type = TTM_PL_TT; 406 pl[*n].flags = 0; 407 (*n)++; 408 } 409 if (domain & NOUVEAU_GEM_DOMAIN_CPU) { 410 pl[*n].mem_type = TTM_PL_SYSTEM; 411 pl[(*n)++].flags = 0; 412 } 413 } 414 415 static void 416 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain) 417 { 418 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 419 u64 vram_size = drm->client.device.info.ram_size; 420 unsigned i, fpfn, lpfn; 421 422 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && 423 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) && 424 nvbo->bo.base.size < vram_size / 4) { 425 /* 426 * Make sure that the color and depth buffers are handled 427 * by independent memory controller units. Up to a 9x 428 * speed up when alpha-blending and depth-test are enabled 429 * at the same time. 430 */ 431 if (nvbo->zeta) { 432 fpfn = (vram_size / 2) >> PAGE_SHIFT; 433 lpfn = ~0; 434 } else { 435 fpfn = 0; 436 lpfn = (vram_size / 2) >> PAGE_SHIFT; 437 } 438 for (i = 0; i < nvbo->placement.num_placement; ++i) { 439 nvbo->placements[i].fpfn = fpfn; 440 nvbo->placements[i].lpfn = lpfn; 441 } 442 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 443 nvbo->busy_placements[i].fpfn = fpfn; 444 nvbo->busy_placements[i].lpfn = lpfn; 445 } 446 } 447 } 448 449 void 450 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain, 451 uint32_t busy) 452 { 453 struct ttm_placement *pl = &nvbo->placement; 454 455 pl->placement = nvbo->placements; 456 set_placement_list(nvbo->placements, &pl->num_placement, domain); 457 458 pl->busy_placement = nvbo->busy_placements; 459 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, 460 domain | busy); 461 462 set_placement_range(nvbo, domain); 463 } 464 465 int 466 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 467 { 468 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 469 struct ttm_buffer_object *bo = &nvbo->bo; 470 bool force = false, evict = false; 471 int ret; 472 473 ret = ttm_bo_reserve(bo, false, false, NULL); 474 if (ret) 475 return ret; 476 477 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 478 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) { 479 if (!nvbo->contig) { 480 nvbo->contig = true; 481 force = true; 482 evict = true; 483 } 484 } 485 486 if (nvbo->bo.pin_count) { 487 bool error = evict; 488 489 switch (bo->resource->mem_type) { 490 case TTM_PL_VRAM: 491 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM); 492 break; 493 case TTM_PL_TT: 494 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART); 495 break; 496 default: 497 break; 498 } 499 500 if (error) { 501 NV_ERROR(drm, "bo %p pinned elsewhere: " 502 "0x%08x vs 0x%08x\n", bo, 503 bo->resource->mem_type, domain); 504 ret = -EBUSY; 505 } 506 ttm_bo_pin(&nvbo->bo); 507 goto out; 508 } 509 510 if (evict) { 511 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 512 ret = nouveau_bo_validate(nvbo, false, false); 513 if (ret) 514 goto out; 515 } 516 517 nouveau_bo_placement_set(nvbo, domain, 0); 518 ret = nouveau_bo_validate(nvbo, false, false); 519 if (ret) 520 goto out; 521 522 ttm_bo_pin(&nvbo->bo); 523 524 switch (bo->resource->mem_type) { 525 case TTM_PL_VRAM: 526 drm->gem.vram_available -= bo->base.size; 527 break; 528 case TTM_PL_TT: 529 drm->gem.gart_available -= bo->base.size; 530 break; 531 default: 532 break; 533 } 534 535 out: 536 if (force && ret) 537 nvbo->contig = false; 538 ttm_bo_unreserve(bo); 539 return ret; 540 } 541 542 int 543 nouveau_bo_unpin(struct nouveau_bo *nvbo) 544 { 545 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 546 struct ttm_buffer_object *bo = &nvbo->bo; 547 int ret; 548 549 ret = ttm_bo_reserve(bo, false, false, NULL); 550 if (ret) 551 return ret; 552 553 ttm_bo_unpin(&nvbo->bo); 554 if (!nvbo->bo.pin_count) { 555 switch (bo->resource->mem_type) { 556 case TTM_PL_VRAM: 557 drm->gem.vram_available += bo->base.size; 558 break; 559 case TTM_PL_TT: 560 drm->gem.gart_available += bo->base.size; 561 break; 562 default: 563 break; 564 } 565 } 566 567 ttm_bo_unreserve(bo); 568 return 0; 569 } 570 571 int 572 nouveau_bo_map(struct nouveau_bo *nvbo) 573 { 574 int ret; 575 576 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); 577 if (ret) 578 return ret; 579 580 ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap); 581 582 ttm_bo_unreserve(&nvbo->bo); 583 return ret; 584 } 585 586 void 587 nouveau_bo_unmap(struct nouveau_bo *nvbo) 588 { 589 if (!nvbo) 590 return; 591 592 ttm_bo_kunmap(&nvbo->kmap); 593 } 594 595 void 596 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) 597 { 598 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 599 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 600 int i, j; 601 602 if (!ttm_dma || !ttm_dma->dma_address) 603 return; 604 if (!ttm_dma->pages) { 605 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 606 return; 607 } 608 609 /* Don't waste time looping if the object is coherent */ 610 if (nvbo->force_coherent) 611 return; 612 613 i = 0; 614 while (i < ttm_dma->num_pages) { 615 struct page *p = ttm_dma->pages[i]; 616 size_t num_pages = 1; 617 618 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 619 if (++p != ttm_dma->pages[j]) 620 break; 621 622 ++num_pages; 623 } 624 dma_sync_single_for_device(drm->dev->dev, 625 ttm_dma->dma_address[i], 626 num_pages * PAGE_SIZE, DMA_TO_DEVICE); 627 i += num_pages; 628 } 629 } 630 631 void 632 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) 633 { 634 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 635 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 636 int i, j; 637 638 if (!ttm_dma || !ttm_dma->dma_address) 639 return; 640 if (!ttm_dma->pages) { 641 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 642 return; 643 } 644 645 /* Don't waste time looping if the object is coherent */ 646 if (nvbo->force_coherent) 647 return; 648 649 i = 0; 650 while (i < ttm_dma->num_pages) { 651 struct page *p = ttm_dma->pages[i]; 652 size_t num_pages = 1; 653 654 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 655 if (++p != ttm_dma->pages[j]) 656 break; 657 658 ++num_pages; 659 } 660 661 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], 662 num_pages * PAGE_SIZE, DMA_FROM_DEVICE); 663 i += num_pages; 664 } 665 } 666 667 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo) 668 { 669 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 670 struct nouveau_bo *nvbo = nouveau_bo(bo); 671 672 mutex_lock(&drm->ttm.io_reserve_mutex); 673 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru); 674 mutex_unlock(&drm->ttm.io_reserve_mutex); 675 } 676 677 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo) 678 { 679 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 680 struct nouveau_bo *nvbo = nouveau_bo(bo); 681 682 mutex_lock(&drm->ttm.io_reserve_mutex); 683 list_del_init(&nvbo->io_reserve_lru); 684 mutex_unlock(&drm->ttm.io_reserve_mutex); 685 } 686 687 int 688 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, 689 bool no_wait_gpu) 690 { 691 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; 692 int ret; 693 694 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); 695 if (ret) 696 return ret; 697 698 nouveau_bo_sync_for_device(nvbo); 699 700 return 0; 701 } 702 703 void 704 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) 705 { 706 bool is_iomem; 707 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 708 709 mem += index; 710 711 if (is_iomem) 712 iowrite16_native(val, (void __force __iomem *)mem); 713 else 714 *mem = val; 715 } 716 717 u32 718 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) 719 { 720 bool is_iomem; 721 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 722 723 mem += index; 724 725 if (is_iomem) 726 return ioread32_native((void __force __iomem *)mem); 727 else 728 return *mem; 729 } 730 731 void 732 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) 733 { 734 bool is_iomem; 735 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 736 737 mem += index; 738 739 if (is_iomem) 740 iowrite32_native(val, (void __force __iomem *)mem); 741 else 742 *mem = val; 743 } 744 745 static struct ttm_tt * 746 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) 747 { 748 #if IS_ENABLED(CONFIG_AGP) 749 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 750 751 if (drm->agp.bridge) { 752 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); 753 } 754 #endif 755 756 return nouveau_sgdma_create_ttm(bo, page_flags); 757 } 758 759 static int 760 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 761 struct ttm_resource *reg) 762 { 763 #if IS_ENABLED(CONFIG_AGP) 764 struct nouveau_drm *drm = nouveau_bdev(bdev); 765 #endif 766 if (!reg) 767 return -EINVAL; 768 #if IS_ENABLED(CONFIG_AGP) 769 if (drm->agp.bridge) 770 return ttm_agp_bind(ttm, reg); 771 #endif 772 return nouveau_sgdma_bind(bdev, ttm, reg); 773 } 774 775 static void 776 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) 777 { 778 #if IS_ENABLED(CONFIG_AGP) 779 struct nouveau_drm *drm = nouveau_bdev(bdev); 780 781 if (drm->agp.bridge) { 782 ttm_agp_unbind(ttm); 783 return; 784 } 785 #endif 786 nouveau_sgdma_unbind(bdev, ttm); 787 } 788 789 static void 790 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) 791 { 792 struct nouveau_bo *nvbo = nouveau_bo(bo); 793 794 switch (bo->resource->mem_type) { 795 case TTM_PL_VRAM: 796 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 797 NOUVEAU_GEM_DOMAIN_CPU); 798 break; 799 default: 800 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0); 801 break; 802 } 803 804 *pl = nvbo->placement; 805 } 806 807 static int 808 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, 809 struct ttm_resource *reg) 810 { 811 struct nouveau_mem *old_mem = nouveau_mem(bo->resource); 812 struct nouveau_mem *new_mem = nouveau_mem(reg); 813 struct nvif_vmm *vmm = &drm->client.vmm.vmm; 814 int ret; 815 816 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, 817 old_mem->mem.size, &old_mem->vma[0]); 818 if (ret) 819 return ret; 820 821 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, 822 new_mem->mem.size, &old_mem->vma[1]); 823 if (ret) 824 goto done; 825 826 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); 827 if (ret) 828 goto done; 829 830 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); 831 done: 832 if (ret) { 833 nvif_vmm_put(vmm, &old_mem->vma[1]); 834 nvif_vmm_put(vmm, &old_mem->vma[0]); 835 } 836 return 0; 837 } 838 839 static int 840 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, 841 struct ttm_operation_ctx *ctx, 842 struct ttm_resource *new_reg) 843 { 844 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 845 struct nouveau_channel *chan = drm->ttm.chan; 846 struct nouveau_cli *cli = chan->cli; 847 struct nouveau_fence *fence; 848 int ret; 849 850 /* create temporary vmas for the transfer and attach them to the 851 * old nvkm_mem node, these will get cleaned up after ttm has 852 * destroyed the ttm_resource 853 */ 854 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 855 ret = nouveau_bo_move_prep(drm, bo, new_reg); 856 if (ret) 857 return ret; 858 } 859 860 if (drm_drv_uses_atomic_modeset(drm->dev)) 861 mutex_lock(&cli->mutex); 862 else 863 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); 864 865 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible); 866 if (ret) 867 goto out_unlock; 868 869 ret = drm->ttm.move(chan, bo, bo->resource, new_reg); 870 if (ret) 871 goto out_unlock; 872 873 ret = nouveau_fence_new(&fence, chan); 874 if (ret) 875 goto out_unlock; 876 877 /* TODO: figure out a better solution here 878 * 879 * wait on the fence here explicitly as going through 880 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it. 881 * 882 * Without this the operation can timeout and we'll fallback to a 883 * software copy, which might take several minutes to finish. 884 */ 885 nouveau_fence_wait(fence, false, false); 886 ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false, 887 new_reg); 888 nouveau_fence_unref(&fence); 889 890 out_unlock: 891 mutex_unlock(&cli->mutex); 892 return ret; 893 } 894 895 void 896 nouveau_bo_move_init(struct nouveau_drm *drm) 897 { 898 static const struct _method_table { 899 const char *name; 900 int engine; 901 s32 oclass; 902 int (*exec)(struct nouveau_channel *, 903 struct ttm_buffer_object *, 904 struct ttm_resource *, struct ttm_resource *); 905 int (*init)(struct nouveau_channel *, u32 handle); 906 } _methods[] = { 907 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init }, 908 { "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init }, 909 { "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init }, 910 { "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init }, 911 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, 912 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, 913 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, 914 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, 915 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, 916 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, 917 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, 918 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 919 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, 920 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 921 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, 922 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 923 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, 924 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, 925 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, 926 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, 927 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, 928 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, 929 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, 930 {}, 931 }; 932 const struct _method_table *mthd = _methods; 933 const char *name = "CPU"; 934 int ret; 935 936 do { 937 struct nouveau_channel *chan; 938 939 if (mthd->engine) 940 chan = drm->cechan; 941 else 942 chan = drm->channel; 943 if (chan == NULL) 944 continue; 945 946 ret = nvif_object_ctor(&chan->user, "ttmBoMove", 947 mthd->oclass | (mthd->engine << 16), 948 mthd->oclass, NULL, 0, 949 &drm->ttm.copy); 950 if (ret == 0) { 951 ret = mthd->init(chan, drm->ttm.copy.handle); 952 if (ret) { 953 nvif_object_dtor(&drm->ttm.copy); 954 continue; 955 } 956 957 drm->ttm.move = mthd->exec; 958 drm->ttm.chan = chan; 959 name = mthd->name; 960 break; 961 } 962 } while ((++mthd)->exec); 963 964 NV_INFO(drm, "MM: using %s for buffer copies\n", name); 965 } 966 967 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, 968 struct ttm_resource *new_reg) 969 { 970 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; 971 struct nouveau_bo *nvbo = nouveau_bo(bo); 972 struct nouveau_vma *vma; 973 long ret; 974 975 /* ttm can now (stupidly) pass the driver bos it didn't create... */ 976 if (bo->destroy != nouveau_bo_del_ttm) 977 return; 978 979 nouveau_bo_del_io_reserve_lru(bo); 980 981 if (mem && new_reg->mem_type != TTM_PL_SYSTEM && 982 mem->mem.page == nvbo->page) { 983 list_for_each_entry(vma, &nvbo->vma_list, head) { 984 nouveau_vma_map(vma, mem); 985 } 986 nouveau_uvmm_bo_map_all(nvbo, mem); 987 } else { 988 list_for_each_entry(vma, &nvbo->vma_list, head) { 989 ret = dma_resv_wait_timeout(bo->base.resv, 990 DMA_RESV_USAGE_BOOKKEEP, 991 false, 15 * HZ); 992 WARN_ON(ret <= 0); 993 nouveau_vma_unmap(vma); 994 } 995 nouveau_uvmm_bo_unmap_all(nvbo); 996 } 997 998 if (new_reg) 999 nvbo->offset = (new_reg->start << PAGE_SHIFT); 1000 1001 } 1002 1003 static int 1004 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg, 1005 struct nouveau_drm_tile **new_tile) 1006 { 1007 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1008 struct drm_device *dev = drm->dev; 1009 struct nouveau_bo *nvbo = nouveau_bo(bo); 1010 u64 offset = new_reg->start << PAGE_SHIFT; 1011 1012 *new_tile = NULL; 1013 if (new_reg->mem_type != TTM_PL_VRAM) 1014 return 0; 1015 1016 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { 1017 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size, 1018 nvbo->mode, nvbo->zeta); 1019 } 1020 1021 return 0; 1022 } 1023 1024 static void 1025 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, 1026 struct nouveau_drm_tile *new_tile, 1027 struct nouveau_drm_tile **old_tile) 1028 { 1029 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1030 struct drm_device *dev = drm->dev; 1031 struct dma_fence *fence; 1032 int ret; 1033 1034 ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE, 1035 &fence); 1036 if (ret) 1037 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE, 1038 false, MAX_SCHEDULE_TIMEOUT); 1039 1040 nv10_bo_put_tile_region(dev, *old_tile, fence); 1041 *old_tile = new_tile; 1042 } 1043 1044 static int 1045 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, 1046 struct ttm_operation_ctx *ctx, 1047 struct ttm_resource *new_reg, 1048 struct ttm_place *hop) 1049 { 1050 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1051 struct nouveau_bo *nvbo = nouveau_bo(bo); 1052 struct ttm_resource *old_reg = bo->resource; 1053 struct nouveau_drm_tile *new_tile = NULL; 1054 int ret = 0; 1055 1056 1057 if (new_reg->mem_type == TTM_PL_TT) { 1058 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg); 1059 if (ret) 1060 return ret; 1061 } 1062 1063 nouveau_bo_move_ntfy(bo, new_reg); 1064 ret = ttm_bo_wait_ctx(bo, ctx); 1065 if (ret) 1066 goto out_ntfy; 1067 1068 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1069 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); 1070 if (ret) 1071 goto out_ntfy; 1072 } 1073 1074 /* Fake bo copy. */ 1075 if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM && 1076 !bo->ttm)) { 1077 ttm_bo_move_null(bo, new_reg); 1078 goto out; 1079 } 1080 1081 if (old_reg->mem_type == TTM_PL_SYSTEM && 1082 new_reg->mem_type == TTM_PL_TT) { 1083 ttm_bo_move_null(bo, new_reg); 1084 goto out; 1085 } 1086 1087 if (old_reg->mem_type == TTM_PL_TT && 1088 new_reg->mem_type == TTM_PL_SYSTEM) { 1089 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm); 1090 ttm_resource_free(bo, &bo->resource); 1091 ttm_bo_assign_mem(bo, new_reg); 1092 goto out; 1093 } 1094 1095 /* Hardware assisted copy. */ 1096 if (drm->ttm.move) { 1097 if ((old_reg->mem_type == TTM_PL_SYSTEM && 1098 new_reg->mem_type == TTM_PL_VRAM) || 1099 (old_reg->mem_type == TTM_PL_VRAM && 1100 new_reg->mem_type == TTM_PL_SYSTEM)) { 1101 hop->fpfn = 0; 1102 hop->lpfn = 0; 1103 hop->mem_type = TTM_PL_TT; 1104 hop->flags = 0; 1105 return -EMULTIHOP; 1106 } 1107 ret = nouveau_bo_move_m2mf(bo, evict, ctx, 1108 new_reg); 1109 } else 1110 ret = -ENODEV; 1111 1112 if (ret) { 1113 /* Fallback to software copy. */ 1114 ret = ttm_bo_move_memcpy(bo, ctx, new_reg); 1115 } 1116 1117 out: 1118 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1119 if (ret) 1120 nouveau_bo_vm_cleanup(bo, NULL, &new_tile); 1121 else 1122 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); 1123 } 1124 out_ntfy: 1125 if (ret) { 1126 nouveau_bo_move_ntfy(bo, bo->resource); 1127 } 1128 return ret; 1129 } 1130 1131 static void 1132 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm, 1133 struct ttm_resource *reg) 1134 { 1135 struct nouveau_mem *mem = nouveau_mem(reg); 1136 1137 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1138 switch (reg->mem_type) { 1139 case TTM_PL_TT: 1140 if (mem->kind) 1141 nvif_object_unmap_handle(&mem->mem.object); 1142 break; 1143 case TTM_PL_VRAM: 1144 nvif_object_unmap_handle(&mem->mem.object); 1145 break; 1146 default: 1147 break; 1148 } 1149 } 1150 } 1151 1152 static int 1153 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg) 1154 { 1155 struct nouveau_drm *drm = nouveau_bdev(bdev); 1156 struct nvkm_device *device = nvxx_device(&drm->client.device); 1157 struct nouveau_mem *mem = nouveau_mem(reg); 1158 struct nvif_mmu *mmu = &drm->client.mmu; 1159 int ret; 1160 1161 mutex_lock(&drm->ttm.io_reserve_mutex); 1162 retry: 1163 switch (reg->mem_type) { 1164 case TTM_PL_SYSTEM: 1165 /* System memory */ 1166 ret = 0; 1167 goto out; 1168 case TTM_PL_TT: 1169 #if IS_ENABLED(CONFIG_AGP) 1170 if (drm->agp.bridge) { 1171 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1172 drm->agp.base; 1173 reg->bus.is_iomem = !drm->agp.cma; 1174 reg->bus.caching = ttm_write_combined; 1175 } 1176 #endif 1177 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || 1178 !mem->kind) { 1179 /* untiled */ 1180 ret = 0; 1181 break; 1182 } 1183 fallthrough; /* tiled memory */ 1184 case TTM_PL_VRAM: 1185 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1186 device->func->resource_addr(device, 1); 1187 reg->bus.is_iomem = true; 1188 1189 /* Some BARs do not support being ioremapped WC */ 1190 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 1191 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED) 1192 reg->bus.caching = ttm_uncached; 1193 else 1194 reg->bus.caching = ttm_write_combined; 1195 1196 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1197 union { 1198 struct nv50_mem_map_v0 nv50; 1199 struct gf100_mem_map_v0 gf100; 1200 } args; 1201 u64 handle, length; 1202 u32 argc = 0; 1203 1204 switch (mem->mem.object.oclass) { 1205 case NVIF_CLASS_MEM_NV50: 1206 args.nv50.version = 0; 1207 args.nv50.ro = 0; 1208 args.nv50.kind = mem->kind; 1209 args.nv50.comp = mem->comp; 1210 argc = sizeof(args.nv50); 1211 break; 1212 case NVIF_CLASS_MEM_GF100: 1213 args.gf100.version = 0; 1214 args.gf100.ro = 0; 1215 args.gf100.kind = mem->kind; 1216 argc = sizeof(args.gf100); 1217 break; 1218 default: 1219 WARN_ON(1); 1220 break; 1221 } 1222 1223 ret = nvif_object_map_handle(&mem->mem.object, 1224 &args, argc, 1225 &handle, &length); 1226 if (ret != 1) { 1227 if (WARN_ON(ret == 0)) 1228 ret = -EINVAL; 1229 goto out; 1230 } 1231 1232 reg->bus.offset = handle; 1233 } 1234 ret = 0; 1235 break; 1236 default: 1237 ret = -EINVAL; 1238 } 1239 1240 out: 1241 if (ret == -ENOSPC) { 1242 struct nouveau_bo *nvbo; 1243 1244 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru, 1245 typeof(*nvbo), 1246 io_reserve_lru); 1247 if (nvbo) { 1248 list_del_init(&nvbo->io_reserve_lru); 1249 drm_vma_node_unmap(&nvbo->bo.base.vma_node, 1250 bdev->dev_mapping); 1251 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource); 1252 nvbo->bo.resource->bus.offset = 0; 1253 nvbo->bo.resource->bus.addr = NULL; 1254 goto retry; 1255 } 1256 1257 } 1258 mutex_unlock(&drm->ttm.io_reserve_mutex); 1259 return ret; 1260 } 1261 1262 static void 1263 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg) 1264 { 1265 struct nouveau_drm *drm = nouveau_bdev(bdev); 1266 1267 mutex_lock(&drm->ttm.io_reserve_mutex); 1268 nouveau_ttm_io_mem_free_locked(drm, reg); 1269 mutex_unlock(&drm->ttm.io_reserve_mutex); 1270 } 1271 1272 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) 1273 { 1274 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1275 struct nouveau_bo *nvbo = nouveau_bo(bo); 1276 struct nvkm_device *device = nvxx_device(&drm->client.device); 1277 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; 1278 int i, ret; 1279 1280 /* as long as the bo isn't in vram, and isn't tiled, we've got 1281 * nothing to do here. 1282 */ 1283 if (bo->resource->mem_type != TTM_PL_VRAM) { 1284 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || 1285 !nvbo->kind) 1286 return 0; 1287 1288 if (bo->resource->mem_type != TTM_PL_SYSTEM) 1289 return 0; 1290 1291 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 1292 1293 } else { 1294 /* make sure bo is in mappable vram */ 1295 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || 1296 bo->resource->start + PFN_UP(bo->resource->size) < mappable) 1297 return 0; 1298 1299 for (i = 0; i < nvbo->placement.num_placement; ++i) { 1300 nvbo->placements[i].fpfn = 0; 1301 nvbo->placements[i].lpfn = mappable; 1302 } 1303 1304 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { 1305 nvbo->busy_placements[i].fpfn = 0; 1306 nvbo->busy_placements[i].lpfn = mappable; 1307 } 1308 1309 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0); 1310 } 1311 1312 ret = nouveau_bo_validate(nvbo, false, false); 1313 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS)) 1314 return VM_FAULT_NOPAGE; 1315 else if (unlikely(ret)) 1316 return VM_FAULT_SIGBUS; 1317 1318 ttm_bo_move_to_lru_tail_unlocked(bo); 1319 return 0; 1320 } 1321 1322 static int 1323 nouveau_ttm_tt_populate(struct ttm_device *bdev, 1324 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 1325 { 1326 struct ttm_tt *ttm_dma = (void *)ttm; 1327 struct nouveau_drm *drm; 1328 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1329 1330 if (ttm_tt_is_populated(ttm)) 1331 return 0; 1332 1333 if (slave && ttm->sg) { 1334 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address, 1335 ttm->num_pages); 1336 return 0; 1337 } 1338 1339 drm = nouveau_bdev(bdev); 1340 1341 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx); 1342 } 1343 1344 static void 1345 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev, 1346 struct ttm_tt *ttm) 1347 { 1348 struct nouveau_drm *drm; 1349 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1350 1351 if (slave) 1352 return; 1353 1354 nouveau_ttm_tt_unbind(bdev, ttm); 1355 1356 drm = nouveau_bdev(bdev); 1357 1358 return ttm_pool_free(&drm->ttm.bdev.pool, ttm); 1359 } 1360 1361 static void 1362 nouveau_ttm_tt_destroy(struct ttm_device *bdev, 1363 struct ttm_tt *ttm) 1364 { 1365 #if IS_ENABLED(CONFIG_AGP) 1366 struct nouveau_drm *drm = nouveau_bdev(bdev); 1367 if (drm->agp.bridge) { 1368 ttm_agp_destroy(ttm); 1369 return; 1370 } 1371 #endif 1372 nouveau_sgdma_destroy(bdev, ttm); 1373 } 1374 1375 void 1376 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) 1377 { 1378 struct dma_resv *resv = nvbo->bo.base.resv; 1379 1380 if (!fence) 1381 return; 1382 1383 dma_resv_add_fence(resv, &fence->base, exclusive ? 1384 DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ); 1385 } 1386 1387 static void 1388 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1389 { 1390 nouveau_bo_move_ntfy(bo, NULL); 1391 } 1392 1393 struct ttm_device_funcs nouveau_bo_driver = { 1394 .ttm_tt_create = &nouveau_ttm_tt_create, 1395 .ttm_tt_populate = &nouveau_ttm_tt_populate, 1396 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, 1397 .ttm_tt_destroy = &nouveau_ttm_tt_destroy, 1398 .eviction_valuable = ttm_bo_eviction_valuable, 1399 .evict_flags = nouveau_bo_evict_flags, 1400 .delete_mem_notify = nouveau_bo_delete_mem_notify, 1401 .move = nouveau_bo_move, 1402 .io_mem_reserve = &nouveau_ttm_io_mem_reserve, 1403 .io_mem_free = &nouveau_ttm_io_mem_free, 1404 }; 1405