1 /*
2  * Copyright 2005-2006 Erik Waling
3  * Copyright 2006 Stephane Marchesin
4  * Copyright 2007-2009 Stuart Bennett
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 
31 #include <linux/io-mapping.h>
32 
33 /* these defines are made up */
34 #define NV_CIO_CRE_44_HEADA 0x0
35 #define NV_CIO_CRE_44_HEADB 0x3
36 #define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
37 #define LEGACY_I2C_CRT 0x80
38 #define LEGACY_I2C_PANEL 0x81
39 #define LEGACY_I2C_TV 0x82
40 
41 #define EDID1_LEN 128
42 
43 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
44 #define LOG_OLD_VALUE(x)
45 
46 struct init_exec {
47 	bool execute;
48 	bool repeat;
49 };
50 
51 static bool nv_cksum(const uint8_t *data, unsigned int length)
52 {
53 	/*
54 	 * There's a few checksums in the BIOS, so here's a generic checking
55 	 * function.
56 	 */
57 	int i;
58 	uint8_t sum = 0;
59 
60 	for (i = 0; i < length; i++)
61 		sum += data[i];
62 
63 	if (sum)
64 		return true;
65 
66 	return false;
67 }
68 
69 static int
70 score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
71 {
72 	if (!(data[0] == 0x55 && data[1] == 0xAA)) {
73 		NV_TRACEWARN(dev, "... BIOS signature not found\n");
74 		return 0;
75 	}
76 
77 	if (nv_cksum(data, data[2] * 512)) {
78 		NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
79 		/* if a ro image is somewhat bad, it's probably all rubbish */
80 		return writeable ? 2 : 1;
81 	} else
82 		NV_TRACE(dev, "... appears to be valid\n");
83 
84 	return 3;
85 }
86 
87 static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
88 {
89 	struct drm_nouveau_private *dev_priv = dev->dev_private;
90 	uint32_t pci_nv_20, save_pci_nv_20;
91 	int pcir_ptr;
92 	int i;
93 
94 	if (dev_priv->card_type >= NV_50)
95 		pci_nv_20 = 0x88050;
96 	else
97 		pci_nv_20 = NV_PBUS_PCI_NV_20;
98 
99 	/* enable ROM access */
100 	save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
101 	nvWriteMC(dev, pci_nv_20,
102 		  save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
103 
104 	/* bail if no rom signature */
105 	if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
106 	    nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
107 		goto out;
108 
109 	/* additional check (see note below) - read PCI record header */
110 	pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
111 		   nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
112 	if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
113 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
114 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
115 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
116 		goto out;
117 
118 	/* on some 6600GT/6800LE prom reads are messed up.  nvclock alleges a
119 	 * a good read may be obtained by waiting or re-reading (cargocult: 5x)
120 	 * each byte.  we'll hope pramin has something usable instead
121 	 */
122 	for (i = 0; i < NV_PROM_SIZE; i++)
123 		data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
124 
125 out:
126 	/* disable ROM access */
127 	nvWriteMC(dev, pci_nv_20,
128 		  save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
129 }
130 
131 static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
132 {
133 	struct drm_nouveau_private *dev_priv = dev->dev_private;
134 	uint32_t old_bar0_pramin = 0;
135 	int i;
136 
137 	if (dev_priv->card_type >= NV_50) {
138 		u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
139 		if (!addr) {
140 			addr  = (u64)nv_rd32(dev, 0x1700) << 16;
141 			addr += 0xf0000;
142 		}
143 
144 		old_bar0_pramin = nv_rd32(dev, 0x1700);
145 		nv_wr32(dev, 0x1700, addr >> 16);
146 	}
147 
148 	/* bail if no rom signature */
149 	if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
150 	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
151 		goto out;
152 
153 	for (i = 0; i < NV_PROM_SIZE; i++)
154 		data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
155 
156 out:
157 	if (dev_priv->card_type >= NV_50)
158 		nv_wr32(dev, 0x1700, old_bar0_pramin);
159 }
160 
161 static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
162 {
163 	void __iomem *rom = NULL;
164 	size_t rom_len;
165 	int ret;
166 
167 	ret = pci_enable_rom(dev->pdev);
168 	if (ret)
169 		return;
170 
171 	rom = pci_map_rom(dev->pdev, &rom_len);
172 	if (!rom)
173 		goto out;
174 	memcpy_fromio(data, rom, rom_len);
175 	pci_unmap_rom(dev->pdev, rom);
176 
177 out:
178 	pci_disable_rom(dev->pdev);
179 }
180 
181 static void load_vbios_acpi(struct drm_device *dev, uint8_t *data)
182 {
183 	int i;
184 	int ret;
185 	int size = 64 * 1024;
186 
187 	if (!nouveau_acpi_rom_supported(dev->pdev))
188 		return;
189 
190 	for (i = 0; i < (size / ROM_BIOS_PAGE); i++) {
191 		ret = nouveau_acpi_get_bios_chunk(data,
192 						  (i * ROM_BIOS_PAGE),
193 						  ROM_BIOS_PAGE);
194 		if (ret <= 0)
195 			break;
196 	}
197 	return;
198 }
199 
200 struct methods {
201 	const char desc[8];
202 	void (*loadbios)(struct drm_device *, uint8_t *);
203 	const bool rw;
204 };
205 
206 static struct methods shadow_methods[] = {
207 	{ "PRAMIN", load_vbios_pramin, true },
208 	{ "PROM", load_vbios_prom, false },
209 	{ "PCIROM", load_vbios_pci, true },
210 	{ "ACPI", load_vbios_acpi, true },
211 };
212 #define NUM_SHADOW_METHODS ARRAY_SIZE(shadow_methods)
213 
214 static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
215 {
216 	struct methods *methods = shadow_methods;
217 	int testscore = 3;
218 	int scores[NUM_SHADOW_METHODS], i;
219 
220 	if (nouveau_vbios) {
221 		for (i = 0; i < NUM_SHADOW_METHODS; i++)
222 			if (!strcasecmp(nouveau_vbios, methods[i].desc))
223 				break;
224 
225 		if (i < NUM_SHADOW_METHODS) {
226 			NV_INFO(dev, "Attempting to use BIOS image from %s\n",
227 				methods[i].desc);
228 
229 			methods[i].loadbios(dev, data);
230 			if (score_vbios(dev, data, methods[i].rw))
231 				return true;
232 		}
233 
234 		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
235 	}
236 
237 	for (i = 0; i < NUM_SHADOW_METHODS; i++) {
238 		NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
239 			 methods[i].desc);
240 		data[0] = data[1] = 0;	/* avoid reuse of previous image */
241 		methods[i].loadbios(dev, data);
242 		scores[i] = score_vbios(dev, data, methods[i].rw);
243 		if (scores[i] == testscore)
244 			return true;
245 	}
246 
247 	while (--testscore > 0) {
248 		for (i = 0; i < NUM_SHADOW_METHODS; i++) {
249 			if (scores[i] == testscore) {
250 				NV_TRACE(dev, "Using BIOS image from %s\n",
251 					 methods[i].desc);
252 				methods[i].loadbios(dev, data);
253 				return true;
254 			}
255 		}
256 	}
257 
258 	NV_ERROR(dev, "No valid BIOS image found\n");
259 	return false;
260 }
261 
262 struct init_tbl_entry {
263 	char *name;
264 	uint8_t id;
265 	/* Return:
266 	 *  > 0: success, length of opcode
267 	 *    0: success, but abort further parsing of table (INIT_DONE etc)
268 	 *  < 0: failure, table parsing will be aborted
269 	 */
270 	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
271 };
272 
273 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
274 
275 #define MACRO_INDEX_SIZE	2
276 #define MACRO_SIZE		8
277 #define CONDITION_SIZE		12
278 #define IO_FLAG_CONDITION_SIZE	9
279 #define IO_CONDITION_SIZE	5
280 #define MEM_INIT_SIZE		66
281 
282 static void still_alive(void)
283 {
284 #if 0
285 	sync();
286 	mdelay(2);
287 #endif
288 }
289 
290 static uint32_t
291 munge_reg(struct nvbios *bios, uint32_t reg)
292 {
293 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
294 	struct dcb_entry *dcbent = bios->display.output;
295 
296 	if (dev_priv->card_type < NV_50)
297 		return reg;
298 
299 	if (reg & 0x40000000) {
300 		BUG_ON(!dcbent);
301 
302 		reg += (ffs(dcbent->or) - 1) * 0x800;
303 		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
304 			reg += 0x00000080;
305 	}
306 
307 	reg &= ~0x60000000;
308 	return reg;
309 }
310 
311 static int
312 valid_reg(struct nvbios *bios, uint32_t reg)
313 {
314 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
315 	struct drm_device *dev = bios->dev;
316 
317 	/* C51 has misaligned regs on purpose. Marvellous */
318 	if (reg & 0x2 ||
319 	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
320 		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
321 
322 	/* warn on C51 regs that haven't been verified accessible in tracing */
323 	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
324 	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
325 		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
326 			reg);
327 
328 	if (reg >= (8*1024*1024)) {
329 		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
330 		return 0;
331 	}
332 
333 	return 1;
334 }
335 
336 static bool
337 valid_idx_port(struct nvbios *bios, uint16_t port)
338 {
339 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
340 	struct drm_device *dev = bios->dev;
341 
342 	/*
343 	 * If adding more ports here, the read/write functions below will need
344 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
345 	 * used for the port in question
346 	 */
347 	if (dev_priv->card_type < NV_50) {
348 		if (port == NV_CIO_CRX__COLOR)
349 			return true;
350 		if (port == NV_VIO_SRX)
351 			return true;
352 	} else {
353 		if (port == NV_CIO_CRX__COLOR)
354 			return true;
355 	}
356 
357 	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
358 		 port);
359 
360 	return false;
361 }
362 
363 static bool
364 valid_port(struct nvbios *bios, uint16_t port)
365 {
366 	struct drm_device *dev = bios->dev;
367 
368 	/*
369 	 * If adding more ports here, the read/write functions below will need
370 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
371 	 * used for the port in question
372 	 */
373 	if (port == NV_VIO_VSE2)
374 		return true;
375 
376 	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
377 
378 	return false;
379 }
380 
381 static uint32_t
382 bios_rd32(struct nvbios *bios, uint32_t reg)
383 {
384 	uint32_t data;
385 
386 	reg = munge_reg(bios, reg);
387 	if (!valid_reg(bios, reg))
388 		return 0;
389 
390 	/*
391 	 * C51 sometimes uses regs with bit0 set in the address. For these
392 	 * cases there should exist a translation in a BIOS table to an IO
393 	 * port address which the BIOS uses for accessing the reg
394 	 *
395 	 * These only seem to appear for the power control regs to a flat panel,
396 	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
397 	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
398 	 * suspend-resume mmio trace from a C51 will be required to see if this
399 	 * is true for the power microcode in 0x14.., or whether the direct IO
400 	 * port access method is needed
401 	 */
402 	if (reg & 0x1)
403 		reg &= ~0x1;
404 
405 	data = nv_rd32(bios->dev, reg);
406 
407 	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);
408 
409 	return data;
410 }
411 
412 static void
413 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
414 {
415 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
416 
417 	reg = munge_reg(bios, reg);
418 	if (!valid_reg(bios, reg))
419 		return;
420 
421 	/* see note in bios_rd32 */
422 	if (reg & 0x1)
423 		reg &= 0xfffffffe;
424 
425 	LOG_OLD_VALUE(bios_rd32(bios, reg));
426 	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
427 
428 	if (dev_priv->vbios.execute) {
429 		still_alive();
430 		nv_wr32(bios->dev, reg, data);
431 	}
432 }
433 
434 static uint8_t
435 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
436 {
437 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
438 	struct drm_device *dev = bios->dev;
439 	uint8_t data;
440 
441 	if (!valid_idx_port(bios, port))
442 		return 0;
443 
444 	if (dev_priv->card_type < NV_50) {
445 		if (port == NV_VIO_SRX)
446 			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
447 		else	/* assume NV_CIO_CRX__COLOR */
448 			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
449 	} else {
450 		uint32_t data32;
451 
452 		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
453 		data = (data32 >> ((index & 3) << 3)) & 0xff;
454 	}
455 
456 	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
457 		      "Head: 0x%02X, Data: 0x%02X\n",
458 		port, index, bios->state.crtchead, data);
459 	return data;
460 }
461 
462 static void
463 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
464 {
465 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
466 	struct drm_device *dev = bios->dev;
467 
468 	if (!valid_idx_port(bios, port))
469 		return;
470 
471 	/*
472 	 * The current head is maintained in the nvbios member  state.crtchead.
473 	 * We trap changes to CR44 and update the head variable and hence the
474 	 * register set written.
475 	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
476 	 * of the write, and to head1 after the write
477 	 */
478 	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
479 	    data != NV_CIO_CRE_44_HEADB)
480 		bios->state.crtchead = 0;
481 
482 	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
483 	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
484 		      "Head: 0x%02X, Data: 0x%02X\n",
485 		port, index, bios->state.crtchead, data);
486 
487 	if (bios->execute && dev_priv->card_type < NV_50) {
488 		still_alive();
489 		if (port == NV_VIO_SRX)
490 			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
491 		else	/* assume NV_CIO_CRX__COLOR */
492 			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
493 	} else
494 	if (bios->execute) {
495 		uint32_t data32, shift = (index & 3) << 3;
496 
497 		still_alive();
498 
499 		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
500 		data32 &= ~(0xff << shift);
501 		data32 |= (data << shift);
502 		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
503 	}
504 
505 	if (port == NV_CIO_CRX__COLOR &&
506 	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
507 		bios->state.crtchead = 1;
508 }
509 
510 static uint8_t
511 bios_port_rd(struct nvbios *bios, uint16_t port)
512 {
513 	uint8_t data, head = bios->state.crtchead;
514 
515 	if (!valid_port(bios, port))
516 		return 0;
517 
518 	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
519 
520 	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
521 		port, head, data);
522 
523 	return data;
524 }
525 
526 static void
527 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
528 {
529 	int head = bios->state.crtchead;
530 
531 	if (!valid_port(bios, port))
532 		return;
533 
534 	LOG_OLD_VALUE(bios_port_rd(bios, port));
535 	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
536 		port, head, data);
537 
538 	if (!bios->execute)
539 		return;
540 
541 	still_alive();
542 	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
543 }
544 
545 static bool
546 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
547 {
548 	/*
549 	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
550 	 * for the CRTC index; 1 byte for the mask to apply to the value
551 	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
552 	 * masked CRTC value; 2 bytes for the offset to the flag array, to
553 	 * which the shifted value is added; 1 byte for the mask applied to the
554 	 * value read from the flag array; and 1 byte for the value to compare
555 	 * against the masked byte from the flag table.
556 	 */
557 
558 	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
559 	uint16_t crtcport = ROM16(bios->data[condptr]);
560 	uint8_t crtcindex = bios->data[condptr + 2];
561 	uint8_t mask = bios->data[condptr + 3];
562 	uint8_t shift = bios->data[condptr + 4];
563 	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
564 	uint8_t flagarraymask = bios->data[condptr + 7];
565 	uint8_t cmpval = bios->data[condptr + 8];
566 	uint8_t data;
567 
568 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
569 		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
570 		      "Cmpval: 0x%02X\n",
571 		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
572 
573 	data = bios_idxprt_rd(bios, crtcport, crtcindex);
574 
575 	data = bios->data[flagarray + ((data & mask) >> shift)];
576 	data &= flagarraymask;
577 
578 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
579 		offset, data, cmpval);
580 
581 	return (data == cmpval);
582 }
583 
584 static bool
585 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
586 {
587 	/*
588 	 * The condition table entry has 4 bytes for the address of the
589 	 * register to check, 4 bytes for a mask to apply to the register and
590 	 * 4 for a test comparison value
591 	 */
592 
593 	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
594 	uint32_t reg = ROM32(bios->data[condptr]);
595 	uint32_t mask = ROM32(bios->data[condptr + 4]);
596 	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
597 	uint32_t data;
598 
599 	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
600 		offset, cond, reg, mask);
601 
602 	data = bios_rd32(bios, reg) & mask;
603 
604 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
605 		offset, data, cmpval);
606 
607 	return (data == cmpval);
608 }
609 
610 static bool
611 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
612 {
613 	/*
614 	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
615 	 * for the index to write to io_port; 1 byte for the mask to apply to
616 	 * the byte read from io_port+1; and 1 byte for the value to compare
617 	 * against the masked byte.
618 	 */
619 
620 	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
621 	uint16_t io_port = ROM16(bios->data[condptr]);
622 	uint8_t port_index = bios->data[condptr + 2];
623 	uint8_t mask = bios->data[condptr + 3];
624 	uint8_t cmpval = bios->data[condptr + 4];
625 
626 	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
627 
628 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
629 		offset, data, cmpval);
630 
631 	return (data == cmpval);
632 }
633 
634 static int
635 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
636 {
637 	struct drm_nouveau_private *dev_priv = dev->dev_private;
638 	uint32_t reg0 = nv_rd32(dev, reg + 0);
639 	uint32_t reg1 = nv_rd32(dev, reg + 4);
640 	struct nouveau_pll_vals pll;
641 	struct pll_lims pll_limits;
642 	int ret;
643 
644 	ret = get_pll_limits(dev, reg, &pll_limits);
645 	if (ret)
646 		return ret;
647 
648 	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
649 	if (!clk)
650 		return -ERANGE;
651 
652 	reg0 = (reg0 & 0xfff8ffff) | (pll.log2P << 16);
653 	reg1 = (reg1 & 0xffff0000) | (pll.N1 << 8) | pll.M1;
654 
655 	if (dev_priv->vbios.execute) {
656 		still_alive();
657 		nv_wr32(dev, reg + 4, reg1);
658 		nv_wr32(dev, reg + 0, reg0);
659 	}
660 
661 	return 0;
662 }
663 
664 static int
665 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
666 {
667 	struct drm_device *dev = bios->dev;
668 	struct drm_nouveau_private *dev_priv = dev->dev_private;
669 	/* clk in kHz */
670 	struct pll_lims pll_lim;
671 	struct nouveau_pll_vals pllvals;
672 	int ret;
673 
674 	if (dev_priv->card_type >= NV_50)
675 		return nv50_pll_set(dev, reg, clk);
676 
677 	/* high regs (such as in the mac g5 table) are not -= 4 */
678 	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
679 	if (ret)
680 		return ret;
681 
682 	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
683 	if (!clk)
684 		return -ERANGE;
685 
686 	if (bios->execute) {
687 		still_alive();
688 		nouveau_hw_setpll(dev, reg, &pllvals);
689 	}
690 
691 	return 0;
692 }
693 
694 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
695 {
696 	struct drm_nouveau_private *dev_priv = dev->dev_private;
697 	struct nvbios *bios = &dev_priv->vbios;
698 
699 	/*
700 	 * For the results of this function to be correct, CR44 must have been
701 	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
702 	 * and the DCB table parsed, before the script calling the function is
703 	 * run.  run_digital_op_script is example of how to do such setup
704 	 */
705 
706 	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
707 
708 	if (dcb_entry > bios->dcb.entries) {
709 		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
710 				"(%02X)\n", dcb_entry);
711 		dcb_entry = 0x7f;	/* unused / invalid marker */
712 	}
713 
714 	return dcb_entry;
715 }
716 
717 static int
718 read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
719 {
720 	uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
721 	int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
722 	int recordoffset = 0, rdofs = 1, wrofs = 0;
723 	uint8_t port_type = 0;
724 
725 	if (!i2ctable)
726 		return -EINVAL;
727 
728 	if (dcb_version >= 0x30) {
729 		if (i2ctable[0] != dcb_version) /* necessary? */
730 			NV_WARN(dev,
731 				"DCB I2C table version mismatch (%02X vs %02X)\n",
732 				i2ctable[0], dcb_version);
733 		dcb_i2c_ver = i2ctable[0];
734 		headerlen = i2ctable[1];
735 		if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
736 			i2c_entries = i2ctable[2];
737 		else
738 			NV_WARN(dev,
739 				"DCB I2C table has more entries than indexable "
740 				"(%d entries, max %d)\n", i2ctable[2],
741 				DCB_MAX_NUM_I2C_ENTRIES);
742 		entry_len = i2ctable[3];
743 		/* [4] is i2c_default_indices, read in parse_dcb_table() */
744 	}
745 	/*
746 	 * It's your own fault if you call this function on a DCB 1.1 BIOS --
747 	 * the test below is for DCB 1.2
748 	 */
749 	if (dcb_version < 0x14) {
750 		recordoffset = 2;
751 		rdofs = 0;
752 		wrofs = 1;
753 	}
754 
755 	if (index == 0xf)
756 		return 0;
757 	if (index >= i2c_entries) {
758 		NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
759 			 index, i2ctable[2]);
760 		return -ENOENT;
761 	}
762 	if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
763 		NV_ERROR(dev, "DCB I2C entry invalid\n");
764 		return -EINVAL;
765 	}
766 
767 	if (dcb_i2c_ver >= 0x30) {
768 		port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];
769 
770 		/*
771 		 * Fixup for chips using same address offset for read and
772 		 * write.
773 		 */
774 		if (port_type == 4)	/* seen on C51 */
775 			rdofs = wrofs = 1;
776 		if (port_type >= 5)	/* G80+ */
777 			rdofs = wrofs = 0;
778 	}
779 
780 	if (dcb_i2c_ver >= 0x40) {
781 		if (port_type != 5 && port_type != 6)
782 			NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);
783 
784 		i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]);
785 	}
786 
787 	i2c->port_type = port_type;
788 	i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
789 	i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];
790 
791 	return 0;
792 }
793 
794 static struct nouveau_i2c_chan *
795 init_i2c_device_find(struct drm_device *dev, int i2c_index)
796 {
797 	struct drm_nouveau_private *dev_priv = dev->dev_private;
798 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
799 
800 	if (i2c_index == 0xff) {
801 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
802 		int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
803 		int default_indices = dcb->i2c_default_indices;
804 
805 		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
806 			shift = 4;
807 
808 		i2c_index = (default_indices >> shift) & 0xf;
809 	}
810 	if (i2c_index == 0x80)	/* g80+ */
811 		i2c_index = dcb->i2c_default_indices & 0xf;
812 	else
813 	if (i2c_index == 0x81)
814 		i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4;
815 
816 	if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) {
817 		NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index);
818 		return NULL;
819 	}
820 
821 	/* Make sure i2c table entry has been parsed, it may not
822 	 * have been if this is a bus not referenced by a DCB encoder
823 	 */
824 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
825 			   i2c_index, &dcb->i2c[i2c_index]);
826 
827 	return nouveau_i2c_find(dev, i2c_index);
828 }
829 
830 static uint32_t
831 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
832 {
833 	/*
834 	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
835 	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
836 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
837 	 * 0x6808b0 address.
838 	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
839 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
840 	 * 0x6808b0 address, and then flip the offset by 8.
841 	 */
842 
843 	struct drm_nouveau_private *dev_priv = dev->dev_private;
844 	struct nvbios *bios = &dev_priv->vbios;
845 	const int pramdac_offset[13] = {
846 		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
847 	const uint32_t pramdac_table[4] = {
848 		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
849 
850 	if (mlv >= 0x80) {
851 		int dcb_entry, dacoffset;
852 
853 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
854 		dcb_entry = dcb_entry_idx_from_crtchead(dev);
855 		if (dcb_entry == 0x7f)
856 			return 0;
857 		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
858 		if (mlv == 0x81)
859 			dacoffset ^= 8;
860 		return 0x6808b0 + dacoffset;
861 	} else {
862 		if (mlv >= ARRAY_SIZE(pramdac_table)) {
863 			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
864 									mlv);
865 			return 0;
866 		}
867 		return pramdac_table[mlv];
868 	}
869 }
870 
871 static int
872 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
873 		      struct init_exec *iexec)
874 {
875 	/*
876 	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
877 	 *
878 	 * offset      (8  bit): opcode
879 	 * offset + 1  (16 bit): CRTC port
880 	 * offset + 3  (8  bit): CRTC index
881 	 * offset + 4  (8  bit): mask
882 	 * offset + 5  (8  bit): shift
883 	 * offset + 6  (8  bit): count
884 	 * offset + 7  (32 bit): register
885 	 * offset + 11 (32 bit): configuration 1
886 	 * ...
887 	 *
888 	 * Starting at offset + 11 there are "count" 32 bit values.
889 	 * To find out which value to use read index "CRTC index" on "CRTC
890 	 * port", AND this value with "mask" and then bit shift right "shift"
891 	 * bits.  Read the appropriate value using this index and write to
892 	 * "register"
893 	 */
894 
895 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
896 	uint8_t crtcindex = bios->data[offset + 3];
897 	uint8_t mask = bios->data[offset + 4];
898 	uint8_t shift = bios->data[offset + 5];
899 	uint8_t count = bios->data[offset + 6];
900 	uint32_t reg = ROM32(bios->data[offset + 7]);
901 	uint8_t config;
902 	uint32_t configval;
903 	int len = 11 + count * 4;
904 
905 	if (!iexec->execute)
906 		return len;
907 
908 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
909 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
910 		offset, crtcport, crtcindex, mask, shift, count, reg);
911 
912 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
913 	if (config > count) {
914 		NV_ERROR(bios->dev,
915 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
916 			 offset, config, count);
917 		return len;
918 	}
919 
920 	configval = ROM32(bios->data[offset + 11 + config * 4]);
921 
922 	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
923 
924 	bios_wr32(bios, reg, configval);
925 
926 	return len;
927 }
928 
929 static int
930 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
931 {
932 	/*
933 	 * INIT_REPEAT   opcode: 0x33 ('3')
934 	 *
935 	 * offset      (8 bit): opcode
936 	 * offset + 1  (8 bit): count
937 	 *
938 	 * Execute script following this opcode up to INIT_REPEAT_END
939 	 * "count" times
940 	 */
941 
942 	uint8_t count = bios->data[offset + 1];
943 	uint8_t i;
944 
945 	/* no iexec->execute check by design */
946 
947 	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
948 		offset, count);
949 
950 	iexec->repeat = true;
951 
952 	/*
953 	 * count - 1, as the script block will execute once when we leave this
954 	 * opcode -- this is compatible with bios behaviour as:
955 	 * a) the block is always executed at least once, even if count == 0
956 	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
957 	 * while we don't
958 	 */
959 	for (i = 0; i < count - 1; i++)
960 		parse_init_table(bios, offset + 2, iexec);
961 
962 	iexec->repeat = false;
963 
964 	return 2;
965 }
966 
967 static int
968 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
969 		     struct init_exec *iexec)
970 {
971 	/*
972 	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
973 	 *
974 	 * offset      (8  bit): opcode
975 	 * offset + 1  (16 bit): CRTC port
976 	 * offset + 3  (8  bit): CRTC index
977 	 * offset + 4  (8  bit): mask
978 	 * offset + 5  (8  bit): shift
979 	 * offset + 6  (8  bit): IO flag condition index
980 	 * offset + 7  (8  bit): count
981 	 * offset + 8  (32 bit): register
982 	 * offset + 12 (16 bit): frequency 1
983 	 * ...
984 	 *
985 	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
986 	 * Set PLL register "register" to coefficients for frequency n,
987 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
988 	 * "mask" and shifted right by "shift".
989 	 *
990 	 * If "IO flag condition index" > 0, and condition met, double
991 	 * frequency before setting it.
992 	 */
993 
994 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
995 	uint8_t crtcindex = bios->data[offset + 3];
996 	uint8_t mask = bios->data[offset + 4];
997 	uint8_t shift = bios->data[offset + 5];
998 	int8_t io_flag_condition_idx = bios->data[offset + 6];
999 	uint8_t count = bios->data[offset + 7];
1000 	uint32_t reg = ROM32(bios->data[offset + 8]);
1001 	uint8_t config;
1002 	uint16_t freq;
1003 	int len = 12 + count * 2;
1004 
1005 	if (!iexec->execute)
1006 		return len;
1007 
1008 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1009 		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
1010 		      "Count: 0x%02X, Reg: 0x%08X\n",
1011 		offset, crtcport, crtcindex, mask, shift,
1012 		io_flag_condition_idx, count, reg);
1013 
1014 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1015 	if (config > count) {
1016 		NV_ERROR(bios->dev,
1017 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1018 			 offset, config, count);
1019 		return len;
1020 	}
1021 
1022 	freq = ROM16(bios->data[offset + 12 + config * 2]);
1023 
1024 	if (io_flag_condition_idx > 0) {
1025 		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
1026 			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
1027 				      "frequency doubled\n", offset);
1028 			freq *= 2;
1029 		} else
1030 			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
1031 				      "frequency unchanged\n", offset);
1032 	}
1033 
1034 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
1035 		offset, reg, config, freq);
1036 
1037 	setPLL(bios, reg, freq * 10);
1038 
1039 	return len;
1040 }
1041 
1042 static int
1043 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1044 {
1045 	/*
1046 	 * INIT_END_REPEAT   opcode: 0x36 ('6')
1047 	 *
1048 	 * offset      (8 bit): opcode
1049 	 *
1050 	 * Marks the end of the block for INIT_REPEAT to repeat
1051 	 */
1052 
1053 	/* no iexec->execute check by design */
1054 
1055 	/*
1056 	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1057 	 * we're not in repeat mode
1058 	 */
1059 	if (iexec->repeat)
1060 		return 0;
1061 
1062 	return 1;
1063 }
1064 
1065 static int
1066 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1067 {
1068 	/*
1069 	 * INIT_COPY   opcode: 0x37 ('7')
1070 	 *
1071 	 * offset      (8  bit): opcode
1072 	 * offset + 1  (32 bit): register
1073 	 * offset + 5  (8  bit): shift
1074 	 * offset + 6  (8  bit): srcmask
1075 	 * offset + 7  (16 bit): CRTC port
1076 	 * offset + 9  (8 bit): CRTC index
1077 	 * offset + 10  (8 bit): mask
1078 	 *
1079 	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1080 	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1081 	 * port
1082 	 */
1083 
1084 	uint32_t reg = ROM32(bios->data[offset + 1]);
1085 	uint8_t shift = bios->data[offset + 5];
1086 	uint8_t srcmask = bios->data[offset + 6];
1087 	uint16_t crtcport = ROM16(bios->data[offset + 7]);
1088 	uint8_t crtcindex = bios->data[offset + 9];
1089 	uint8_t mask = bios->data[offset + 10];
1090 	uint32_t data;
1091 	uint8_t crtcdata;
1092 
1093 	if (!iexec->execute)
1094 		return 11;
1095 
1096 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1097 		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1098 		offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1099 
1100 	data = bios_rd32(bios, reg);
1101 
1102 	if (shift < 0x80)
1103 		data >>= shift;
1104 	else
1105 		data <<= (0x100 - shift);
1106 
1107 	data &= srcmask;
1108 
1109 	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1110 	crtcdata |= (uint8_t)data;
1111 	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1112 
1113 	return 11;
1114 }
1115 
1116 static int
1117 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1118 {
1119 	/*
1120 	 * INIT_NOT   opcode: 0x38 ('8')
1121 	 *
1122 	 * offset      (8  bit): opcode
1123 	 *
1124 	 * Invert the current execute / no-execute condition (i.e. "else")
1125 	 */
1126 	if (iexec->execute)
1127 		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
1128 	else
1129 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1130 
1131 	iexec->execute = !iexec->execute;
1132 	return 1;
1133 }
1134 
1135 static int
1136 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1137 		       struct init_exec *iexec)
1138 {
1139 	/*
1140 	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
1141 	 *
1142 	 * offset      (8 bit): opcode
1143 	 * offset + 1  (8 bit): condition number
1144 	 *
1145 	 * Check condition "condition number" in the IO flag condition table.
1146 	 * If condition not met skip subsequent opcodes until condition is
1147 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1148 	 */
1149 
1150 	uint8_t cond = bios->data[offset + 1];
1151 
1152 	if (!iexec->execute)
1153 		return 2;
1154 
1155 	if (io_flag_condition_met(bios, offset, cond))
1156 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1157 	else {
1158 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1159 		iexec->execute = false;
1160 	}
1161 
1162 	return 2;
1163 }
1164 
1165 static int
1166 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1167 {
1168 	/*
1169 	 * INIT_DP_CONDITION   opcode: 0x3A ('')
1170 	 *
1171 	 * offset      (8 bit): opcode
1172 	 * offset + 1  (8 bit): "sub" opcode
1173 	 * offset + 2  (8 bit): unknown
1174 	 *
1175 	 */
1176 
1177 	struct bit_displayport_encoder_table *dpe = NULL;
1178 	struct dcb_entry *dcb = bios->display.output;
1179 	struct drm_device *dev = bios->dev;
1180 	uint8_t cond = bios->data[offset + 1];
1181 	int dummy;
1182 
1183 	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1184 
1185 	if (!iexec->execute)
1186 		return 3;
1187 
1188 	dpe = nouveau_bios_dp_table(dev, dcb, &dummy);
1189 	if (!dpe) {
1190 		NV_ERROR(dev, "0x%04X: INIT_3A: no encoder table!!\n", offset);
1191 		return 3;
1192 	}
1193 
1194 	switch (cond) {
1195 	case 0:
1196 	{
1197 		struct dcb_connector_table_entry *ent =
1198 			&bios->dcb.connector.entry[dcb->connector];
1199 
1200 		if (ent->type != DCB_CONNECTOR_eDP)
1201 			iexec->execute = false;
1202 	}
1203 		break;
1204 	case 1:
1205 	case 2:
1206 		if (!(dpe->unknown & cond))
1207 			iexec->execute = false;
1208 		break;
1209 	case 5:
1210 	{
1211 		struct nouveau_i2c_chan *auxch;
1212 		int ret;
1213 
1214 		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1215 		if (!auxch) {
1216 			NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
1217 			return 3;
1218 		}
1219 
1220 		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1221 		if (ret) {
1222 			NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
1223 			return 3;
1224 		}
1225 
1226 		if (!(cond & 1))
1227 			iexec->execute = false;
1228 	}
1229 		break;
1230 	default:
1231 		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1232 		break;
1233 	}
1234 
1235 	if (iexec->execute)
1236 		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1237 	else
1238 		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1239 
1240 	return 3;
1241 }
1242 
1243 static int
1244 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1245 {
1246 	/*
1247 	 * INIT_3B   opcode: 0x3B ('')
1248 	 *
1249 	 * offset      (8 bit): opcode
1250 	 * offset + 1  (8 bit): crtc index
1251 	 *
1252 	 */
1253 
1254 	uint8_t or = ffs(bios->display.output->or) - 1;
1255 	uint8_t index = bios->data[offset + 1];
1256 	uint8_t data;
1257 
1258 	if (!iexec->execute)
1259 		return 2;
1260 
1261 	data = bios_idxprt_rd(bios, 0x3d4, index);
1262 	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1263 	return 2;
1264 }
1265 
1266 static int
1267 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1268 {
1269 	/*
1270 	 * INIT_3C   opcode: 0x3C ('')
1271 	 *
1272 	 * offset      (8 bit): opcode
1273 	 * offset + 1  (8 bit): crtc index
1274 	 *
1275 	 */
1276 
1277 	uint8_t or = ffs(bios->display.output->or) - 1;
1278 	uint8_t index = bios->data[offset + 1];
1279 	uint8_t data;
1280 
1281 	if (!iexec->execute)
1282 		return 2;
1283 
1284 	data = bios_idxprt_rd(bios, 0x3d4, index);
1285 	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1286 	return 2;
1287 }
1288 
1289 static int
1290 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1291 		      struct init_exec *iexec)
1292 {
1293 	/*
1294 	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
1295 	 *
1296 	 * offset      (8  bit): opcode
1297 	 * offset + 1  (32 bit): control register
1298 	 * offset + 5  (32 bit): data register
1299 	 * offset + 9  (32 bit): mask
1300 	 * offset + 13 (32 bit): data
1301 	 * offset + 17 (8  bit): count
1302 	 * offset + 18 (8  bit): address 1
1303 	 * offset + 19 (8  bit): data 1
1304 	 * ...
1305 	 *
1306 	 * For each of "count" address and data pairs, write "data n" to
1307 	 * "data register", read the current value of "control register",
1308 	 * and write it back once ANDed with "mask", ORed with "data",
1309 	 * and ORed with "address n"
1310 	 */
1311 
1312 	uint32_t controlreg = ROM32(bios->data[offset + 1]);
1313 	uint32_t datareg = ROM32(bios->data[offset + 5]);
1314 	uint32_t mask = ROM32(bios->data[offset + 9]);
1315 	uint32_t data = ROM32(bios->data[offset + 13]);
1316 	uint8_t count = bios->data[offset + 17];
1317 	int len = 18 + count * 2;
1318 	uint32_t value;
1319 	int i;
1320 
1321 	if (!iexec->execute)
1322 		return len;
1323 
1324 	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1325 		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1326 		offset, controlreg, datareg, mask, data, count);
1327 
1328 	for (i = 0; i < count; i++) {
1329 		uint8_t instaddress = bios->data[offset + 18 + i * 2];
1330 		uint8_t instdata = bios->data[offset + 19 + i * 2];
1331 
1332 		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1333 			offset, instaddress, instdata);
1334 
1335 		bios_wr32(bios, datareg, instdata);
1336 		value  = bios_rd32(bios, controlreg) & mask;
1337 		value |= data;
1338 		value |= instaddress;
1339 		bios_wr32(bios, controlreg, value);
1340 	}
1341 
1342 	return len;
1343 }
1344 
1345 static int
1346 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1347 		      struct init_exec *iexec)
1348 {
1349 	/*
1350 	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
1351 	 *
1352 	 * offset      (8  bit): opcode
1353 	 * offset + 1  (16 bit): CRTC port
1354 	 * offset + 3  (8  bit): CRTC index
1355 	 * offset + 4  (8  bit): mask
1356 	 * offset + 5  (8  bit): shift
1357 	 * offset + 6  (8  bit): count
1358 	 * offset + 7  (32 bit): register
1359 	 * offset + 11 (32 bit): frequency 1
1360 	 * ...
1361 	 *
1362 	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1363 	 * Set PLL register "register" to coefficients for frequency n,
1364 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1365 	 * "mask" and shifted right by "shift".
1366 	 */
1367 
1368 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1369 	uint8_t crtcindex = bios->data[offset + 3];
1370 	uint8_t mask = bios->data[offset + 4];
1371 	uint8_t shift = bios->data[offset + 5];
1372 	uint8_t count = bios->data[offset + 6];
1373 	uint32_t reg = ROM32(bios->data[offset + 7]);
1374 	int len = 11 + count * 4;
1375 	uint8_t config;
1376 	uint32_t freq;
1377 
1378 	if (!iexec->execute)
1379 		return len;
1380 
1381 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1382 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1383 		offset, crtcport, crtcindex, mask, shift, count, reg);
1384 
1385 	if (!reg)
1386 		return len;
1387 
1388 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1389 	if (config > count) {
1390 		NV_ERROR(bios->dev,
1391 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1392 			 offset, config, count);
1393 		return len;
1394 	}
1395 
1396 	freq = ROM32(bios->data[offset + 11 + config * 4]);
1397 
1398 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1399 		offset, reg, config, freq);
1400 
1401 	setPLL(bios, reg, freq);
1402 
1403 	return len;
1404 }
1405 
1406 static int
1407 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1408 {
1409 	/*
1410 	 * INIT_PLL2   opcode: 0x4B ('K')
1411 	 *
1412 	 * offset      (8  bit): opcode
1413 	 * offset + 1  (32 bit): register
1414 	 * offset + 5  (32 bit): freq
1415 	 *
1416 	 * Set PLL register "register" to coefficients for frequency "freq"
1417 	 */
1418 
1419 	uint32_t reg = ROM32(bios->data[offset + 1]);
1420 	uint32_t freq = ROM32(bios->data[offset + 5]);
1421 
1422 	if (!iexec->execute)
1423 		return 9;
1424 
1425 	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1426 		offset, reg, freq);
1427 
1428 	setPLL(bios, reg, freq);
1429 	return 9;
1430 }
1431 
1432 static int
1433 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1434 {
1435 	/*
1436 	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
1437 	 *
1438 	 * offset      (8 bit): opcode
1439 	 * offset + 1  (8 bit): DCB I2C table entry index
1440 	 * offset + 2  (8 bit): I2C slave address
1441 	 * offset + 3  (8 bit): count
1442 	 * offset + 4  (8 bit): I2C register 1
1443 	 * offset + 5  (8 bit): mask 1
1444 	 * offset + 6  (8 bit): data 1
1445 	 * ...
1446 	 *
1447 	 * For each of "count" registers given by "I2C register n" on the device
1448 	 * addressed by "I2C slave address" on the I2C bus given by
1449 	 * "DCB I2C table entry index", read the register, AND the result with
1450 	 * "mask n" and OR it with "data n" before writing it back to the device
1451 	 */
1452 
1453 	struct drm_device *dev = bios->dev;
1454 	uint8_t i2c_index = bios->data[offset + 1];
1455 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1456 	uint8_t count = bios->data[offset + 3];
1457 	struct nouveau_i2c_chan *chan;
1458 	int len = 4 + count * 3;
1459 	int ret, i;
1460 
1461 	if (!iexec->execute)
1462 		return len;
1463 
1464 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1465 		      "Count: 0x%02X\n",
1466 		offset, i2c_index, i2c_address, count);
1467 
1468 	chan = init_i2c_device_find(dev, i2c_index);
1469 	if (!chan) {
1470 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1471 		return len;
1472 	}
1473 
1474 	for (i = 0; i < count; i++) {
1475 		uint8_t reg = bios->data[offset + 4 + i * 3];
1476 		uint8_t mask = bios->data[offset + 5 + i * 3];
1477 		uint8_t data = bios->data[offset + 6 + i * 3];
1478 		union i2c_smbus_data val;
1479 
1480 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1481 				     I2C_SMBUS_READ, reg,
1482 				     I2C_SMBUS_BYTE_DATA, &val);
1483 		if (ret < 0) {
1484 			NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
1485 			return len;
1486 		}
1487 
1488 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1489 			      "Mask: 0x%02X, Data: 0x%02X\n",
1490 			offset, reg, val.byte, mask, data);
1491 
1492 		if (!bios->execute)
1493 			continue;
1494 
1495 		val.byte &= mask;
1496 		val.byte |= data;
1497 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1498 				     I2C_SMBUS_WRITE, reg,
1499 				     I2C_SMBUS_BYTE_DATA, &val);
1500 		if (ret < 0) {
1501 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1502 			return len;
1503 		}
1504 	}
1505 
1506 	return len;
1507 }
1508 
1509 static int
1510 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1511 {
1512 	/*
1513 	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
1514 	 *
1515 	 * offset      (8 bit): opcode
1516 	 * offset + 1  (8 bit): DCB I2C table entry index
1517 	 * offset + 2  (8 bit): I2C slave address
1518 	 * offset + 3  (8 bit): count
1519 	 * offset + 4  (8 bit): I2C register 1
1520 	 * offset + 5  (8 bit): data 1
1521 	 * ...
1522 	 *
1523 	 * For each of "count" registers given by "I2C register n" on the device
1524 	 * addressed by "I2C slave address" on the I2C bus given by
1525 	 * "DCB I2C table entry index", set the register to "data n"
1526 	 */
1527 
1528 	struct drm_device *dev = bios->dev;
1529 	uint8_t i2c_index = bios->data[offset + 1];
1530 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1531 	uint8_t count = bios->data[offset + 3];
1532 	struct nouveau_i2c_chan *chan;
1533 	int len = 4 + count * 2;
1534 	int ret, i;
1535 
1536 	if (!iexec->execute)
1537 		return len;
1538 
1539 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1540 		      "Count: 0x%02X\n",
1541 		offset, i2c_index, i2c_address, count);
1542 
1543 	chan = init_i2c_device_find(dev, i2c_index);
1544 	if (!chan) {
1545 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1546 		return len;
1547 	}
1548 
1549 	for (i = 0; i < count; i++) {
1550 		uint8_t reg = bios->data[offset + 4 + i * 2];
1551 		union i2c_smbus_data val;
1552 
1553 		val.byte = bios->data[offset + 5 + i * 2];
1554 
1555 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1556 			offset, reg, val.byte);
1557 
1558 		if (!bios->execute)
1559 			continue;
1560 
1561 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1562 				     I2C_SMBUS_WRITE, reg,
1563 				     I2C_SMBUS_BYTE_DATA, &val);
1564 		if (ret < 0) {
1565 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1566 			return len;
1567 		}
1568 	}
1569 
1570 	return len;
1571 }
1572 
1573 static int
1574 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1575 {
1576 	/*
1577 	 * INIT_ZM_I2C   opcode: 0x4E ('N')
1578 	 *
1579 	 * offset      (8 bit): opcode
1580 	 * offset + 1  (8 bit): DCB I2C table entry index
1581 	 * offset + 2  (8 bit): I2C slave address
1582 	 * offset + 3  (8 bit): count
1583 	 * offset + 4  (8 bit): data 1
1584 	 * ...
1585 	 *
1586 	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1587 	 * address" on the I2C bus given by "DCB I2C table entry index"
1588 	 */
1589 
1590 	struct drm_device *dev = bios->dev;
1591 	uint8_t i2c_index = bios->data[offset + 1];
1592 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1593 	uint8_t count = bios->data[offset + 3];
1594 	int len = 4 + count;
1595 	struct nouveau_i2c_chan *chan;
1596 	struct i2c_msg msg;
1597 	uint8_t data[256];
1598 	int ret, i;
1599 
1600 	if (!iexec->execute)
1601 		return len;
1602 
1603 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1604 		      "Count: 0x%02X\n",
1605 		offset, i2c_index, i2c_address, count);
1606 
1607 	chan = init_i2c_device_find(dev, i2c_index);
1608 	if (!chan) {
1609 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1610 		return len;
1611 	}
1612 
1613 	for (i = 0; i < count; i++) {
1614 		data[i] = bios->data[offset + 4 + i];
1615 
1616 		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1617 	}
1618 
1619 	if (bios->execute) {
1620 		msg.addr = i2c_address;
1621 		msg.flags = 0;
1622 		msg.len = count;
1623 		msg.buf = data;
1624 		ret = i2c_transfer(&chan->adapter, &msg, 1);
1625 		if (ret != 1) {
1626 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1627 			return len;
1628 		}
1629 	}
1630 
1631 	return len;
1632 }
1633 
1634 static int
1635 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1636 {
1637 	/*
1638 	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
1639 	 *
1640 	 * offset      (8 bit): opcode
1641 	 * offset + 1  (8 bit): magic lookup value
1642 	 * offset + 2  (8 bit): TMDS address
1643 	 * offset + 3  (8 bit): mask
1644 	 * offset + 4  (8 bit): data
1645 	 *
1646 	 * Read the data reg for TMDS address "TMDS address", AND it with mask
1647 	 * and OR it with data, then write it back
1648 	 * "magic lookup value" determines which TMDS base address register is
1649 	 * used -- see get_tmds_index_reg()
1650 	 */
1651 
1652 	struct drm_device *dev = bios->dev;
1653 	uint8_t mlv = bios->data[offset + 1];
1654 	uint32_t tmdsaddr = bios->data[offset + 2];
1655 	uint8_t mask = bios->data[offset + 3];
1656 	uint8_t data = bios->data[offset + 4];
1657 	uint32_t reg, value;
1658 
1659 	if (!iexec->execute)
1660 		return 5;
1661 
1662 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1663 		      "Mask: 0x%02X, Data: 0x%02X\n",
1664 		offset, mlv, tmdsaddr, mask, data);
1665 
1666 	reg = get_tmds_index_reg(bios->dev, mlv);
1667 	if (!reg) {
1668 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1669 		return 5;
1670 	}
1671 
1672 	bios_wr32(bios, reg,
1673 		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1674 	value = (bios_rd32(bios, reg + 4) & mask) | data;
1675 	bios_wr32(bios, reg + 4, value);
1676 	bios_wr32(bios, reg, tmdsaddr);
1677 
1678 	return 5;
1679 }
1680 
1681 static int
1682 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1683 		   struct init_exec *iexec)
1684 {
1685 	/*
1686 	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
1687 	 *
1688 	 * offset      (8 bit): opcode
1689 	 * offset + 1  (8 bit): magic lookup value
1690 	 * offset + 2  (8 bit): count
1691 	 * offset + 3  (8 bit): addr 1
1692 	 * offset + 4  (8 bit): data 1
1693 	 * ...
1694 	 *
1695 	 * For each of "count" TMDS address and data pairs write "data n" to
1696 	 * "addr n".  "magic lookup value" determines which TMDS base address
1697 	 * register is used -- see get_tmds_index_reg()
1698 	 */
1699 
1700 	struct drm_device *dev = bios->dev;
1701 	uint8_t mlv = bios->data[offset + 1];
1702 	uint8_t count = bios->data[offset + 2];
1703 	int len = 3 + count * 2;
1704 	uint32_t reg;
1705 	int i;
1706 
1707 	if (!iexec->execute)
1708 		return len;
1709 
1710 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1711 		offset, mlv, count);
1712 
1713 	reg = get_tmds_index_reg(bios->dev, mlv);
1714 	if (!reg) {
1715 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1716 		return len;
1717 	}
1718 
1719 	for (i = 0; i < count; i++) {
1720 		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1721 		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1722 
1723 		bios_wr32(bios, reg + 4, tmdsdata);
1724 		bios_wr32(bios, reg, tmdsaddr);
1725 	}
1726 
1727 	return len;
1728 }
1729 
1730 static int
1731 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1732 		      struct init_exec *iexec)
1733 {
1734 	/*
1735 	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
1736 	 *
1737 	 * offset      (8 bit): opcode
1738 	 * offset + 1  (8 bit): CRTC index1
1739 	 * offset + 2  (8 bit): CRTC index2
1740 	 * offset + 3  (8 bit): baseaddr
1741 	 * offset + 4  (8 bit): count
1742 	 * offset + 5  (8 bit): data 1
1743 	 * ...
1744 	 *
1745 	 * For each of "count" address and data pairs, write "baseaddr + n" to
1746 	 * "CRTC index1" and "data n" to "CRTC index2"
1747 	 * Once complete, restore initial value read from "CRTC index1"
1748 	 */
1749 	uint8_t crtcindex1 = bios->data[offset + 1];
1750 	uint8_t crtcindex2 = bios->data[offset + 2];
1751 	uint8_t baseaddr = bios->data[offset + 3];
1752 	uint8_t count = bios->data[offset + 4];
1753 	int len = 5 + count;
1754 	uint8_t oldaddr, data;
1755 	int i;
1756 
1757 	if (!iexec->execute)
1758 		return len;
1759 
1760 	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1761 		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
1762 		offset, crtcindex1, crtcindex2, baseaddr, count);
1763 
1764 	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1765 
1766 	for (i = 0; i < count; i++) {
1767 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1768 				     baseaddr + i);
1769 		data = bios->data[offset + 5 + i];
1770 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1771 	}
1772 
1773 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1774 
1775 	return len;
1776 }
1777 
1778 static int
1779 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1780 {
1781 	/*
1782 	 * INIT_CR   opcode: 0x52 ('R')
1783 	 *
1784 	 * offset      (8  bit): opcode
1785 	 * offset + 1  (8  bit): CRTC index
1786 	 * offset + 2  (8  bit): mask
1787 	 * offset + 3  (8  bit): data
1788 	 *
1789 	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1790 	 * data back to "CRTC index"
1791 	 */
1792 
1793 	uint8_t crtcindex = bios->data[offset + 1];
1794 	uint8_t mask = bios->data[offset + 2];
1795 	uint8_t data = bios->data[offset + 3];
1796 	uint8_t value;
1797 
1798 	if (!iexec->execute)
1799 		return 4;
1800 
1801 	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1802 		offset, crtcindex, mask, data);
1803 
1804 	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1805 	value |= data;
1806 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1807 
1808 	return 4;
1809 }
1810 
1811 static int
1812 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1813 {
1814 	/*
1815 	 * INIT_ZM_CR   opcode: 0x53 ('S')
1816 	 *
1817 	 * offset      (8 bit): opcode
1818 	 * offset + 1  (8 bit): CRTC index
1819 	 * offset + 2  (8 bit): value
1820 	 *
1821 	 * Assign "value" to CRTC register with index "CRTC index".
1822 	 */
1823 
1824 	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1825 	uint8_t data = bios->data[offset + 2];
1826 
1827 	if (!iexec->execute)
1828 		return 3;
1829 
1830 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1831 
1832 	return 3;
1833 }
1834 
1835 static int
1836 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1837 {
1838 	/*
1839 	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
1840 	 *
1841 	 * offset      (8 bit): opcode
1842 	 * offset + 1  (8 bit): count
1843 	 * offset + 2  (8 bit): CRTC index 1
1844 	 * offset + 3  (8 bit): value 1
1845 	 * ...
1846 	 *
1847 	 * For "count", assign "value n" to CRTC register with index
1848 	 * "CRTC index n".
1849 	 */
1850 
1851 	uint8_t count = bios->data[offset + 1];
1852 	int len = 2 + count * 2;
1853 	int i;
1854 
1855 	if (!iexec->execute)
1856 		return len;
1857 
1858 	for (i = 0; i < count; i++)
1859 		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1860 
1861 	return len;
1862 }
1863 
1864 static int
1865 init_condition_time(struct nvbios *bios, uint16_t offset,
1866 		    struct init_exec *iexec)
1867 {
1868 	/*
1869 	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
1870 	 *
1871 	 * offset      (8 bit): opcode
1872 	 * offset + 1  (8 bit): condition number
1873 	 * offset + 2  (8 bit): retries / 50
1874 	 *
1875 	 * Check condition "condition number" in the condition table.
1876 	 * Bios code then sleeps for 2ms if the condition is not met, and
1877 	 * repeats up to "retries" times, but on one C51 this has proved
1878 	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
1879 	 * this, and bail after "retries" times, or 2s, whichever is less.
1880 	 * If still not met after retries, clear execution flag for this table.
1881 	 */
1882 
1883 	uint8_t cond = bios->data[offset + 1];
1884 	uint16_t retries = bios->data[offset + 2] * 50;
1885 	unsigned cnt;
1886 
1887 	if (!iexec->execute)
1888 		return 3;
1889 
1890 	if (retries > 100)
1891 		retries = 100;
1892 
1893 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1894 		offset, cond, retries);
1895 
1896 	if (!bios->execute) /* avoid 2s delays when "faking" execution */
1897 		retries = 1;
1898 
1899 	for (cnt = 0; cnt < retries; cnt++) {
1900 		if (bios_condition_met(bios, offset, cond)) {
1901 			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1902 								offset);
1903 			break;
1904 		} else {
1905 			BIOSLOG(bios, "0x%04X: "
1906 				"Condition not met, sleeping for 20ms\n",
1907 								offset);
1908 			mdelay(20);
1909 		}
1910 	}
1911 
1912 	if (!bios_condition_met(bios, offset, cond)) {
1913 		NV_WARN(bios->dev,
1914 			"0x%04X: Condition still not met after %dms, "
1915 			"skipping following opcodes\n", offset, 20 * retries);
1916 		iexec->execute = false;
1917 	}
1918 
1919 	return 3;
1920 }
1921 
1922 static int
1923 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1924 {
1925 	/*
1926 	 * INIT_LTIME   opcode: 0x57 ('V')
1927 	 *
1928 	 * offset      (8  bit): opcode
1929 	 * offset + 1  (16 bit): time
1930 	 *
1931 	 * Sleep for "time" milliseconds.
1932 	 */
1933 
1934 	unsigned time = ROM16(bios->data[offset + 1]);
1935 
1936 	if (!iexec->execute)
1937 		return 3;
1938 
1939 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1940 		offset, time);
1941 
1942 	mdelay(time);
1943 
1944 	return 3;
1945 }
1946 
1947 static int
1948 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1949 		     struct init_exec *iexec)
1950 {
1951 	/*
1952 	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
1953 	 *
1954 	 * offset      (8  bit): opcode
1955 	 * offset + 1  (32 bit): base register
1956 	 * offset + 5  (8  bit): count
1957 	 * offset + 6  (32 bit): value 1
1958 	 * ...
1959 	 *
1960 	 * Starting at offset + 6 there are "count" 32 bit values.
1961 	 * For "count" iterations set "base register" + 4 * current_iteration
1962 	 * to "value current_iteration"
1963 	 */
1964 
1965 	uint32_t basereg = ROM32(bios->data[offset + 1]);
1966 	uint32_t count = bios->data[offset + 5];
1967 	int len = 6 + count * 4;
1968 	int i;
1969 
1970 	if (!iexec->execute)
1971 		return len;
1972 
1973 	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1974 		offset, basereg, count);
1975 
1976 	for (i = 0; i < count; i++) {
1977 		uint32_t reg = basereg + i * 4;
1978 		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1979 
1980 		bios_wr32(bios, reg, data);
1981 	}
1982 
1983 	return len;
1984 }
1985 
1986 static int
1987 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1988 {
1989 	/*
1990 	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
1991 	 *
1992 	 * offset      (8  bit): opcode
1993 	 * offset + 1  (16 bit): subroutine offset (in bios)
1994 	 *
1995 	 * Calls a subroutine that will execute commands until INIT_DONE
1996 	 * is found.
1997 	 */
1998 
1999 	uint16_t sub_offset = ROM16(bios->data[offset + 1]);
2000 
2001 	if (!iexec->execute)
2002 		return 3;
2003 
2004 	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
2005 		offset, sub_offset);
2006 
2007 	parse_init_table(bios, sub_offset, iexec);
2008 
2009 	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
2010 
2011 	return 3;
2012 }
2013 
2014 static int
2015 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2016 {
2017 	/*
2018 	 * INIT_JUMP   opcode: 0x5C ('\')
2019 	 *
2020 	 * offset      (8  bit): opcode
2021 	 * offset + 1  (16 bit): offset (in bios)
2022 	 *
2023 	 * Continue execution of init table from 'offset'
2024 	 */
2025 
2026 	uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
2027 
2028 	if (!iexec->execute)
2029 		return 3;
2030 
2031 	BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
2032 	return jmp_offset - offset;
2033 }
2034 
2035 static int
2036 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2037 {
2038 	/*
2039 	 * INIT_I2C_IF   opcode: 0x5E ('^')
2040 	 *
2041 	 * offset      (8 bit): opcode
2042 	 * offset + 1  (8 bit): DCB I2C table entry index
2043 	 * offset + 2  (8 bit): I2C slave address
2044 	 * offset + 3  (8 bit): I2C register
2045 	 * offset + 4  (8 bit): mask
2046 	 * offset + 5  (8 bit): data
2047 	 *
2048 	 * Read the register given by "I2C register" on the device addressed
2049 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
2050 	 * entry index". Compare the result AND "mask" to "data".
2051 	 * If they're not equal, skip subsequent opcodes until condition is
2052 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2053 	 */
2054 
2055 	uint8_t i2c_index = bios->data[offset + 1];
2056 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
2057 	uint8_t reg = bios->data[offset + 3];
2058 	uint8_t mask = bios->data[offset + 4];
2059 	uint8_t data = bios->data[offset + 5];
2060 	struct nouveau_i2c_chan *chan;
2061 	union i2c_smbus_data val;
2062 	int ret;
2063 
2064 	/* no execute check by design */
2065 
2066 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
2067 		offset, i2c_index, i2c_address);
2068 
2069 	chan = init_i2c_device_find(bios->dev, i2c_index);
2070 	if (!chan)
2071 		return -ENODEV;
2072 
2073 	ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
2074 			     I2C_SMBUS_READ, reg,
2075 			     I2C_SMBUS_BYTE_DATA, &val);
2076 	if (ret < 0) {
2077 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
2078 			      "Mask: 0x%02X, Data: 0x%02X\n",
2079 			offset, reg, mask, data);
2080 		iexec->execute = 0;
2081 		return 6;
2082 	}
2083 
2084 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
2085 		      "Mask: 0x%02X, Data: 0x%02X\n",
2086 		offset, reg, val.byte, mask, data);
2087 
2088 	iexec->execute = ((val.byte & mask) == data);
2089 
2090 	return 6;
2091 }
2092 
2093 static int
2094 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2095 {
2096 	/*
2097 	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
2098 	 *
2099 	 * offset      (8  bit): opcode
2100 	 * offset + 1  (32 bit): src reg
2101 	 * offset + 5  (8  bit): shift
2102 	 * offset + 6  (32 bit): src mask
2103 	 * offset + 10 (32 bit): xor
2104 	 * offset + 14 (32 bit): dst reg
2105 	 * offset + 18 (32 bit): dst mask
2106 	 *
2107 	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
2108 	 * "src mask", then XOR with "xor". Write this OR'd with
2109 	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
2110 	 */
2111 
2112 	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2113 	uint8_t shift = bios->data[offset + 5];
2114 	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2115 	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2116 	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2117 	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2118 	uint32_t srcvalue, dstvalue;
2119 
2120 	if (!iexec->execute)
2121 		return 22;
2122 
2123 	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2124 		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2125 		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2126 
2127 	srcvalue = bios_rd32(bios, srcreg);
2128 
2129 	if (shift < 0x80)
2130 		srcvalue >>= shift;
2131 	else
2132 		srcvalue <<= (0x100 - shift);
2133 
2134 	srcvalue = (srcvalue & srcmask) ^ xor;
2135 
2136 	dstvalue = bios_rd32(bios, dstreg) & dstmask;
2137 
2138 	bios_wr32(bios, dstreg, dstvalue | srcvalue);
2139 
2140 	return 22;
2141 }
2142 
2143 static int
2144 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2145 {
2146 	/*
2147 	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
2148 	 *
2149 	 * offset      (8  bit): opcode
2150 	 * offset + 1  (16 bit): CRTC port
2151 	 * offset + 3  (8  bit): CRTC index
2152 	 * offset + 4  (8  bit): data
2153 	 *
2154 	 * Write "data" to index "CRTC index" of "CRTC port"
2155 	 */
2156 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2157 	uint8_t crtcindex = bios->data[offset + 3];
2158 	uint8_t data = bios->data[offset + 4];
2159 
2160 	if (!iexec->execute)
2161 		return 5;
2162 
2163 	bios_idxprt_wr(bios, crtcport, crtcindex, data);
2164 
2165 	return 5;
2166 }
2167 
2168 static inline void
2169 bios_md32(struct nvbios *bios, uint32_t reg,
2170 	  uint32_t mask, uint32_t val)
2171 {
2172 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
2173 }
2174 
2175 static uint32_t
2176 peek_fb(struct drm_device *dev, struct io_mapping *fb,
2177 	uint32_t off)
2178 {
2179 	uint32_t val = 0;
2180 
2181 	if (off < pci_resource_len(dev->pdev, 1)) {
2182 		uint8_t __iomem *p =
2183 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2184 
2185 		val = ioread32(p + (off & ~PAGE_MASK));
2186 
2187 		io_mapping_unmap_atomic(p);
2188 	}
2189 
2190 	return val;
2191 }
2192 
2193 static void
2194 poke_fb(struct drm_device *dev, struct io_mapping *fb,
2195 	uint32_t off, uint32_t val)
2196 {
2197 	if (off < pci_resource_len(dev->pdev, 1)) {
2198 		uint8_t __iomem *p =
2199 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2200 
2201 		iowrite32(val, p + (off & ~PAGE_MASK));
2202 		wmb();
2203 
2204 		io_mapping_unmap_atomic(p);
2205 	}
2206 }
2207 
2208 static inline bool
2209 read_back_fb(struct drm_device *dev, struct io_mapping *fb,
2210 	     uint32_t off, uint32_t val)
2211 {
2212 	poke_fb(dev, fb, off, val);
2213 	return val == peek_fb(dev, fb, off);
2214 }
2215 
2216 static int
2217 nv04_init_compute_mem(struct nvbios *bios)
2218 {
2219 	struct drm_device *dev = bios->dev;
2220 	uint32_t patt = 0xdeadbeef;
2221 	struct io_mapping *fb;
2222 	int i;
2223 
2224 	/* Map the framebuffer aperture */
2225 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2226 				  pci_resource_len(dev->pdev, 1));
2227 	if (!fb)
2228 		return -ENOMEM;
2229 
2230 	/* Sequencer and refresh off */
2231 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2232 	bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
2233 
2234 	bios_md32(bios, NV04_PFB_BOOT_0, ~0,
2235 		  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
2236 		  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2237 		  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
2238 
2239 	for (i = 0; i < 4; i++)
2240 		poke_fb(dev, fb, 4 * i, patt);
2241 
2242 	poke_fb(dev, fb, 0x400000, patt + 1);
2243 
2244 	if (peek_fb(dev, fb, 0) == patt + 1) {
2245 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2246 			  NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
2247 		bios_md32(bios, NV04_PFB_DEBUG_0,
2248 			  NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2249 
2250 		for (i = 0; i < 4; i++)
2251 			poke_fb(dev, fb, 4 * i, patt);
2252 
2253 		if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
2254 			bios_md32(bios, NV04_PFB_BOOT_0,
2255 				  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2256 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2257 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2258 
2259 	} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
2260 		   (patt & 0xffff0000)) {
2261 		bios_md32(bios, NV04_PFB_BOOT_0,
2262 			  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2263 			  NV04_PFB_BOOT_0_RAM_AMOUNT,
2264 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2265 
2266 	} else if (peek_fb(dev, fb, 0) != patt) {
2267 		if (read_back_fb(dev, fb, 0x800000, patt))
2268 			bios_md32(bios, NV04_PFB_BOOT_0,
2269 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2270 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2271 		else
2272 			bios_md32(bios, NV04_PFB_BOOT_0,
2273 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2274 				  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2275 
2276 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2277 			  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
2278 
2279 	} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
2280 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2281 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2282 
2283 	}
2284 
2285 	/* Refresh on, sequencer on */
2286 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2287 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2288 
2289 	io_mapping_free(fb);
2290 	return 0;
2291 }
2292 
2293 static const uint8_t *
2294 nv05_memory_config(struct nvbios *bios)
2295 {
2296 	/* Defaults for BIOSes lacking a memory config table */
2297 	static const uint8_t default_config_tab[][2] = {
2298 		{ 0x24, 0x00 },
2299 		{ 0x28, 0x00 },
2300 		{ 0x24, 0x01 },
2301 		{ 0x1f, 0x00 },
2302 		{ 0x0f, 0x00 },
2303 		{ 0x17, 0x00 },
2304 		{ 0x06, 0x00 },
2305 		{ 0x00, 0x00 }
2306 	};
2307 	int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
2308 		 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
2309 
2310 	if (bios->legacy.mem_init_tbl_ptr)
2311 		return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
2312 	else
2313 		return default_config_tab[i];
2314 }
2315 
2316 static int
2317 nv05_init_compute_mem(struct nvbios *bios)
2318 {
2319 	struct drm_device *dev = bios->dev;
2320 	const uint8_t *ramcfg = nv05_memory_config(bios);
2321 	uint32_t patt = 0xdeadbeef;
2322 	struct io_mapping *fb;
2323 	int i, v;
2324 
2325 	/* Map the framebuffer aperture */
2326 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2327 				  pci_resource_len(dev->pdev, 1));
2328 	if (!fb)
2329 		return -ENOMEM;
2330 
2331 	/* Sequencer off */
2332 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2333 
2334 	if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
2335 		goto out;
2336 
2337 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2338 
2339 	/* If present load the hardcoded scrambling table */
2340 	if (bios->legacy.mem_init_tbl_ptr) {
2341 		uint32_t *scramble_tab = (uint32_t *)&bios->data[
2342 			bios->legacy.mem_init_tbl_ptr + 0x10];
2343 
2344 		for (i = 0; i < 8; i++)
2345 			bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
2346 				  ROM32(scramble_tab[i]));
2347 	}
2348 
2349 	/* Set memory type/width/length defaults depending on the straps */
2350 	bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
2351 
2352 	if (ramcfg[1] & 0x80)
2353 		bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
2354 
2355 	bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
2356 	bios_md32(bios, NV04_PFB_CFG1, 0, 1);
2357 
2358 	/* Probe memory bus width */
2359 	for (i = 0; i < 4; i++)
2360 		poke_fb(dev, fb, 4 * i, patt);
2361 
2362 	if (peek_fb(dev, fb, 0xc) != patt)
2363 		bios_md32(bios, NV04_PFB_BOOT_0,
2364 			  NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
2365 
2366 	/* Probe memory length */
2367 	v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
2368 
2369 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
2370 	    (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
2371 	     !read_back_fb(dev, fb, 0, ++patt)))
2372 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2373 			  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
2374 
2375 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
2376 	    !read_back_fb(dev, fb, 0x800000, ++patt))
2377 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2378 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2379 
2380 	if (!read_back_fb(dev, fb, 0x400000, ++patt))
2381 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2382 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2383 
2384 out:
2385 	/* Sequencer on */
2386 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2387 
2388 	io_mapping_free(fb);
2389 	return 0;
2390 }
2391 
2392 static int
2393 nv10_init_compute_mem(struct nvbios *bios)
2394 {
2395 	struct drm_device *dev = bios->dev;
2396 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2397 	const int mem_width[] = { 0x10, 0x00, 0x20 };
2398 	const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
2399 	uint32_t patt = 0xdeadbeef;
2400 	struct io_mapping *fb;
2401 	int i, j, k;
2402 
2403 	/* Map the framebuffer aperture */
2404 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2405 				  pci_resource_len(dev->pdev, 1));
2406 	if (!fb)
2407 		return -ENOMEM;
2408 
2409 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2410 
2411 	/* Probe memory bus width */
2412 	for (i = 0; i < mem_width_count; i++) {
2413 		bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
2414 
2415 		for (j = 0; j < 4; j++) {
2416 			for (k = 0; k < 4; k++)
2417 				poke_fb(dev, fb, 0x1c, 0);
2418 
2419 			poke_fb(dev, fb, 0x1c, patt);
2420 			poke_fb(dev, fb, 0x3c, 0);
2421 
2422 			if (peek_fb(dev, fb, 0x1c) == patt)
2423 				goto mem_width_found;
2424 		}
2425 	}
2426 
2427 mem_width_found:
2428 	patt <<= 1;
2429 
2430 	/* Probe amount of installed memory */
2431 	for (i = 0; i < 4; i++) {
2432 		int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
2433 
2434 		poke_fb(dev, fb, off, patt);
2435 		poke_fb(dev, fb, 0, 0);
2436 
2437 		peek_fb(dev, fb, 0);
2438 		peek_fb(dev, fb, 0);
2439 		peek_fb(dev, fb, 0);
2440 		peek_fb(dev, fb, 0);
2441 
2442 		if (peek_fb(dev, fb, off) == patt)
2443 			goto amount_found;
2444 	}
2445 
2446 	/* IC missing - disable the upper half memory space. */
2447 	bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
2448 
2449 amount_found:
2450 	io_mapping_free(fb);
2451 	return 0;
2452 }
2453 
2454 static int
2455 nv20_init_compute_mem(struct nvbios *bios)
2456 {
2457 	struct drm_device *dev = bios->dev;
2458 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2459 	uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
2460 	uint32_t amount, off;
2461 	struct io_mapping *fb;
2462 
2463 	/* Map the framebuffer aperture */
2464 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2465 				  pci_resource_len(dev->pdev, 1));
2466 	if (!fb)
2467 		return -ENOMEM;
2468 
2469 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2470 
2471 	/* Allow full addressing */
2472 	bios_md32(bios, NV04_PFB_CFG0, 0, mask);
2473 
2474 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2475 	for (off = amount; off > 0x2000000; off -= 0x2000000)
2476 		poke_fb(dev, fb, off - 4, off);
2477 
2478 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2479 	if (amount != peek_fb(dev, fb, amount - 4))
2480 		/* IC missing - disable the upper half memory space. */
2481 		bios_md32(bios, NV04_PFB_CFG0, mask, 0);
2482 
2483 	io_mapping_free(fb);
2484 	return 0;
2485 }
2486 
2487 static int
2488 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2489 {
2490 	/*
2491 	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
2492 	 *
2493 	 * offset      (8 bit): opcode
2494 	 *
2495 	 * This opcode is meant to set the PFB memory config registers
2496 	 * appropriately so that we can correctly calculate how much VRAM it
2497 	 * has (on nv10 and better chipsets the amount of installed VRAM is
2498 	 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2499 	 *
2500 	 * The implementation of this opcode in general consists of several
2501 	 * parts:
2502 	 *
2503 	 * 1) Determination of memory type and density. Only necessary for
2504 	 *    really old chipsets, the memory type reported by the strap bits
2505 	 *    (0x101000) is assumed to be accurate on nv05 and newer.
2506 	 *
2507 	 * 2) Determination of the memory bus width. Usually done by a cunning
2508 	 *    combination of writes to offsets 0x1c and 0x3c in the fb, and
2509 	 *    seeing whether the written values are read back correctly.
2510 	 *
2511 	 *    Only necessary on nv0x-nv1x and nv34, on the other cards we can
2512 	 *    trust the straps.
2513 	 *
2514 	 * 3) Determination of how many of the card's RAM pads have ICs
2515 	 *    attached, usually done by a cunning combination of writes to an
2516 	 *    offset slightly less than the maximum memory reported by
2517 	 *    NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2518 	 *
2519 	 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
2520 	 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
2521 	 * card show nothing being done for this opcode. Why is it still listed
2522 	 * in the table?!
2523 	 */
2524 
2525 	/* no iexec->execute check by design */
2526 
2527 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2528 	int ret;
2529 
2530 	if (dev_priv->chipset >= 0x40 ||
2531 	    dev_priv->chipset == 0x1a ||
2532 	    dev_priv->chipset == 0x1f)
2533 		ret = 0;
2534 	else if (dev_priv->chipset >= 0x20 &&
2535 		 dev_priv->chipset != 0x34)
2536 		ret = nv20_init_compute_mem(bios);
2537 	else if (dev_priv->chipset >= 0x10)
2538 		ret = nv10_init_compute_mem(bios);
2539 	else if (dev_priv->chipset >= 0x5)
2540 		ret = nv05_init_compute_mem(bios);
2541 	else
2542 		ret = nv04_init_compute_mem(bios);
2543 
2544 	if (ret)
2545 		return ret;
2546 
2547 	return 1;
2548 }
2549 
2550 static int
2551 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2552 {
2553 	/*
2554 	 * INIT_RESET   opcode: 0x65 ('e')
2555 	 *
2556 	 * offset      (8  bit): opcode
2557 	 * offset + 1  (32 bit): register
2558 	 * offset + 5  (32 bit): value1
2559 	 * offset + 9  (32 bit): value2
2560 	 *
2561 	 * Assign "value1" to "register", then assign "value2" to "register"
2562 	 */
2563 
2564 	uint32_t reg = ROM32(bios->data[offset + 1]);
2565 	uint32_t value1 = ROM32(bios->data[offset + 5]);
2566 	uint32_t value2 = ROM32(bios->data[offset + 9]);
2567 	uint32_t pci_nv_19, pci_nv_20;
2568 
2569 	/* no iexec->execute check by design */
2570 
2571 	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2572 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
2573 
2574 	bios_wr32(bios, reg, value1);
2575 
2576 	udelay(10);
2577 
2578 	bios_wr32(bios, reg, value2);
2579 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2580 
2581 	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2582 	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
2583 	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2584 
2585 	return 13;
2586 }
2587 
2588 static int
2589 init_configure_mem(struct nvbios *bios, uint16_t offset,
2590 		   struct init_exec *iexec)
2591 {
2592 	/*
2593 	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
2594 	 *
2595 	 * offset      (8 bit): opcode
2596 	 *
2597 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2598 	 * For early bios versions, sets up the memory registers, using values
2599 	 * taken from the memory init table
2600 	 */
2601 
2602 	/* no iexec->execute check by design */
2603 
2604 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2605 	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2606 	uint32_t reg, data;
2607 
2608 	if (bios->major_version > 2)
2609 		return 0;
2610 
2611 	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2612 		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2613 
2614 	if (bios->data[meminitoffs] & 1)
2615 		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2616 
2617 	for (reg = ROM32(bios->data[seqtbloffs]);
2618 	     reg != 0xffffffff;
2619 	     reg = ROM32(bios->data[seqtbloffs += 4])) {
2620 
2621 		switch (reg) {
2622 		case NV04_PFB_PRE:
2623 			data = NV04_PFB_PRE_CMD_PRECHARGE;
2624 			break;
2625 		case NV04_PFB_PAD:
2626 			data = NV04_PFB_PAD_CKE_NORMAL;
2627 			break;
2628 		case NV04_PFB_REF:
2629 			data = NV04_PFB_REF_CMD_REFRESH;
2630 			break;
2631 		default:
2632 			data = ROM32(bios->data[meminitdata]);
2633 			meminitdata += 4;
2634 			if (data == 0xffffffff)
2635 				continue;
2636 		}
2637 
2638 		bios_wr32(bios, reg, data);
2639 	}
2640 
2641 	return 1;
2642 }
2643 
2644 static int
2645 init_configure_clk(struct nvbios *bios, uint16_t offset,
2646 		   struct init_exec *iexec)
2647 {
2648 	/*
2649 	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
2650 	 *
2651 	 * offset      (8 bit): opcode
2652 	 *
2653 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2654 	 * For early bios versions, sets up the NVClk and MClk PLLs, using
2655 	 * values taken from the memory init table
2656 	 */
2657 
2658 	/* no iexec->execute check by design */
2659 
2660 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2661 	int clock;
2662 
2663 	if (bios->major_version > 2)
2664 		return 0;
2665 
2666 	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2667 	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2668 
2669 	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2670 	if (bios->data[meminitoffs] & 1) /* DDR */
2671 		clock *= 2;
2672 	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2673 
2674 	return 1;
2675 }
2676 
2677 static int
2678 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2679 		       struct init_exec *iexec)
2680 {
2681 	/*
2682 	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
2683 	 *
2684 	 * offset      (8 bit): opcode
2685 	 *
2686 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2687 	 * For early bios versions, does early init, loading ram and crystal
2688 	 * configuration from straps into CR3C
2689 	 */
2690 
2691 	/* no iexec->execute check by design */
2692 
2693 	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2694 	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2695 
2696 	if (bios->major_version > 2)
2697 		return 0;
2698 
2699 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2700 			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2701 
2702 	return 1;
2703 }
2704 
2705 static int
2706 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2707 {
2708 	/*
2709 	 * INIT_IO   opcode: 0x69 ('i')
2710 	 *
2711 	 * offset      (8  bit): opcode
2712 	 * offset + 1  (16 bit): CRTC port
2713 	 * offset + 3  (8  bit): mask
2714 	 * offset + 4  (8  bit): data
2715 	 *
2716 	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2717 	 */
2718 
2719 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2720 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2721 	uint8_t mask = bios->data[offset + 3];
2722 	uint8_t data = bios->data[offset + 4];
2723 
2724 	if (!iexec->execute)
2725 		return 5;
2726 
2727 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2728 		offset, crtcport, mask, data);
2729 
2730 	/*
2731 	 * I have no idea what this does, but NVIDIA do this magic sequence
2732 	 * in the places where this INIT_IO happens..
2733 	 */
2734 	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2735 		int i;
2736 
2737 		bios_wr32(bios, 0x614100, (bios_rd32(
2738 			  bios, 0x614100) & 0x0fffffff) | 0x00800000);
2739 
2740 		bios_wr32(bios, 0x00e18c, bios_rd32(
2741 			  bios, 0x00e18c) | 0x00020000);
2742 
2743 		bios_wr32(bios, 0x614900, (bios_rd32(
2744 			  bios, 0x614900) & 0x0fffffff) | 0x00800000);
2745 
2746 		bios_wr32(bios, 0x000200, bios_rd32(
2747 			  bios, 0x000200) & ~0x40000000);
2748 
2749 		mdelay(10);
2750 
2751 		bios_wr32(bios, 0x00e18c, bios_rd32(
2752 			  bios, 0x00e18c) & ~0x00020000);
2753 
2754 		bios_wr32(bios, 0x000200, bios_rd32(
2755 			  bios, 0x000200) | 0x40000000);
2756 
2757 		bios_wr32(bios, 0x614100, 0x00800018);
2758 		bios_wr32(bios, 0x614900, 0x00800018);
2759 
2760 		mdelay(10);
2761 
2762 		bios_wr32(bios, 0x614100, 0x10000018);
2763 		bios_wr32(bios, 0x614900, 0x10000018);
2764 
2765 		for (i = 0; i < 3; i++)
2766 			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2767 				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2768 
2769 		for (i = 0; i < 2; i++)
2770 			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2771 				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2772 
2773 		for (i = 0; i < 3; i++)
2774 			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2775 				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2776 
2777 		for (i = 0; i < 2; i++)
2778 			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2779 				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2780 
2781 		for (i = 0; i < 2; i++)
2782 			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2783 				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2784 		return 5;
2785 	}
2786 
2787 	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2788 									data);
2789 	return 5;
2790 }
2791 
2792 static int
2793 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2794 {
2795 	/*
2796 	 * INIT_SUB   opcode: 0x6B ('k')
2797 	 *
2798 	 * offset      (8 bit): opcode
2799 	 * offset + 1  (8 bit): script number
2800 	 *
2801 	 * Execute script number "script number", as a subroutine
2802 	 */
2803 
2804 	uint8_t sub = bios->data[offset + 1];
2805 
2806 	if (!iexec->execute)
2807 		return 2;
2808 
2809 	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2810 
2811 	parse_init_table(bios,
2812 			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2813 			 iexec);
2814 
2815 	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2816 
2817 	return 2;
2818 }
2819 
2820 static int
2821 init_ram_condition(struct nvbios *bios, uint16_t offset,
2822 		   struct init_exec *iexec)
2823 {
2824 	/*
2825 	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
2826 	 *
2827 	 * offset      (8 bit): opcode
2828 	 * offset + 1  (8 bit): mask
2829 	 * offset + 2  (8 bit): cmpval
2830 	 *
2831 	 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2832 	 * If condition not met skip subsequent opcodes until condition is
2833 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2834 	 */
2835 
2836 	uint8_t mask = bios->data[offset + 1];
2837 	uint8_t cmpval = bios->data[offset + 2];
2838 	uint8_t data;
2839 
2840 	if (!iexec->execute)
2841 		return 3;
2842 
2843 	data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2844 
2845 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2846 		offset, data, cmpval);
2847 
2848 	if (data == cmpval)
2849 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2850 	else {
2851 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2852 		iexec->execute = false;
2853 	}
2854 
2855 	return 3;
2856 }
2857 
2858 static int
2859 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2860 {
2861 	/*
2862 	 * INIT_NV_REG   opcode: 0x6E ('n')
2863 	 *
2864 	 * offset      (8  bit): opcode
2865 	 * offset + 1  (32 bit): register
2866 	 * offset + 5  (32 bit): mask
2867 	 * offset + 9  (32 bit): data
2868 	 *
2869 	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2870 	 */
2871 
2872 	uint32_t reg = ROM32(bios->data[offset + 1]);
2873 	uint32_t mask = ROM32(bios->data[offset + 5]);
2874 	uint32_t data = ROM32(bios->data[offset + 9]);
2875 
2876 	if (!iexec->execute)
2877 		return 13;
2878 
2879 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2880 		offset, reg, mask, data);
2881 
2882 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2883 
2884 	return 13;
2885 }
2886 
2887 static int
2888 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2889 {
2890 	/*
2891 	 * INIT_MACRO   opcode: 0x6F ('o')
2892 	 *
2893 	 * offset      (8 bit): opcode
2894 	 * offset + 1  (8 bit): macro number
2895 	 *
2896 	 * Look up macro index "macro number" in the macro index table.
2897 	 * The macro index table entry has 1 byte for the index in the macro
2898 	 * table, and 1 byte for the number of times to repeat the macro.
2899 	 * The macro table entry has 4 bytes for the register address and
2900 	 * 4 bytes for the value to write to that register
2901 	 */
2902 
2903 	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2904 	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2905 	uint8_t macro_tbl_idx = bios->data[tmp];
2906 	uint8_t count = bios->data[tmp + 1];
2907 	uint32_t reg, data;
2908 	int i;
2909 
2910 	if (!iexec->execute)
2911 		return 2;
2912 
2913 	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2914 		      "Count: 0x%02X\n",
2915 		offset, macro_index_tbl_idx, macro_tbl_idx, count);
2916 
2917 	for (i = 0; i < count; i++) {
2918 		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2919 
2920 		reg = ROM32(bios->data[macroentryptr]);
2921 		data = ROM32(bios->data[macroentryptr + 4]);
2922 
2923 		bios_wr32(bios, reg, data);
2924 	}
2925 
2926 	return 2;
2927 }
2928 
2929 static int
2930 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2931 {
2932 	/*
2933 	 * INIT_DONE   opcode: 0x71 ('q')
2934 	 *
2935 	 * offset      (8  bit): opcode
2936 	 *
2937 	 * End the current script
2938 	 */
2939 
2940 	/* mild retval abuse to stop parsing this table */
2941 	return 0;
2942 }
2943 
2944 static int
2945 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2946 {
2947 	/*
2948 	 * INIT_RESUME   opcode: 0x72 ('r')
2949 	 *
2950 	 * offset      (8  bit): opcode
2951 	 *
2952 	 * End the current execute / no-execute condition
2953 	 */
2954 
2955 	if (iexec->execute)
2956 		return 1;
2957 
2958 	iexec->execute = true;
2959 	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2960 
2961 	return 1;
2962 }
2963 
2964 static int
2965 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2966 {
2967 	/*
2968 	 * INIT_TIME   opcode: 0x74 ('t')
2969 	 *
2970 	 * offset      (8  bit): opcode
2971 	 * offset + 1  (16 bit): time
2972 	 *
2973 	 * Sleep for "time" microseconds.
2974 	 */
2975 
2976 	unsigned time = ROM16(bios->data[offset + 1]);
2977 
2978 	if (!iexec->execute)
2979 		return 3;
2980 
2981 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2982 		offset, time);
2983 
2984 	if (time < 1000)
2985 		udelay(time);
2986 	else
2987 		mdelay((time + 900) / 1000);
2988 
2989 	return 3;
2990 }
2991 
2992 static int
2993 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2994 {
2995 	/*
2996 	 * INIT_CONDITION   opcode: 0x75 ('u')
2997 	 *
2998 	 * offset      (8 bit): opcode
2999 	 * offset + 1  (8 bit): condition number
3000 	 *
3001 	 * Check condition "condition number" in the condition table.
3002 	 * If condition not met skip subsequent opcodes until condition is
3003 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3004 	 */
3005 
3006 	uint8_t cond = bios->data[offset + 1];
3007 
3008 	if (!iexec->execute)
3009 		return 2;
3010 
3011 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
3012 
3013 	if (bios_condition_met(bios, offset, cond))
3014 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3015 	else {
3016 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3017 		iexec->execute = false;
3018 	}
3019 
3020 	return 2;
3021 }
3022 
3023 static int
3024 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3025 {
3026 	/*
3027 	 * INIT_IO_CONDITION  opcode: 0x76
3028 	 *
3029 	 * offset      (8 bit): opcode
3030 	 * offset + 1  (8 bit): condition number
3031 	 *
3032 	 * Check condition "condition number" in the io condition table.
3033 	 * If condition not met skip subsequent opcodes until condition is
3034 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3035 	 */
3036 
3037 	uint8_t cond = bios->data[offset + 1];
3038 
3039 	if (!iexec->execute)
3040 		return 2;
3041 
3042 	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
3043 
3044 	if (io_condition_met(bios, offset, cond))
3045 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3046 	else {
3047 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3048 		iexec->execute = false;
3049 	}
3050 
3051 	return 2;
3052 }
3053 
3054 static int
3055 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3056 {
3057 	/*
3058 	 * INIT_INDEX_IO   opcode: 0x78 ('x')
3059 	 *
3060 	 * offset      (8  bit): opcode
3061 	 * offset + 1  (16 bit): CRTC port
3062 	 * offset + 3  (8  bit): CRTC index
3063 	 * offset + 4  (8  bit): mask
3064 	 * offset + 5  (8  bit): data
3065 	 *
3066 	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
3067 	 * OR with "data", write-back
3068 	 */
3069 
3070 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
3071 	uint8_t crtcindex = bios->data[offset + 3];
3072 	uint8_t mask = bios->data[offset + 4];
3073 	uint8_t data = bios->data[offset + 5];
3074 	uint8_t value;
3075 
3076 	if (!iexec->execute)
3077 		return 6;
3078 
3079 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
3080 		      "Data: 0x%02X\n",
3081 		offset, crtcport, crtcindex, mask, data);
3082 
3083 	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
3084 	bios_idxprt_wr(bios, crtcport, crtcindex, value);
3085 
3086 	return 6;
3087 }
3088 
3089 static int
3090 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3091 {
3092 	/*
3093 	 * INIT_PLL   opcode: 0x79 ('y')
3094 	 *
3095 	 * offset      (8  bit): opcode
3096 	 * offset + 1  (32 bit): register
3097 	 * offset + 5  (16 bit): freq
3098 	 *
3099 	 * Set PLL register "register" to coefficients for frequency (10kHz)
3100 	 * "freq"
3101 	 */
3102 
3103 	uint32_t reg = ROM32(bios->data[offset + 1]);
3104 	uint16_t freq = ROM16(bios->data[offset + 5]);
3105 
3106 	if (!iexec->execute)
3107 		return 7;
3108 
3109 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
3110 
3111 	setPLL(bios, reg, freq * 10);
3112 
3113 	return 7;
3114 }
3115 
3116 static int
3117 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3118 {
3119 	/*
3120 	 * INIT_ZM_REG   opcode: 0x7A ('z')
3121 	 *
3122 	 * offset      (8  bit): opcode
3123 	 * offset + 1  (32 bit): register
3124 	 * offset + 5  (32 bit): value
3125 	 *
3126 	 * Assign "value" to "register"
3127 	 */
3128 
3129 	uint32_t reg = ROM32(bios->data[offset + 1]);
3130 	uint32_t value = ROM32(bios->data[offset + 5]);
3131 
3132 	if (!iexec->execute)
3133 		return 9;
3134 
3135 	if (reg == 0x000200)
3136 		value |= 1;
3137 
3138 	bios_wr32(bios, reg, value);
3139 
3140 	return 9;
3141 }
3142 
3143 static int
3144 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
3145 		      struct init_exec *iexec)
3146 {
3147 	/*
3148 	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
3149 	 *
3150 	 * offset      (8 bit): opcode
3151 	 * offset + 1  (8 bit): PLL type
3152 	 * offset + 2 (32 bit): frequency 0
3153 	 *
3154 	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3155 	 * ram_restrict_table_ptr.  The value read from there is used to select
3156 	 * a frequency from the table starting at 'frequency 0' to be
3157 	 * programmed into the PLL corresponding to 'type'.
3158 	 *
3159 	 * The PLL limits table on cards using this opcode has a mapping of
3160 	 * 'type' to the relevant registers.
3161 	 */
3162 
3163 	struct drm_device *dev = bios->dev;
3164 	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
3165 	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
3166 	uint8_t type = bios->data[offset + 1];
3167 	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
3168 	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3169 	int len = 2 + bios->ram_restrict_group_count * 4;
3170 	int i;
3171 
3172 	if (!iexec->execute)
3173 		return len;
3174 
3175 	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
3176 		NV_ERROR(dev, "PLL limits table not version 3.x\n");
3177 		return len; /* deliberate, allow default clocks to remain */
3178 	}
3179 
3180 	entry = pll_limits + pll_limits[1];
3181 	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
3182 		if (entry[0] == type) {
3183 			uint32_t reg = ROM32(entry[3]);
3184 
3185 			BIOSLOG(bios, "0x%04X: "
3186 				      "Type %02x Reg 0x%08x Freq %dKHz\n",
3187 				offset, type, reg, freq);
3188 
3189 			setPLL(bios, reg, freq);
3190 			return len;
3191 		}
3192 	}
3193 
3194 	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3195 	return len;
3196 }
3197 
3198 static int
3199 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3200 {
3201 	/*
3202 	 * INIT_8C   opcode: 0x8C ('')
3203 	 *
3204 	 * NOP so far....
3205 	 *
3206 	 */
3207 
3208 	return 1;
3209 }
3210 
3211 static int
3212 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3213 {
3214 	/*
3215 	 * INIT_8D   opcode: 0x8D ('')
3216 	 *
3217 	 * NOP so far....
3218 	 *
3219 	 */
3220 
3221 	return 1;
3222 }
3223 
3224 static int
3225 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3226 {
3227 	/*
3228 	 * INIT_GPIO   opcode: 0x8E ('')
3229 	 *
3230 	 * offset      (8 bit): opcode
3231 	 *
3232 	 * Loop over all entries in the DCB GPIO table, and initialise
3233 	 * each GPIO according to various values listed in each entry
3234 	 */
3235 
3236 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
3237 	struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
3238 	const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
3239 	int i;
3240 
3241 	if (dev_priv->card_type < NV_50) {
3242 		NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n");
3243 		return 1;
3244 	}
3245 
3246 	if (!iexec->execute)
3247 		return 1;
3248 
3249 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
3250 		struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i];
3251 		uint32_t r, s, v;
3252 
3253 		BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry);
3254 
3255 		BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n",
3256 			offset, gpio->tag, gpio->state_default);
3257 		if (bios->execute)
3258 			pgpio->set(bios->dev, gpio->tag, gpio->state_default);
3259 
3260 		/* The NVIDIA binary driver doesn't appear to actually do
3261 		 * any of this, my VBIOS does however.
3262 		 */
3263 		/* Not a clue, needs de-magicing */
3264 		r = nv50_gpio_ctl[gpio->line >> 4];
3265 		s = (gpio->line & 0x0f);
3266 		v = bios_rd32(bios, r) & ~(0x00010001 << s);
3267 		switch ((gpio->entry & 0x06000000) >> 25) {
3268 		case 1:
3269 			v |= (0x00000001 << s);
3270 			break;
3271 		case 2:
3272 			v |= (0x00010000 << s);
3273 			break;
3274 		default:
3275 			break;
3276 		}
3277 		bios_wr32(bios, r, v);
3278 	}
3279 
3280 	return 1;
3281 }
3282 
3283 static int
3284 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
3285 			       struct init_exec *iexec)
3286 {
3287 	/*
3288 	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
3289 	 *
3290 	 * offset      (8  bit): opcode
3291 	 * offset + 1  (32 bit): reg
3292 	 * offset + 5  (8  bit): regincrement
3293 	 * offset + 6  (8  bit): count
3294 	 * offset + 7  (32 bit): value 1,1
3295 	 * ...
3296 	 *
3297 	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3298 	 * ram_restrict_table_ptr. The value read from here is 'n', and
3299 	 * "value 1,n" gets written to "reg". This repeats "count" times and on
3300 	 * each iteration 'm', "reg" increases by "regincrement" and
3301 	 * "value m,n" is used. The extent of n is limited by a number read
3302 	 * from the 'M' BIT table, herein called "blocklen"
3303 	 */
3304 
3305 	uint32_t reg = ROM32(bios->data[offset + 1]);
3306 	uint8_t regincrement = bios->data[offset + 5];
3307 	uint8_t count = bios->data[offset + 6];
3308 	uint32_t strap_ramcfg, data;
3309 	/* previously set by 'M' BIT table */
3310 	uint16_t blocklen = bios->ram_restrict_group_count * 4;
3311 	int len = 7 + count * blocklen;
3312 	uint8_t index;
3313 	int i;
3314 
3315 	/* critical! to know the length of the opcode */;
3316 	if (!blocklen) {
3317 		NV_ERROR(bios->dev,
3318 			 "0x%04X: Zero block length - has the M table "
3319 			 "been parsed?\n", offset);
3320 		return -EINVAL;
3321 	}
3322 
3323 	if (!iexec->execute)
3324 		return len;
3325 
3326 	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
3327 	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
3328 
3329 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
3330 		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
3331 		offset, reg, regincrement, count, strap_ramcfg, index);
3332 
3333 	for (i = 0; i < count; i++) {
3334 		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
3335 
3336 		bios_wr32(bios, reg, data);
3337 
3338 		reg += regincrement;
3339 	}
3340 
3341 	return len;
3342 }
3343 
3344 static int
3345 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3346 {
3347 	/*
3348 	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
3349 	 *
3350 	 * offset      (8  bit): opcode
3351 	 * offset + 1  (32 bit): src reg
3352 	 * offset + 5  (32 bit): dst reg
3353 	 *
3354 	 * Put contents of "src reg" into "dst reg"
3355 	 */
3356 
3357 	uint32_t srcreg = ROM32(bios->data[offset + 1]);
3358 	uint32_t dstreg = ROM32(bios->data[offset + 5]);
3359 
3360 	if (!iexec->execute)
3361 		return 9;
3362 
3363 	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
3364 
3365 	return 9;
3366 }
3367 
3368 static int
3369 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
3370 			       struct init_exec *iexec)
3371 {
3372 	/*
3373 	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
3374 	 *
3375 	 * offset      (8  bit): opcode
3376 	 * offset + 1  (32 bit): dst reg
3377 	 * offset + 5  (8  bit): count
3378 	 * offset + 6  (32 bit): data 1
3379 	 * ...
3380 	 *
3381 	 * For each of "count" values write "data n" to "dst reg"
3382 	 */
3383 
3384 	uint32_t reg = ROM32(bios->data[offset + 1]);
3385 	uint8_t count = bios->data[offset + 5];
3386 	int len = 6 + count * 4;
3387 	int i;
3388 
3389 	if (!iexec->execute)
3390 		return len;
3391 
3392 	for (i = 0; i < count; i++) {
3393 		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
3394 		bios_wr32(bios, reg, data);
3395 	}
3396 
3397 	return len;
3398 }
3399 
3400 static int
3401 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3402 {
3403 	/*
3404 	 * INIT_RESERVED   opcode: 0x92 ('')
3405 	 *
3406 	 * offset      (8 bit): opcode
3407 	 *
3408 	 * Seemingly does nothing
3409 	 */
3410 
3411 	return 1;
3412 }
3413 
3414 static int
3415 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3416 {
3417 	/*
3418 	 * INIT_96   opcode: 0x96 ('')
3419 	 *
3420 	 * offset      (8  bit): opcode
3421 	 * offset + 1  (32 bit): sreg
3422 	 * offset + 5  (8  bit): sshift
3423 	 * offset + 6  (8  bit): smask
3424 	 * offset + 7  (8  bit): index
3425 	 * offset + 8  (32 bit): reg
3426 	 * offset + 12 (32 bit): mask
3427 	 * offset + 16 (8  bit): shift
3428 	 *
3429 	 */
3430 
3431 	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3432 	uint32_t reg = ROM32(bios->data[offset + 8]);
3433 	uint32_t mask = ROM32(bios->data[offset + 12]);
3434 	uint32_t val;
3435 
3436 	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3437 	if (bios->data[offset + 5] < 0x80)
3438 		val >>= bios->data[offset + 5];
3439 	else
3440 		val <<= (0x100 - bios->data[offset + 5]);
3441 	val &= bios->data[offset + 6];
3442 
3443 	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
3444 	val <<= bios->data[offset + 16];
3445 
3446 	if (!iexec->execute)
3447 		return 17;
3448 
3449 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3450 	return 17;
3451 }
3452 
3453 static int
3454 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3455 {
3456 	/*
3457 	 * INIT_97   opcode: 0x97 ('')
3458 	 *
3459 	 * offset      (8  bit): opcode
3460 	 * offset + 1  (32 bit): register
3461 	 * offset + 5  (32 bit): mask
3462 	 * offset + 9  (32 bit): value
3463 	 *
3464 	 * Adds "value" to "register" preserving the fields specified
3465 	 * by "mask"
3466 	 */
3467 
3468 	uint32_t reg = ROM32(bios->data[offset + 1]);
3469 	uint32_t mask = ROM32(bios->data[offset + 5]);
3470 	uint32_t add = ROM32(bios->data[offset + 9]);
3471 	uint32_t val;
3472 
3473 	val = bios_rd32(bios, reg);
3474 	val = (val & mask) | ((val + add) & ~mask);
3475 
3476 	if (!iexec->execute)
3477 		return 13;
3478 
3479 	bios_wr32(bios, reg, val);
3480 	return 13;
3481 }
3482 
3483 static int
3484 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3485 {
3486 	/*
3487 	 * INIT_AUXCH   opcode: 0x98 ('')
3488 	 *
3489 	 * offset      (8  bit): opcode
3490 	 * offset + 1  (32 bit): address
3491 	 * offset + 5  (8  bit): count
3492 	 * offset + 6  (8  bit): mask 0
3493 	 * offset + 7  (8  bit): data 0
3494 	 *  ...
3495 	 *
3496 	 */
3497 
3498 	struct drm_device *dev = bios->dev;
3499 	struct nouveau_i2c_chan *auxch;
3500 	uint32_t addr = ROM32(bios->data[offset + 1]);
3501 	uint8_t count = bios->data[offset + 5];
3502 	int len = 6 + count * 2;
3503 	int ret, i;
3504 
3505 	if (!bios->display.output) {
3506 		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3507 		return len;
3508 	}
3509 
3510 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3511 	if (!auxch) {
3512 		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3513 			 bios->display.output->i2c_index);
3514 		return len;
3515 	}
3516 
3517 	if (!iexec->execute)
3518 		return len;
3519 
3520 	offset += 6;
3521 	for (i = 0; i < count; i++, offset += 2) {
3522 		uint8_t data;
3523 
3524 		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3525 		if (ret) {
3526 			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3527 			return len;
3528 		}
3529 
3530 		data &= bios->data[offset + 0];
3531 		data |= bios->data[offset + 1];
3532 
3533 		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3534 		if (ret) {
3535 			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3536 			return len;
3537 		}
3538 	}
3539 
3540 	return len;
3541 }
3542 
3543 static int
3544 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3545 {
3546 	/*
3547 	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
3548 	 *
3549 	 * offset      (8  bit): opcode
3550 	 * offset + 1  (32 bit): address
3551 	 * offset + 5  (8  bit): count
3552 	 * offset + 6  (8  bit): data 0
3553 	 *  ...
3554 	 *
3555 	 */
3556 
3557 	struct drm_device *dev = bios->dev;
3558 	struct nouveau_i2c_chan *auxch;
3559 	uint32_t addr = ROM32(bios->data[offset + 1]);
3560 	uint8_t count = bios->data[offset + 5];
3561 	int len = 6 + count;
3562 	int ret, i;
3563 
3564 	if (!bios->display.output) {
3565 		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3566 		return len;
3567 	}
3568 
3569 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3570 	if (!auxch) {
3571 		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3572 			 bios->display.output->i2c_index);
3573 		return len;
3574 	}
3575 
3576 	if (!iexec->execute)
3577 		return len;
3578 
3579 	offset += 6;
3580 	for (i = 0; i < count; i++, offset++) {
3581 		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3582 		if (ret) {
3583 			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3584 			return len;
3585 		}
3586 	}
3587 
3588 	return len;
3589 }
3590 
3591 static int
3592 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3593 {
3594 	/*
3595 	 * INIT_I2C_LONG_IF   opcode: 0x9A ('')
3596 	 *
3597 	 * offset      (8 bit): opcode
3598 	 * offset + 1  (8 bit): DCB I2C table entry index
3599 	 * offset + 2  (8 bit): I2C slave address
3600 	 * offset + 3  (16 bit): I2C register
3601 	 * offset + 5  (8 bit): mask
3602 	 * offset + 6  (8 bit): data
3603 	 *
3604 	 * Read the register given by "I2C register" on the device addressed
3605 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
3606 	 * entry index". Compare the result AND "mask" to "data".
3607 	 * If they're not equal, skip subsequent opcodes until condition is
3608 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3609 	 */
3610 
3611 	uint8_t i2c_index = bios->data[offset + 1];
3612 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
3613 	uint8_t reglo = bios->data[offset + 3];
3614 	uint8_t reghi = bios->data[offset + 4];
3615 	uint8_t mask = bios->data[offset + 5];
3616 	uint8_t data = bios->data[offset + 6];
3617 	struct nouveau_i2c_chan *chan;
3618 	uint8_t buf0[2] = { reghi, reglo };
3619 	uint8_t buf1[1];
3620 	struct i2c_msg msg[2] = {
3621 		{ i2c_address, 0, 1, buf0 },
3622 		{ i2c_address, I2C_M_RD, 1, buf1 },
3623 	};
3624 	int ret;
3625 
3626 	/* no execute check by design */
3627 
3628 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
3629 		offset, i2c_index, i2c_address);
3630 
3631 	chan = init_i2c_device_find(bios->dev, i2c_index);
3632 	if (!chan)
3633 		return -ENODEV;
3634 
3635 
3636 	ret = i2c_transfer(&chan->adapter, msg, 2);
3637 	if (ret < 0) {
3638 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
3639 			      "Mask: 0x%02X, Data: 0x%02X\n",
3640 			offset, reghi, reglo, mask, data);
3641 		iexec->execute = 0;
3642 		return 7;
3643 	}
3644 
3645 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
3646 		      "Mask: 0x%02X, Data: 0x%02X\n",
3647 		offset, reghi, reglo, buf1[0], mask, data);
3648 
3649 	iexec->execute = ((buf1[0] & mask) == data);
3650 
3651 	return 7;
3652 }
3653 
3654 static struct init_tbl_entry itbl_entry[] = {
3655 	/* command name                       , id  , length  , offset  , mult    , command handler                 */
3656 	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3657 	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
3658 	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
3659 	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
3660 	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
3661 	{ "INIT_COPY"                         , 0x37, init_copy                       },
3662 	{ "INIT_NOT"                          , 0x38, init_not                        },
3663 	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3664 	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
3665 	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
3666 	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3667 	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
3668 	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
3669 	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
3670 	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
3671 	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
3672 	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
3673 	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
3674 	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
3675 	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
3676 	{ "INIT_CR"                           , 0x52, init_cr                         },
3677 	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
3678 	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
3679 	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3680 	{ "INIT_LTIME"                        , 0x57, init_ltime                      },
3681 	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3682 	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3683 	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3684 	{ "INIT_JUMP"                         , 0x5C, init_jump                       },
3685 	{ "INIT_I2C_IF"                       , 0x5E, init_i2c_if                     },
3686 	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
3687 	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
3688 	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
3689 	{ "INIT_RESET"                        , 0x65, init_reset                      },
3690 	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
3691 	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
3692 	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
3693 	{ "INIT_IO"                           , 0x69, init_io                         },
3694 	{ "INIT_SUB"                          , 0x6B, init_sub                        },
3695 	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
3696 	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
3697 	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
3698 	{ "INIT_DONE"                         , 0x71, init_done                       },
3699 	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3700 	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3701 	{ "INIT_TIME"                         , 0x74, init_time                       },
3702 	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
3703 	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
3704 	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
3705 	{ "INIT_PLL"                          , 0x79, init_pll                        },
3706 	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
3707 	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
3708 	{ "INIT_8C"                           , 0x8C, init_8c                         },
3709 	{ "INIT_8D"                           , 0x8D, init_8d                         },
3710 	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
3711 	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
3712 	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
3713 	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
3714 	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
3715 	{ "INIT_96"                           , 0x96, init_96                         },
3716 	{ "INIT_97"                           , 0x97, init_97                         },
3717 	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
3718 	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3719 	{ "INIT_I2C_LONG_IF"                  , 0x9A, init_i2c_long_if                },
3720 	{ NULL                                , 0   , NULL                            }
3721 };
3722 
3723 #define MAX_TABLE_OPS 1000
3724 
3725 static int
3726 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3727 {
3728 	/*
3729 	 * Parses all commands in an init table.
3730 	 *
3731 	 * We start out executing all commands found in the init table. Some
3732 	 * opcodes may change the status of iexec->execute to SKIP, which will
3733 	 * cause the following opcodes to perform no operation until the value
3734 	 * is changed back to EXECUTE.
3735 	 */
3736 
3737 	int count = 0, i, ret;
3738 	uint8_t id;
3739 
3740 	/*
3741 	 * Loop until INIT_DONE causes us to break out of the loop
3742 	 * (or until offset > bios length just in case... )
3743 	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3744 	 */
3745 	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3746 		id = bios->data[offset];
3747 
3748 		/* Find matching id in itbl_entry */
3749 		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3750 			;
3751 
3752 		if (!itbl_entry[i].name) {
3753 			NV_ERROR(bios->dev,
3754 				 "0x%04X: Init table command not found: "
3755 				 "0x%02X\n", offset, id);
3756 			return -ENOENT;
3757 		}
3758 
3759 		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3760 			itbl_entry[i].id, itbl_entry[i].name);
3761 
3762 		/* execute eventual command handler */
3763 		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3764 		if (ret < 0) {
3765 			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3766 				 "table opcode: %s %d\n", offset,
3767 				 itbl_entry[i].name, ret);
3768 		}
3769 
3770 		if (ret <= 0)
3771 			break;
3772 
3773 		/*
3774 		 * Add the offset of the current command including all data
3775 		 * of that command. The offset will then be pointing on the
3776 		 * next op code.
3777 		 */
3778 		offset += ret;
3779 	}
3780 
3781 	if (offset >= bios->length)
3782 		NV_WARN(bios->dev,
3783 			"Offset 0x%04X greater than known bios image length.  "
3784 			"Corrupt image?\n", offset);
3785 	if (count >= MAX_TABLE_OPS)
3786 		NV_WARN(bios->dev,
3787 			"More than %d opcodes to a table is unlikely, "
3788 			"is the bios image corrupt?\n", MAX_TABLE_OPS);
3789 
3790 	return 0;
3791 }
3792 
3793 static void
3794 parse_init_tables(struct nvbios *bios)
3795 {
3796 	/* Loops and calls parse_init_table() for each present table. */
3797 
3798 	int i = 0;
3799 	uint16_t table;
3800 	struct init_exec iexec = {true, false};
3801 
3802 	if (bios->old_style_init) {
3803 		if (bios->init_script_tbls_ptr)
3804 			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3805 		if (bios->extra_init_script_tbl_ptr)
3806 			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3807 
3808 		return;
3809 	}
3810 
3811 	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3812 		NV_INFO(bios->dev,
3813 			"Parsing VBIOS init table %d at offset 0x%04X\n",
3814 			i / 2, table);
3815 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3816 
3817 		parse_init_table(bios, table, &iexec);
3818 		i += 2;
3819 	}
3820 }
3821 
3822 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3823 {
3824 	int compare_record_len, i = 0;
3825 	uint16_t compareclk, scriptptr = 0;
3826 
3827 	if (bios->major_version < 5) /* pre BIT */
3828 		compare_record_len = 3;
3829 	else
3830 		compare_record_len = 4;
3831 
3832 	do {
3833 		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3834 		if (pxclk >= compareclk * 10) {
3835 			if (bios->major_version < 5) {
3836 				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3837 				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3838 			} else
3839 				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3840 			break;
3841 		}
3842 		i++;
3843 	} while (compareclk);
3844 
3845 	return scriptptr;
3846 }
3847 
3848 static void
3849 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3850 		      struct dcb_entry *dcbent, int head, bool dl)
3851 {
3852 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3853 	struct nvbios *bios = &dev_priv->vbios;
3854 	struct init_exec iexec = {true, false};
3855 
3856 	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3857 		 scriptptr);
3858 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3859 		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3860 	/* note: if dcb entries have been merged, index may be misleading */
3861 	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3862 	parse_init_table(bios, scriptptr, &iexec);
3863 
3864 	nv04_dfp_bind_head(dev, dcbent, head, dl);
3865 }
3866 
3867 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3868 {
3869 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3870 	struct nvbios *bios = &dev_priv->vbios;
3871 	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3872 	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3873 
3874 	if (!bios->fp.xlated_entry || !sub || !scriptofs)
3875 		return -EINVAL;
3876 
3877 	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3878 
3879 	if (script == LVDS_PANEL_OFF) {
3880 		/* off-on delay in ms */
3881 		mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3882 	}
3883 #ifdef __powerpc__
3884 	/* Powerbook specific quirks */
3885 	if (script == LVDS_RESET &&
3886 	    (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
3887 	     dev->pci_device == 0x0329))
3888 		nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3889 #endif
3890 
3891 	return 0;
3892 }
3893 
3894 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3895 {
3896 	/*
3897 	 * The BIT LVDS table's header has the information to setup the
3898 	 * necessary registers. Following the standard 4 byte header are:
3899 	 * A bitmask byte and a dual-link transition pxclk value for use in
3900 	 * selecting the init script when not using straps; 4 script pointers
3901 	 * for panel power, selected by output and on/off; and 8 table pointers
3902 	 * for panel init, the needed one determined by output, and bits in the
3903 	 * conf byte. These tables are similar to the TMDS tables, consisting
3904 	 * of a list of pxclks and script pointers.
3905 	 */
3906 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3907 	struct nvbios *bios = &dev_priv->vbios;
3908 	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3909 	uint16_t scriptptr = 0, clktable;
3910 
3911 	/*
3912 	 * For now we assume version 3.0 table - g80 support will need some
3913 	 * changes
3914 	 */
3915 
3916 	switch (script) {
3917 	case LVDS_INIT:
3918 		return -ENOSYS;
3919 	case LVDS_BACKLIGHT_ON:
3920 	case LVDS_PANEL_ON:
3921 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3922 		break;
3923 	case LVDS_BACKLIGHT_OFF:
3924 	case LVDS_PANEL_OFF:
3925 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3926 		break;
3927 	case LVDS_RESET:
3928 		clktable = bios->fp.lvdsmanufacturerpointer + 15;
3929 		if (dcbent->or == 4)
3930 			clktable += 8;
3931 
3932 		if (dcbent->lvdsconf.use_straps_for_mode) {
3933 			if (bios->fp.dual_link)
3934 				clktable += 4;
3935 			if (bios->fp.if_is_24bit)
3936 				clktable += 2;
3937 		} else {
3938 			/* using EDID */
3939 			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3940 
3941 			if (bios->fp.dual_link) {
3942 				clktable += 4;
3943 				cmpval_24bit <<= 1;
3944 			}
3945 
3946 			if (bios->fp.strapless_is_24bit & cmpval_24bit)
3947 				clktable += 2;
3948 		}
3949 
3950 		clktable = ROM16(bios->data[clktable]);
3951 		if (!clktable) {
3952 			NV_ERROR(dev, "Pixel clock comparison table not found\n");
3953 			return -ENOENT;
3954 		}
3955 		scriptptr = clkcmptable(bios, clktable, pxclk);
3956 	}
3957 
3958 	if (!scriptptr) {
3959 		NV_ERROR(dev, "LVDS output init script not found\n");
3960 		return -ENOENT;
3961 	}
3962 	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
3963 
3964 	return 0;
3965 }
3966 
3967 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3968 {
3969 	/*
3970 	 * LVDS operations are multiplexed in an effort to present a single API
3971 	 * which works with two vastly differing underlying structures.
3972 	 * This acts as the demux
3973 	 */
3974 
3975 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3976 	struct nvbios *bios = &dev_priv->vbios;
3977 	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3978 	uint32_t sel_clk_binding, sel_clk;
3979 	int ret;
3980 
3981 	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
3982 	    (lvds_ver >= 0x30 && script == LVDS_INIT))
3983 		return 0;
3984 
3985 	if (!bios->fp.lvds_init_run) {
3986 		bios->fp.lvds_init_run = true;
3987 		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
3988 	}
3989 
3990 	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
3991 		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
3992 	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
3993 		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
3994 
3995 	NV_TRACE(dev, "Calling LVDS script %d:\n", script);
3996 
3997 	/* don't let script change pll->head binding */
3998 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
3999 
4000 	if (lvds_ver < 0x30)
4001 		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
4002 	else
4003 		ret = run_lvds_table(dev, dcbent, head, script, pxclk);
4004 
4005 	bios->fp.last_script_invoc = (script << 1 | head);
4006 
4007 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4008 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4009 	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
4010 	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
4011 
4012 	return ret;
4013 }
4014 
4015 struct lvdstableheader {
4016 	uint8_t lvds_ver, headerlen, recordlen;
4017 };
4018 
4019 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
4020 {
4021 	/*
4022 	 * BMP version (0xa) LVDS table has a simple header of version and
4023 	 * record length. The BIT LVDS table has the typical BIT table header:
4024 	 * version byte, header length byte, record length byte, and a byte for
4025 	 * the maximum number of records that can be held in the table.
4026 	 */
4027 
4028 	uint8_t lvds_ver, headerlen, recordlen;
4029 
4030 	memset(lth, 0, sizeof(struct lvdstableheader));
4031 
4032 	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
4033 		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
4034 		return -EINVAL;
4035 	}
4036 
4037 	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
4038 
4039 	switch (lvds_ver) {
4040 	case 0x0a:	/* pre NV40 */
4041 		headerlen = 2;
4042 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4043 		break;
4044 	case 0x30:	/* NV4x */
4045 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4046 		if (headerlen < 0x1f) {
4047 			NV_ERROR(dev, "LVDS table header not understood\n");
4048 			return -EINVAL;
4049 		}
4050 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4051 		break;
4052 	case 0x40:	/* G80/G90 */
4053 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4054 		if (headerlen < 0x7) {
4055 			NV_ERROR(dev, "LVDS table header not understood\n");
4056 			return -EINVAL;
4057 		}
4058 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4059 		break;
4060 	default:
4061 		NV_ERROR(dev,
4062 			 "LVDS table revision %d.%d not currently supported\n",
4063 			 lvds_ver >> 4, lvds_ver & 0xf);
4064 		return -ENOSYS;
4065 	}
4066 
4067 	lth->lvds_ver = lvds_ver;
4068 	lth->headerlen = headerlen;
4069 	lth->recordlen = recordlen;
4070 
4071 	return 0;
4072 }
4073 
4074 static int
4075 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
4076 {
4077 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4078 
4079 	/*
4080 	 * The fp strap is normally dictated by the "User Strap" in
4081 	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
4082 	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
4083 	 * by the PCI subsystem ID during POST, but not before the previous user
4084 	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
4085 	 * read and used instead
4086 	 */
4087 
4088 	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
4089 		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
4090 
4091 	if (dev_priv->card_type >= NV_50)
4092 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
4093 	else
4094 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
4095 }
4096 
4097 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
4098 {
4099 	uint8_t *fptable;
4100 	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
4101 	int ret, ofs, fpstrapping;
4102 	struct lvdstableheader lth;
4103 
4104 	if (bios->fp.fptablepointer == 0x0) {
4105 		/* Apple cards don't have the fp table; the laptops use DDC */
4106 		/* The table is also missing on some x86 IGPs */
4107 #ifndef __powerpc__
4108 		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
4109 #endif
4110 		bios->digital_min_front_porch = 0x4b;
4111 		return 0;
4112 	}
4113 
4114 	fptable = &bios->data[bios->fp.fptablepointer];
4115 	fptable_ver = fptable[0];
4116 
4117 	switch (fptable_ver) {
4118 	/*
4119 	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
4120 	 * version field, and miss one of the spread spectrum/PWM bytes.
4121 	 * This could affect early GF2Go parts (not seen any appropriate ROMs
4122 	 * though). Here we assume that a version of 0x05 matches this case
4123 	 * (combining with a BMP version check would be better), as the
4124 	 * common case for the panel type field is 0x0005, and that is in
4125 	 * fact what we are reading the first byte of.
4126 	 */
4127 	case 0x05:	/* some NV10, 11, 15, 16 */
4128 		recordlen = 42;
4129 		ofs = -1;
4130 		break;
4131 	case 0x10:	/* some NV15/16, and NV11+ */
4132 		recordlen = 44;
4133 		ofs = 0;
4134 		break;
4135 	case 0x20:	/* NV40+ */
4136 		headerlen = fptable[1];
4137 		recordlen = fptable[2];
4138 		fpentries = fptable[3];
4139 		/*
4140 		 * fptable[4] is the minimum
4141 		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
4142 		 */
4143 		bios->digital_min_front_porch = fptable[4];
4144 		ofs = -7;
4145 		break;
4146 	default:
4147 		NV_ERROR(dev,
4148 			 "FP table revision %d.%d not currently supported\n",
4149 			 fptable_ver >> 4, fptable_ver & 0xf);
4150 		return -ENOSYS;
4151 	}
4152 
4153 	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
4154 		return 0;
4155 
4156 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4157 	if (ret)
4158 		return ret;
4159 
4160 	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
4161 		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
4162 							lth.headerlen + 1;
4163 		bios->fp.xlatwidth = lth.recordlen;
4164 	}
4165 	if (bios->fp.fpxlatetableptr == 0x0) {
4166 		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
4167 		return -EINVAL;
4168 	}
4169 
4170 	fpstrapping = get_fp_strap(dev, bios);
4171 
4172 	fpindex = bios->data[bios->fp.fpxlatetableptr +
4173 					fpstrapping * bios->fp.xlatwidth];
4174 
4175 	if (fpindex > fpentries) {
4176 		NV_ERROR(dev, "Bad flat panel table index\n");
4177 		return -ENOENT;
4178 	}
4179 
4180 	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
4181 	if (lth.lvds_ver > 0x10)
4182 		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4183 
4184 	/*
4185 	 * If either the strap or xlated fpindex value are 0xf there is no
4186 	 * panel using a strap-derived bios mode present.  this condition
4187 	 * includes, but is different from, the DDC panel indicator above
4188 	 */
4189 	if (fpstrapping == 0xf || fpindex == 0xf)
4190 		return 0;
4191 
4192 	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
4193 			    recordlen * fpindex + ofs;
4194 
4195 	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
4196 		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
4197 		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
4198 		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
4199 
4200 	return 0;
4201 }
4202 
4203 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
4204 {
4205 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4206 	struct nvbios *bios = &dev_priv->vbios;
4207 	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
4208 
4209 	if (!mode)	/* just checking whether we can produce a mode */
4210 		return bios->fp.mode_ptr;
4211 
4212 	memset(mode, 0, sizeof(struct drm_display_mode));
4213 	/*
4214 	 * For version 1.0 (version in byte 0):
4215 	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
4216 	 * single/dual link, and type (TFT etc.)
4217 	 * bytes 3-6 are bits per colour in RGBX
4218 	 */
4219 	mode->clock = ROM16(mode_entry[7]) * 10;
4220 	/* bytes 9-10 is HActive */
4221 	mode->hdisplay = ROM16(mode_entry[11]) + 1;
4222 	/*
4223 	 * bytes 13-14 is HValid Start
4224 	 * bytes 15-16 is HValid End
4225 	 */
4226 	mode->hsync_start = ROM16(mode_entry[17]) + 1;
4227 	mode->hsync_end = ROM16(mode_entry[19]) + 1;
4228 	mode->htotal = ROM16(mode_entry[21]) + 1;
4229 	/* bytes 23-24, 27-30 similarly, but vertical */
4230 	mode->vdisplay = ROM16(mode_entry[25]) + 1;
4231 	mode->vsync_start = ROM16(mode_entry[31]) + 1;
4232 	mode->vsync_end = ROM16(mode_entry[33]) + 1;
4233 	mode->vtotal = ROM16(mode_entry[35]) + 1;
4234 	mode->flags |= (mode_entry[37] & 0x10) ?
4235 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4236 	mode->flags |= (mode_entry[37] & 0x1) ?
4237 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4238 	/*
4239 	 * bytes 38-39 relate to spread spectrum settings
4240 	 * bytes 40-43 are something to do with PWM
4241 	 */
4242 
4243 	mode->status = MODE_OK;
4244 	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
4245 	drm_mode_set_name(mode);
4246 	return bios->fp.mode_ptr;
4247 }
4248 
4249 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
4250 {
4251 	/*
4252 	 * The LVDS table header is (mostly) described in
4253 	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
4254 	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
4255 	 * straps are not being used for the panel, this specifies the frequency
4256 	 * at which modes should be set up in the dual link style.
4257 	 *
4258 	 * Following the header, the BMP (ver 0xa) table has several records,
4259 	 * indexed by a separate xlat table, indexed in turn by the fp strap in
4260 	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
4261 	 * numbers for use by INIT_SUB which controlled panel init and power,
4262 	 * and finally a dword of ms to sleep between power off and on
4263 	 * operations.
4264 	 *
4265 	 * In the BIT versions, the table following the header serves as an
4266 	 * integrated config and xlat table: the records in the table are
4267 	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
4268 	 * two bytes - the first as a config byte, the second for indexing the
4269 	 * fp mode table pointed to by the BIT 'D' table
4270 	 *
4271 	 * DDC is not used until after card init, so selecting the correct table
4272 	 * entry and setting the dual link flag for EDID equipped panels,
4273 	 * requiring tests against the native-mode pixel clock, cannot be done
4274 	 * until later, when this function should be called with non-zero pxclk
4275 	 */
4276 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4277 	struct nvbios *bios = &dev_priv->vbios;
4278 	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
4279 	struct lvdstableheader lth;
4280 	uint16_t lvdsofs;
4281 	int ret, chip_version = bios->chip_version;
4282 
4283 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4284 	if (ret)
4285 		return ret;
4286 
4287 	switch (lth.lvds_ver) {
4288 	case 0x0a:	/* pre NV40 */
4289 		lvdsmanufacturerindex = bios->data[
4290 					bios->fp.fpxlatemanufacturertableptr +
4291 					fpstrapping];
4292 
4293 		/* we're done if this isn't the EDID panel case */
4294 		if (!pxclk)
4295 			break;
4296 
4297 		if (chip_version < 0x25) {
4298 			/* nv17 behaviour
4299 			 *
4300 			 * It seems the old style lvds script pointer is reused
4301 			 * to select 18/24 bit colour depth for EDID panels.
4302 			 */
4303 			lvdsmanufacturerindex =
4304 				(bios->legacy.lvds_single_a_script_ptr & 1) ?
4305 									2 : 0;
4306 			if (pxclk >= bios->fp.duallink_transition_clk)
4307 				lvdsmanufacturerindex++;
4308 		} else if (chip_version < 0x30) {
4309 			/* nv28 behaviour (off-chip encoder)
4310 			 *
4311 			 * nv28 does a complex dance of first using byte 121 of
4312 			 * the EDID to choose the lvdsmanufacturerindex, then
4313 			 * later attempting to match the EDID manufacturer and
4314 			 * product IDs in a table (signature 'pidt' (panel id
4315 			 * table?)), setting an lvdsmanufacturerindex of 0 and
4316 			 * an fp strap of the match index (or 0xf if none)
4317 			 */
4318 			lvdsmanufacturerindex = 0;
4319 		} else {
4320 			/* nv31, nv34 behaviour */
4321 			lvdsmanufacturerindex = 0;
4322 			if (pxclk >= bios->fp.duallink_transition_clk)
4323 				lvdsmanufacturerindex = 2;
4324 			if (pxclk >= 140000)
4325 				lvdsmanufacturerindex = 3;
4326 		}
4327 
4328 		/*
4329 		 * nvidia set the high nibble of (cr57=f, cr58) to
4330 		 * lvdsmanufacturerindex in this case; we don't
4331 		 */
4332 		break;
4333 	case 0x30:	/* NV4x */
4334 	case 0x40:	/* G80/G90 */
4335 		lvdsmanufacturerindex = fpstrapping;
4336 		break;
4337 	default:
4338 		NV_ERROR(dev, "LVDS table revision not currently supported\n");
4339 		return -ENOSYS;
4340 	}
4341 
4342 	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
4343 	switch (lth.lvds_ver) {
4344 	case 0x0a:
4345 		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
4346 		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
4347 		bios->fp.dual_link = bios->data[lvdsofs] & 4;
4348 		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
4349 		*if_is_24bit = bios->data[lvdsofs] & 16;
4350 		break;
4351 	case 0x30:
4352 	case 0x40:
4353 		/*
4354 		 * No sign of the "power off for reset" or "reset for panel
4355 		 * on" bits, but it's safer to assume we should
4356 		 */
4357 		bios->fp.power_off_for_reset = true;
4358 		bios->fp.reset_after_pclk_change = true;
4359 
4360 		/*
4361 		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
4362 		 * over-written, and if_is_24bit isn't used
4363 		 */
4364 		bios->fp.dual_link = bios->data[lvdsofs] & 1;
4365 		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
4366 		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
4367 		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
4368 		break;
4369 	}
4370 
4371 	/* Dell Latitude D620 reports a too-high value for the dual-link
4372 	 * transition freq, causing us to program the panel incorrectly.
4373 	 *
4374 	 * It doesn't appear the VBIOS actually uses its transition freq
4375 	 * (90000kHz), instead it uses the "Number of LVDS channels" field
4376 	 * out of the panel ID structure (http://www.spwg.org/).
4377 	 *
4378 	 * For the moment, a quirk will do :)
4379 	 */
4380 	if (nv_match_device(dev, 0x01d7, 0x1028, 0x01c2))
4381 		bios->fp.duallink_transition_clk = 80000;
4382 
4383 	/* set dual_link flag for EDID case */
4384 	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
4385 		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
4386 
4387 	*dl = bios->fp.dual_link;
4388 
4389 	return 0;
4390 }
4391 
4392 static uint8_t *
4393 bios_output_config_match(struct drm_device *dev, struct dcb_entry *dcbent,
4394 			 uint16_t record, int record_len, int record_nr,
4395 			 bool match_link)
4396 {
4397 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4398 	struct nvbios *bios = &dev_priv->vbios;
4399 	uint32_t entry;
4400 	uint16_t table;
4401 	int i, v;
4402 
4403 	switch (dcbent->type) {
4404 	case OUTPUT_TMDS:
4405 	case OUTPUT_LVDS:
4406 	case OUTPUT_DP:
4407 		break;
4408 	default:
4409 		match_link = false;
4410 		break;
4411 	}
4412 
4413 	for (i = 0; i < record_nr; i++, record += record_len) {
4414 		table = ROM16(bios->data[record]);
4415 		if (!table)
4416 			continue;
4417 		entry = ROM32(bios->data[table]);
4418 
4419 		if (match_link) {
4420 			v = (entry & 0x00c00000) >> 22;
4421 			if (!(v & dcbent->sorconf.link))
4422 				continue;
4423 		}
4424 
4425 		v = (entry & 0x000f0000) >> 16;
4426 		if (!(v & dcbent->or))
4427 			continue;
4428 
4429 		v = (entry & 0x000000f0) >> 4;
4430 		if (v != dcbent->location)
4431 			continue;
4432 
4433 		v = (entry & 0x0000000f);
4434 		if (v != dcbent->type)
4435 			continue;
4436 
4437 		return &bios->data[table];
4438 	}
4439 
4440 	return NULL;
4441 }
4442 
4443 void *
4444 nouveau_bios_dp_table(struct drm_device *dev, struct dcb_entry *dcbent,
4445 		      int *length)
4446 {
4447 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4448 	struct nvbios *bios = &dev_priv->vbios;
4449 	uint8_t *table;
4450 
4451 	if (!bios->display.dp_table_ptr) {
4452 		NV_ERROR(dev, "No pointer to DisplayPort table\n");
4453 		return NULL;
4454 	}
4455 	table = &bios->data[bios->display.dp_table_ptr];
4456 
4457 	if (table[0] != 0x20 && table[0] != 0x21) {
4458 		NV_ERROR(dev, "DisplayPort table version 0x%02x unknown\n",
4459 			 table[0]);
4460 		return NULL;
4461 	}
4462 
4463 	*length = table[4];
4464 	return bios_output_config_match(dev, dcbent,
4465 					bios->display.dp_table_ptr + table[1],
4466 					table[2], table[3], table[0] >= 0x21);
4467 }
4468 
4469 int
4470 nouveau_bios_run_display_table(struct drm_device *dev, struct dcb_entry *dcbent,
4471 			       uint32_t sub, int pxclk)
4472 {
4473 	/*
4474 	 * The display script table is located by the BIT 'U' table.
4475 	 *
4476 	 * It contains an array of pointers to various tables describing
4477 	 * a particular output type.  The first 32-bits of the output
4478 	 * tables contains similar information to a DCB entry, and is
4479 	 * used to decide whether that particular table is suitable for
4480 	 * the output you want to access.
4481 	 *
4482 	 * The "record header length" field here seems to indicate the
4483 	 * offset of the first configuration entry in the output tables.
4484 	 * This is 10 on most cards I've seen, but 12 has been witnessed
4485 	 * on DP cards, and there's another script pointer within the
4486 	 * header.
4487 	 *
4488 	 * offset + 0   ( 8 bits): version
4489 	 * offset + 1   ( 8 bits): header length
4490 	 * offset + 2   ( 8 bits): record length
4491 	 * offset + 3   ( 8 bits): number of records
4492 	 * offset + 4   ( 8 bits): record header length
4493 	 * offset + 5   (16 bits): pointer to first output script table
4494 	 */
4495 
4496 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4497 	struct nvbios *bios = &dev_priv->vbios;
4498 	uint8_t *table = &bios->data[bios->display.script_table_ptr];
4499 	uint8_t *otable = NULL;
4500 	uint16_t script;
4501 	int i = 0;
4502 
4503 	if (!bios->display.script_table_ptr) {
4504 		NV_ERROR(dev, "No pointer to output script table\n");
4505 		return 1;
4506 	}
4507 
4508 	/*
4509 	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4510 	 * so until they are, we really don't need to care.
4511 	 */
4512 	if (table[0] < 0x20)
4513 		return 1;
4514 
4515 	if (table[0] != 0x20 && table[0] != 0x21) {
4516 		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4517 			 table[0]);
4518 		return 1;
4519 	}
4520 
4521 	/*
4522 	 * The output script tables describing a particular output type
4523 	 * look as follows:
4524 	 *
4525 	 * offset + 0   (32 bits): output this table matches (hash of DCB)
4526 	 * offset + 4   ( 8 bits): unknown
4527 	 * offset + 5   ( 8 bits): number of configurations
4528 	 * offset + 6   (16 bits): pointer to some script
4529 	 * offset + 8   (16 bits): pointer to some script
4530 	 *
4531 	 * headerlen == 10
4532 	 * offset + 10           : configuration 0
4533 	 *
4534 	 * headerlen == 12
4535 	 * offset + 10           : pointer to some script
4536 	 * offset + 12           : configuration 0
4537 	 *
4538 	 * Each config entry is as follows:
4539 	 *
4540 	 * offset + 0   (16 bits): unknown, assumed to be a match value
4541 	 * offset + 2   (16 bits): pointer to script table (clock set?)
4542 	 * offset + 4   (16 bits): pointer to script table (reset?)
4543 	 *
4544 	 * There doesn't appear to be a count value to say how many
4545 	 * entries exist in each script table, instead, a 0 value in
4546 	 * the first 16-bit word seems to indicate both the end of the
4547 	 * list and the default entry.  The second 16-bit word in the
4548 	 * script tables is a pointer to the script to execute.
4549 	 */
4550 
4551 	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4552 			dcbent->type, dcbent->location, dcbent->or);
4553 	otable = bios_output_config_match(dev, dcbent, table[1] +
4554 					  bios->display.script_table_ptr,
4555 					  table[2], table[3], table[0] >= 0x21);
4556 	if (!otable) {
4557 		NV_DEBUG_KMS(dev, "failed to match any output table\n");
4558 		return 1;
4559 	}
4560 
4561 	if (pxclk < -2 || pxclk > 0) {
4562 		/* Try to find matching script table entry */
4563 		for (i = 0; i < otable[5]; i++) {
4564 			if (ROM16(otable[table[4] + i*6]) == sub)
4565 				break;
4566 		}
4567 
4568 		if (i == otable[5]) {
4569 			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4570 				      "using first\n",
4571 				 sub, dcbent->type, dcbent->or);
4572 			i = 0;
4573 		}
4574 	}
4575 
4576 	if (pxclk == 0) {
4577 		script = ROM16(otable[6]);
4578 		if (!script) {
4579 			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4580 			return 1;
4581 		}
4582 
4583 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4584 		nouveau_bios_run_init_table(dev, script, dcbent);
4585 	} else
4586 	if (pxclk == -1) {
4587 		script = ROM16(otable[8]);
4588 		if (!script) {
4589 			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4590 			return 1;
4591 		}
4592 
4593 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4594 		nouveau_bios_run_init_table(dev, script, dcbent);
4595 	} else
4596 	if (pxclk == -2) {
4597 		if (table[4] >= 12)
4598 			script = ROM16(otable[10]);
4599 		else
4600 			script = 0;
4601 		if (!script) {
4602 			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4603 			return 1;
4604 		}
4605 
4606 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4607 		nouveau_bios_run_init_table(dev, script, dcbent);
4608 	} else
4609 	if (pxclk > 0) {
4610 		script = ROM16(otable[table[4] + i*6 + 2]);
4611 		if (script)
4612 			script = clkcmptable(bios, script, pxclk);
4613 		if (!script) {
4614 			NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4615 			return 1;
4616 		}
4617 
4618 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4619 		nouveau_bios_run_init_table(dev, script, dcbent);
4620 	} else
4621 	if (pxclk < 0) {
4622 		script = ROM16(otable[table[4] + i*6 + 4]);
4623 		if (script)
4624 			script = clkcmptable(bios, script, -pxclk);
4625 		if (!script) {
4626 			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4627 			return 1;
4628 		}
4629 
4630 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4631 		nouveau_bios_run_init_table(dev, script, dcbent);
4632 	}
4633 
4634 	return 0;
4635 }
4636 
4637 
4638 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4639 {
4640 	/*
4641 	 * the pxclk parameter is in kHz
4642 	 *
4643 	 * This runs the TMDS regs setting code found on BIT bios cards
4644 	 *
4645 	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4646 	 * ffs(or) == 3, use the second.
4647 	 */
4648 
4649 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4650 	struct nvbios *bios = &dev_priv->vbios;
4651 	int cv = bios->chip_version;
4652 	uint16_t clktable = 0, scriptptr;
4653 	uint32_t sel_clk_binding, sel_clk;
4654 
4655 	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4656 	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4657 	    dcbent->location != DCB_LOC_ON_CHIP)
4658 		return 0;
4659 
4660 	switch (ffs(dcbent->or)) {
4661 	case 1:
4662 		clktable = bios->tmds.output0_script_ptr;
4663 		break;
4664 	case 2:
4665 	case 3:
4666 		clktable = bios->tmds.output1_script_ptr;
4667 		break;
4668 	}
4669 
4670 	if (!clktable) {
4671 		NV_ERROR(dev, "Pixel clock comparison table not found\n");
4672 		return -EINVAL;
4673 	}
4674 
4675 	scriptptr = clkcmptable(bios, clktable, pxclk);
4676 
4677 	if (!scriptptr) {
4678 		NV_ERROR(dev, "TMDS output init script not found\n");
4679 		return -ENOENT;
4680 	}
4681 
4682 	/* don't let script change pll->head binding */
4683 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4684 	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4685 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4686 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4687 
4688 	return 0;
4689 }
4690 
4691 struct pll_mapping {
4692 	u8  type;
4693 	u32 reg;
4694 };
4695 
4696 static struct pll_mapping nv04_pll_mapping[] = {
4697 	{ PLL_CORE  , NV_PRAMDAC_NVPLL_COEFF },
4698 	{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
4699 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4700 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4701 	{}
4702 };
4703 
4704 static struct pll_mapping nv40_pll_mapping[] = {
4705 	{ PLL_CORE  , 0x004000 },
4706 	{ PLL_MEMORY, 0x004020 },
4707 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4708 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4709 	{}
4710 };
4711 
4712 static struct pll_mapping nv50_pll_mapping[] = {
4713 	{ PLL_CORE  , 0x004028 },
4714 	{ PLL_SHADER, 0x004020 },
4715 	{ PLL_UNK03 , 0x004000 },
4716 	{ PLL_MEMORY, 0x004008 },
4717 	{ PLL_UNK40 , 0x00e810 },
4718 	{ PLL_UNK41 , 0x00e818 },
4719 	{ PLL_UNK42 , 0x00e824 },
4720 	{ PLL_VPLL0 , 0x614100 },
4721 	{ PLL_VPLL1 , 0x614900 },
4722 	{}
4723 };
4724 
4725 static struct pll_mapping nv84_pll_mapping[] = {
4726 	{ PLL_CORE  , 0x004028 },
4727 	{ PLL_SHADER, 0x004020 },
4728 	{ PLL_MEMORY, 0x004008 },
4729 	{ PLL_UNK05 , 0x004030 },
4730 	{ PLL_UNK41 , 0x00e818 },
4731 	{ PLL_VPLL0 , 0x614100 },
4732 	{ PLL_VPLL1 , 0x614900 },
4733 	{}
4734 };
4735 
4736 u32
4737 get_pll_register(struct drm_device *dev, enum pll_types type)
4738 {
4739 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4740 	struct nvbios *bios = &dev_priv->vbios;
4741 	struct pll_mapping *map;
4742 	int i;
4743 
4744 	if (dev_priv->card_type < NV_40)
4745 		map = nv04_pll_mapping;
4746 	else
4747 	if (dev_priv->card_type < NV_50)
4748 		map = nv40_pll_mapping;
4749 	else {
4750 		u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
4751 
4752 		if (plim[0] >= 0x30) {
4753 			u8 *entry = plim + plim[1];
4754 			for (i = 0; i < plim[3]; i++, entry += plim[2]) {
4755 				if (entry[0] == type)
4756 					return ROM32(entry[3]);
4757 			}
4758 
4759 			return 0;
4760 		}
4761 
4762 		if (dev_priv->chipset == 0x50)
4763 			map = nv50_pll_mapping;
4764 		else
4765 			map = nv84_pll_mapping;
4766 	}
4767 
4768 	while (map->reg) {
4769 		if (map->type == type)
4770 			return map->reg;
4771 		map++;
4772 	}
4773 
4774 	return 0;
4775 }
4776 
4777 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4778 {
4779 	/*
4780 	 * PLL limits table
4781 	 *
4782 	 * Version 0x10: NV30, NV31
4783 	 * One byte header (version), one record of 24 bytes
4784 	 * Version 0x11: NV36 - Not implemented
4785 	 * Seems to have same record style as 0x10, but 3 records rather than 1
4786 	 * Version 0x20: Found on Geforce 6 cards
4787 	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4788 	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4789 	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4790 	 * length in general, some (integrated) have an extra configuration byte
4791 	 * Version 0x30: Found on Geforce 8, separates the register mapping
4792 	 * from the limits tables.
4793 	 */
4794 
4795 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4796 	struct nvbios *bios = &dev_priv->vbios;
4797 	int cv = bios->chip_version, pllindex = 0;
4798 	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4799 	uint32_t crystal_strap_mask, crystal_straps;
4800 
4801 	if (!bios->pll_limit_tbl_ptr) {
4802 		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4803 		    cv >= 0x40) {
4804 			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4805 			return -EINVAL;
4806 		}
4807 	} else
4808 		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4809 
4810 	crystal_strap_mask = 1 << 6;
4811 	/* open coded dev->twoHeads test */
4812 	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4813 		crystal_strap_mask |= 1 << 22;
4814 	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4815 							crystal_strap_mask;
4816 
4817 	switch (pll_lim_ver) {
4818 	/*
4819 	 * We use version 0 to indicate a pre limit table bios (single stage
4820 	 * pll) and load the hard coded limits instead.
4821 	 */
4822 	case 0:
4823 		break;
4824 	case 0x10:
4825 	case 0x11:
4826 		/*
4827 		 * Strictly v0x11 has 3 entries, but the last two don't seem
4828 		 * to get used.
4829 		 */
4830 		headerlen = 1;
4831 		recordlen = 0x18;
4832 		entries = 1;
4833 		pllindex = 0;
4834 		break;
4835 	case 0x20:
4836 	case 0x21:
4837 	case 0x30:
4838 	case 0x40:
4839 		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4840 		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4841 		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4842 		break;
4843 	default:
4844 		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4845 				"supported\n", pll_lim_ver);
4846 		return -ENOSYS;
4847 	}
4848 
4849 	/* initialize all members to zero */
4850 	memset(pll_lim, 0, sizeof(struct pll_lims));
4851 
4852 	/* if we were passed a type rather than a register, figure
4853 	 * out the register and store it
4854 	 */
4855 	if (limit_match > PLL_MAX)
4856 		pll_lim->reg = limit_match;
4857 	else {
4858 		pll_lim->reg = get_pll_register(dev, limit_match);
4859 		if (!pll_lim->reg)
4860 			return -ENOENT;
4861 	}
4862 
4863 	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4864 		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4865 
4866 		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4867 		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4868 		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4869 		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4870 		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4871 		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4872 		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4873 
4874 		/* these values taken from nv30/31/36 */
4875 		pll_lim->vco1.min_n = 0x1;
4876 		if (cv == 0x36)
4877 			pll_lim->vco1.min_n = 0x5;
4878 		pll_lim->vco1.max_n = 0xff;
4879 		pll_lim->vco1.min_m = 0x1;
4880 		pll_lim->vco1.max_m = 0xd;
4881 		pll_lim->vco2.min_n = 0x4;
4882 		/*
4883 		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4884 		 * table version (apart from nv35)), N2 is compared to
4885 		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4886 		 * save a comparison
4887 		 */
4888 		pll_lim->vco2.max_n = 0x28;
4889 		if (cv == 0x30 || cv == 0x35)
4890 			/* only 5 bits available for N2 on nv30/35 */
4891 			pll_lim->vco2.max_n = 0x1f;
4892 		pll_lim->vco2.min_m = 0x1;
4893 		pll_lim->vco2.max_m = 0x4;
4894 		pll_lim->max_log2p = 0x7;
4895 		pll_lim->max_usable_log2p = 0x6;
4896 	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4897 		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4898 		uint8_t *pll_rec;
4899 		int i;
4900 
4901 		/*
4902 		 * First entry is default match, if nothing better. warn if
4903 		 * reg field nonzero
4904 		 */
4905 		if (ROM32(bios->data[plloffs]))
4906 			NV_WARN(dev, "Default PLL limit entry has non-zero "
4907 				       "register field\n");
4908 
4909 		for (i = 1; i < entries; i++)
4910 			if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4911 				pllindex = i;
4912 				break;
4913 			}
4914 
4915 		if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
4916 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4917 				 "limits table", pll_lim->reg);
4918 			return -ENOENT;
4919 		}
4920 
4921 		pll_rec = &bios->data[plloffs + recordlen * pllindex];
4922 
4923 		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4924 			pllindex ? pll_lim->reg : 0);
4925 
4926 		/*
4927 		 * Frequencies are stored in tables in MHz, kHz are more
4928 		 * useful, so we convert.
4929 		 */
4930 
4931 		/* What output frequencies can each VCO generate? */
4932 		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4933 		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4934 		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4935 		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4936 
4937 		/* What input frequencies they accept (past the m-divider)? */
4938 		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4939 		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4940 		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4941 		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4942 
4943 		/* What values are accepted as multiplier and divider? */
4944 		pll_lim->vco1.min_n = pll_rec[20];
4945 		pll_lim->vco1.max_n = pll_rec[21];
4946 		pll_lim->vco1.min_m = pll_rec[22];
4947 		pll_lim->vco1.max_m = pll_rec[23];
4948 		pll_lim->vco2.min_n = pll_rec[24];
4949 		pll_lim->vco2.max_n = pll_rec[25];
4950 		pll_lim->vco2.min_m = pll_rec[26];
4951 		pll_lim->vco2.max_m = pll_rec[27];
4952 
4953 		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4954 		if (pll_lim->max_log2p > 0x7)
4955 			/* pll decoding in nv_hw.c assumes never > 7 */
4956 			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4957 				pll_lim->max_log2p);
4958 		if (cv < 0x60)
4959 			pll_lim->max_usable_log2p = 0x6;
4960 		pll_lim->log2p_bias = pll_rec[30];
4961 
4962 		if (recordlen > 0x22)
4963 			pll_lim->refclk = ROM32(pll_rec[31]);
4964 
4965 		if (recordlen > 0x23 && pll_rec[35])
4966 			NV_WARN(dev,
4967 				"Bits set in PLL configuration byte (%x)\n",
4968 				pll_rec[35]);
4969 
4970 		/* C51 special not seen elsewhere */
4971 		if (cv == 0x51 && !pll_lim->refclk) {
4972 			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4973 
4974 			if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
4975 			    (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4976 				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4977 					pll_lim->refclk = 200000;
4978 				else
4979 					pll_lim->refclk = 25000;
4980 			}
4981 		}
4982 	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4983 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4984 		uint8_t *record = NULL;
4985 		int i;
4986 
4987 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4988 			pll_lim->reg);
4989 
4990 		for (i = 0; i < entries; i++, entry += recordlen) {
4991 			if (ROM32(entry[3]) == pll_lim->reg) {
4992 				record = &bios->data[ROM16(entry[1])];
4993 				break;
4994 			}
4995 		}
4996 
4997 		if (!record) {
4998 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4999 				 "limits table", pll_lim->reg);
5000 			return -ENOENT;
5001 		}
5002 
5003 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
5004 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
5005 		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
5006 		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
5007 		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
5008 		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
5009 		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
5010 		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
5011 		pll_lim->vco1.min_n = record[16];
5012 		pll_lim->vco1.max_n = record[17];
5013 		pll_lim->vco1.min_m = record[18];
5014 		pll_lim->vco1.max_m = record[19];
5015 		pll_lim->vco2.min_n = record[20];
5016 		pll_lim->vco2.max_n = record[21];
5017 		pll_lim->vco2.min_m = record[22];
5018 		pll_lim->vco2.max_m = record[23];
5019 		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
5020 		pll_lim->log2p_bias = record[27];
5021 		pll_lim->refclk = ROM32(record[28]);
5022 	} else if (pll_lim_ver) { /* ver 0x40 */
5023 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
5024 		uint8_t *record = NULL;
5025 		int i;
5026 
5027 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
5028 			pll_lim->reg);
5029 
5030 		for (i = 0; i < entries; i++, entry += recordlen) {
5031 			if (ROM32(entry[3]) == pll_lim->reg) {
5032 				record = &bios->data[ROM16(entry[1])];
5033 				break;
5034 			}
5035 		}
5036 
5037 		if (!record) {
5038 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
5039 				 "limits table", pll_lim->reg);
5040 			return -ENOENT;
5041 		}
5042 
5043 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
5044 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
5045 		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
5046 		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
5047 		pll_lim->vco1.min_m = record[8];
5048 		pll_lim->vco1.max_m = record[9];
5049 		pll_lim->vco1.min_n = record[10];
5050 		pll_lim->vco1.max_n = record[11];
5051 		pll_lim->min_p = record[12];
5052 		pll_lim->max_p = record[13];
5053 		pll_lim->refclk = ROM16(entry[9]) * 1000;
5054 	}
5055 
5056 	/*
5057 	 * By now any valid limit table ought to have set a max frequency for
5058 	 * vco1, so if it's zero it's either a pre limit table bios, or one
5059 	 * with an empty limit table (seen on nv18)
5060 	 */
5061 	if (!pll_lim->vco1.maxfreq) {
5062 		pll_lim->vco1.minfreq = bios->fminvco;
5063 		pll_lim->vco1.maxfreq = bios->fmaxvco;
5064 		pll_lim->vco1.min_inputfreq = 0;
5065 		pll_lim->vco1.max_inputfreq = INT_MAX;
5066 		pll_lim->vco1.min_n = 0x1;
5067 		pll_lim->vco1.max_n = 0xff;
5068 		pll_lim->vco1.min_m = 0x1;
5069 		if (crystal_straps == 0) {
5070 			/* nv05 does this, nv11 doesn't, nv10 unknown */
5071 			if (cv < 0x11)
5072 				pll_lim->vco1.min_m = 0x7;
5073 			pll_lim->vco1.max_m = 0xd;
5074 		} else {
5075 			if (cv < 0x11)
5076 				pll_lim->vco1.min_m = 0x8;
5077 			pll_lim->vco1.max_m = 0xe;
5078 		}
5079 		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
5080 			pll_lim->max_log2p = 4;
5081 		else
5082 			pll_lim->max_log2p = 5;
5083 		pll_lim->max_usable_log2p = pll_lim->max_log2p;
5084 	}
5085 
5086 	if (!pll_lim->refclk)
5087 		switch (crystal_straps) {
5088 		case 0:
5089 			pll_lim->refclk = 13500;
5090 			break;
5091 		case (1 << 6):
5092 			pll_lim->refclk = 14318;
5093 			break;
5094 		case (1 << 22):
5095 			pll_lim->refclk = 27000;
5096 			break;
5097 		case (1 << 22 | 1 << 6):
5098 			pll_lim->refclk = 25000;
5099 			break;
5100 		}
5101 
5102 	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
5103 	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
5104 	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
5105 	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
5106 	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
5107 	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
5108 	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
5109 	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
5110 	if (pll_lim->vco2.maxfreq) {
5111 		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
5112 		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
5113 		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
5114 		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
5115 		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
5116 		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
5117 		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
5118 		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
5119 	}
5120 	if (!pll_lim->max_p) {
5121 		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
5122 		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
5123 	} else {
5124 		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
5125 		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
5126 	}
5127 	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
5128 
5129 	return 0;
5130 }
5131 
5132 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
5133 {
5134 	/*
5135 	 * offset + 0  (8 bits): Micro version
5136 	 * offset + 1  (8 bits): Minor version
5137 	 * offset + 2  (8 bits): Chip version
5138 	 * offset + 3  (8 bits): Major version
5139 	 */
5140 
5141 	bios->major_version = bios->data[offset + 3];
5142 	bios->chip_version = bios->data[offset + 2];
5143 	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
5144 		 bios->data[offset + 3], bios->data[offset + 2],
5145 		 bios->data[offset + 1], bios->data[offset]);
5146 }
5147 
5148 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
5149 {
5150 	/*
5151 	 * Parses the init table segment for pointers used in script execution.
5152 	 *
5153 	 * offset + 0  (16 bits): init script tables pointer
5154 	 * offset + 2  (16 bits): macro index table pointer
5155 	 * offset + 4  (16 bits): macro table pointer
5156 	 * offset + 6  (16 bits): condition table pointer
5157 	 * offset + 8  (16 bits): io condition table pointer
5158 	 * offset + 10 (16 bits): io flag condition table pointer
5159 	 * offset + 12 (16 bits): init function table pointer
5160 	 */
5161 
5162 	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
5163 	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
5164 	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
5165 	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
5166 	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
5167 	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
5168 	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
5169 }
5170 
5171 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5172 {
5173 	/*
5174 	 * Parses the load detect values for g80 cards.
5175 	 *
5176 	 * offset + 0 (16 bits): loadval table pointer
5177 	 */
5178 
5179 	uint16_t load_table_ptr;
5180 	uint8_t version, headerlen, entrylen, num_entries;
5181 
5182 	if (bitentry->length != 3) {
5183 		NV_ERROR(dev, "Do not understand BIT A table\n");
5184 		return -EINVAL;
5185 	}
5186 
5187 	load_table_ptr = ROM16(bios->data[bitentry->offset]);
5188 
5189 	if (load_table_ptr == 0x0) {
5190 		NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
5191 		return -EINVAL;
5192 	}
5193 
5194 	version = bios->data[load_table_ptr];
5195 
5196 	if (version != 0x10) {
5197 		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
5198 			 version >> 4, version & 0xF);
5199 		return -ENOSYS;
5200 	}
5201 
5202 	headerlen = bios->data[load_table_ptr + 1];
5203 	entrylen = bios->data[load_table_ptr + 2];
5204 	num_entries = bios->data[load_table_ptr + 3];
5205 
5206 	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
5207 		NV_ERROR(dev, "Do not understand BIT loadval table\n");
5208 		return -EINVAL;
5209 	}
5210 
5211 	/* First entry is normal dac, 2nd tv-out perhaps? */
5212 	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5213 
5214 	return 0;
5215 }
5216 
5217 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5218 {
5219 	/*
5220 	 * offset + 8  (16 bits): PLL limits table pointer
5221 	 *
5222 	 * There's more in here, but that's unknown.
5223 	 */
5224 
5225 	if (bitentry->length < 10) {
5226 		NV_ERROR(dev, "Do not understand BIT C table\n");
5227 		return -EINVAL;
5228 	}
5229 
5230 	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
5231 
5232 	return 0;
5233 }
5234 
5235 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5236 {
5237 	/*
5238 	 * Parses the flat panel table segment that the bit entry points to.
5239 	 * Starting at bitentry->offset:
5240 	 *
5241 	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
5242 	 * records beginning with a freq.
5243 	 * offset + 2  (16 bits): mode table pointer
5244 	 */
5245 
5246 	if (bitentry->length != 4) {
5247 		NV_ERROR(dev, "Do not understand BIT display table\n");
5248 		return -EINVAL;
5249 	}
5250 
5251 	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
5252 
5253 	return 0;
5254 }
5255 
5256 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5257 {
5258 	/*
5259 	 * Parses the init table segment that the bit entry points to.
5260 	 *
5261 	 * See parse_script_table_pointers for layout
5262 	 */
5263 
5264 	if (bitentry->length < 14) {
5265 		NV_ERROR(dev, "Do not understand init table\n");
5266 		return -EINVAL;
5267 	}
5268 
5269 	parse_script_table_pointers(bios, bitentry->offset);
5270 
5271 	if (bitentry->length >= 16)
5272 		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
5273 	if (bitentry->length >= 18)
5274 		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
5275 
5276 	return 0;
5277 }
5278 
5279 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5280 {
5281 	/*
5282 	 * BIT 'i' (info?) table
5283 	 *
5284 	 * offset + 0  (32 bits): BIOS version dword (as in B table)
5285 	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
5286 	 * offset + 13 (16 bits): pointer to table containing DAC load
5287 	 * detection comparison values
5288 	 *
5289 	 * There's other things in the table, purpose unknown
5290 	 */
5291 
5292 	uint16_t daccmpoffset;
5293 	uint8_t dacver, dacheaderlen;
5294 
5295 	if (bitentry->length < 6) {
5296 		NV_ERROR(dev, "BIT i table too short for needed information\n");
5297 		return -EINVAL;
5298 	}
5299 
5300 	parse_bios_version(dev, bios, bitentry->offset);
5301 
5302 	/*
5303 	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
5304 	 * Quadro identity crisis), other bits possibly as for BMP feature byte
5305 	 */
5306 	bios->feature_byte = bios->data[bitentry->offset + 5];
5307 	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
5308 
5309 	if (bitentry->length < 15) {
5310 		NV_WARN(dev, "BIT i table not long enough for DAC load "
5311 			       "detection comparison table\n");
5312 		return -EINVAL;
5313 	}
5314 
5315 	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
5316 
5317 	/* doesn't exist on g80 */
5318 	if (!daccmpoffset)
5319 		return 0;
5320 
5321 	/*
5322 	 * The first value in the table, following the header, is the
5323 	 * comparison value, the second entry is a comparison value for
5324 	 * TV load detection.
5325 	 */
5326 
5327 	dacver = bios->data[daccmpoffset];
5328 	dacheaderlen = bios->data[daccmpoffset + 1];
5329 
5330 	if (dacver != 0x00 && dacver != 0x10) {
5331 		NV_WARN(dev, "DAC load detection comparison table version "
5332 			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
5333 		return -ENOSYS;
5334 	}
5335 
5336 	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
5337 	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5338 
5339 	return 0;
5340 }
5341 
5342 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5343 {
5344 	/*
5345 	 * Parses the LVDS table segment that the bit entry points to.
5346 	 * Starting at bitentry->offset:
5347 	 *
5348 	 * offset + 0  (16 bits): LVDS strap xlate table pointer
5349 	 */
5350 
5351 	if (bitentry->length != 2) {
5352 		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
5353 		return -EINVAL;
5354 	}
5355 
5356 	/*
5357 	 * No idea if it's still called the LVDS manufacturer table, but
5358 	 * the concept's close enough.
5359 	 */
5360 	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
5361 
5362 	return 0;
5363 }
5364 
5365 static int
5366 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5367 		      struct bit_entry *bitentry)
5368 {
5369 	/*
5370 	 * offset + 2  (8  bits): number of options in an
5371 	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
5372 	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
5373 	 * 	restrict option selection
5374 	 *
5375 	 * There's a bunch of bits in this table other than the RAM restrict
5376 	 * stuff that we don't use - their use currently unknown
5377 	 */
5378 
5379 	/*
5380 	 * Older bios versions don't have a sufficiently long table for
5381 	 * what we want
5382 	 */
5383 	if (bitentry->length < 0x5)
5384 		return 0;
5385 
5386 	if (bitentry->version < 2) {
5387 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
5388 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5389 	} else {
5390 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
5391 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5392 	}
5393 
5394 	return 0;
5395 }
5396 
5397 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5398 {
5399 	/*
5400 	 * Parses the pointer to the TMDS table
5401 	 *
5402 	 * Starting at bitentry->offset:
5403 	 *
5404 	 * offset + 0  (16 bits): TMDS table pointer
5405 	 *
5406 	 * The TMDS table is typically found just before the DCB table, with a
5407 	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
5408 	 * length?)
5409 	 *
5410 	 * At offset +7 is a pointer to a script, which I don't know how to
5411 	 * run yet.
5412 	 * At offset +9 is a pointer to another script, likewise
5413 	 * Offset +11 has a pointer to a table where the first word is a pxclk
5414 	 * frequency and the second word a pointer to a script, which should be
5415 	 * run if the comparison pxclk frequency is less than the pxclk desired.
5416 	 * This repeats for decreasing comparison frequencies
5417 	 * Offset +13 has a pointer to a similar table
5418 	 * The selection of table (and possibly +7/+9 script) is dictated by
5419 	 * "or" from the DCB.
5420 	 */
5421 
5422 	uint16_t tmdstableptr, script1, script2;
5423 
5424 	if (bitentry->length != 2) {
5425 		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
5426 		return -EINVAL;
5427 	}
5428 
5429 	tmdstableptr = ROM16(bios->data[bitentry->offset]);
5430 	if (!tmdstableptr) {
5431 		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
5432 		return -EINVAL;
5433 	}
5434 
5435 	NV_INFO(dev, "TMDS table version %d.%d\n",
5436 		bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
5437 
5438 	/* nv50+ has v2.0, but we don't parse it atm */
5439 	if (bios->data[tmdstableptr] != 0x11)
5440 		return -ENOSYS;
5441 
5442 	/*
5443 	 * These two scripts are odd: they don't seem to get run even when
5444 	 * they are not stubbed.
5445 	 */
5446 	script1 = ROM16(bios->data[tmdstableptr + 7]);
5447 	script2 = ROM16(bios->data[tmdstableptr + 9]);
5448 	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
5449 		NV_WARN(dev, "TMDS table script pointers not stubbed\n");
5450 
5451 	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
5452 	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
5453 
5454 	return 0;
5455 }
5456 
5457 static int
5458 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5459 		      struct bit_entry *bitentry)
5460 {
5461 	/*
5462 	 * Parses the pointer to the G80 output script tables
5463 	 *
5464 	 * Starting at bitentry->offset:
5465 	 *
5466 	 * offset + 0  (16 bits): output script table pointer
5467 	 */
5468 
5469 	uint16_t outputscripttableptr;
5470 
5471 	if (bitentry->length != 3) {
5472 		NV_ERROR(dev, "Do not understand BIT U table\n");
5473 		return -EINVAL;
5474 	}
5475 
5476 	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
5477 	bios->display.script_table_ptr = outputscripttableptr;
5478 	return 0;
5479 }
5480 
5481 static int
5482 parse_bit_displayport_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5483 				struct bit_entry *bitentry)
5484 {
5485 	bios->display.dp_table_ptr = ROM16(bios->data[bitentry->offset]);
5486 	return 0;
5487 }
5488 
5489 struct bit_table {
5490 	const char id;
5491 	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
5492 };
5493 
5494 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
5495 
5496 int
5497 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
5498 {
5499 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5500 	struct nvbios *bios = &dev_priv->vbios;
5501 	u8 entries, *entry;
5502 
5503 	entries = bios->data[bios->offset + 10];
5504 	entry   = &bios->data[bios->offset + 12];
5505 	while (entries--) {
5506 		if (entry[0] == id) {
5507 			bit->id = entry[0];
5508 			bit->version = entry[1];
5509 			bit->length = ROM16(entry[2]);
5510 			bit->offset = ROM16(entry[4]);
5511 			bit->data = ROMPTR(bios, entry[4]);
5512 			return 0;
5513 		}
5514 
5515 		entry += bios->data[bios->offset + 9];
5516 	}
5517 
5518 	return -ENOENT;
5519 }
5520 
5521 static int
5522 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
5523 		struct bit_table *table)
5524 {
5525 	struct drm_device *dev = bios->dev;
5526 	struct bit_entry bitentry;
5527 
5528 	if (bit_table(dev, table->id, &bitentry) == 0)
5529 		return table->parse_fn(dev, bios, &bitentry);
5530 
5531 	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
5532 	return -ENOSYS;
5533 }
5534 
5535 static int
5536 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
5537 {
5538 	int ret;
5539 
5540 	/*
5541 	 * The only restriction on parsing order currently is having 'i' first
5542 	 * for use of bios->*_version or bios->feature_byte while parsing;
5543 	 * functions shouldn't be actually *doing* anything apart from pulling
5544 	 * data from the image into the bios struct, thus no interdependencies
5545 	 */
5546 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
5547 	if (ret) /* info? */
5548 		return ret;
5549 	if (bios->major_version >= 0x60) /* g80+ */
5550 		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
5551 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
5552 	if (ret)
5553 		return ret;
5554 	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
5555 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
5556 	if (ret)
5557 		return ret;
5558 	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5559 	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5560 	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5561 	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5562 	parse_bit_table(bios, bitoffset, &BIT_TABLE('d', displayport));
5563 
5564 	return 0;
5565 }
5566 
5567 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5568 {
5569 	/*
5570 	 * Parses the BMP structure for useful things, but does not act on them
5571 	 *
5572 	 * offset +   5: BMP major version
5573 	 * offset +   6: BMP minor version
5574 	 * offset +   9: BMP feature byte
5575 	 * offset +  10: BCD encoded BIOS version
5576 	 *
5577 	 * offset +  18: init script table pointer (for bios versions < 5.10h)
5578 	 * offset +  20: extra init script table pointer (for bios
5579 	 * versions < 5.10h)
5580 	 *
5581 	 * offset +  24: memory init table pointer (used on early bios versions)
5582 	 * offset +  26: SDR memory sequencing setup data table
5583 	 * offset +  28: DDR memory sequencing setup data table
5584 	 *
5585 	 * offset +  54: index of I2C CRTC pair to use for CRT output
5586 	 * offset +  55: index of I2C CRTC pair to use for TV output
5587 	 * offset +  56: index of I2C CRTC pair to use for flat panel output
5588 	 * offset +  58: write CRTC index for I2C pair 0
5589 	 * offset +  59: read CRTC index for I2C pair 0
5590 	 * offset +  60: write CRTC index for I2C pair 1
5591 	 * offset +  61: read CRTC index for I2C pair 1
5592 	 *
5593 	 * offset +  67: maximum internal PLL frequency (single stage PLL)
5594 	 * offset +  71: minimum internal PLL frequency (single stage PLL)
5595 	 *
5596 	 * offset +  75: script table pointers, as described in
5597 	 * parse_script_table_pointers
5598 	 *
5599 	 * offset +  89: TMDS single link output A table pointer
5600 	 * offset +  91: TMDS single link output B table pointer
5601 	 * offset +  95: LVDS single link output A table pointer
5602 	 * offset + 105: flat panel timings table pointer
5603 	 * offset + 107: flat panel strapping translation table pointer
5604 	 * offset + 117: LVDS manufacturer panel config table pointer
5605 	 * offset + 119: LVDS manufacturer strapping translation table pointer
5606 	 *
5607 	 * offset + 142: PLL limits table pointer
5608 	 *
5609 	 * offset + 156: minimum pixel clock for LVDS dual link
5610 	 */
5611 
5612 	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5613 	uint16_t bmplength;
5614 	uint16_t legacy_scripts_offset, legacy_i2c_offset;
5615 
5616 	/* load needed defaults in case we can't parse this info */
5617 	bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
5618 	bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
5619 	bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
5620 	bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
5621 	bios->digital_min_front_porch = 0x4b;
5622 	bios->fmaxvco = 256000;
5623 	bios->fminvco = 128000;
5624 	bios->fp.duallink_transition_clk = 90000;
5625 
5626 	bmp_version_major = bmp[5];
5627 	bmp_version_minor = bmp[6];
5628 
5629 	NV_TRACE(dev, "BMP version %d.%d\n",
5630 		 bmp_version_major, bmp_version_minor);
5631 
5632 	/*
5633 	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5634 	 * pointer on early versions
5635 	 */
5636 	if (bmp_version_major < 5)
5637 		*(uint16_t *)&bios->data[0x36] = 0;
5638 
5639 	/*
5640 	 * Seems that the minor version was 1 for all major versions prior
5641 	 * to 5. Version 6 could theoretically exist, but I suspect BIT
5642 	 * happened instead.
5643 	 */
5644 	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5645 		NV_ERROR(dev, "You have an unsupported BMP version. "
5646 				"Please send in your bios\n");
5647 		return -ENOSYS;
5648 	}
5649 
5650 	if (bmp_version_major == 0)
5651 		/* nothing that's currently useful in this version */
5652 		return 0;
5653 	else if (bmp_version_major == 1)
5654 		bmplength = 44; /* exact for 1.01 */
5655 	else if (bmp_version_major == 2)
5656 		bmplength = 48; /* exact for 2.01 */
5657 	else if (bmp_version_major == 3)
5658 		bmplength = 54;
5659 		/* guessed - mem init tables added in this version */
5660 	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5661 		/* don't know if 5.0 exists... */
5662 		bmplength = 62;
5663 		/* guessed - BMP I2C indices added in version 4*/
5664 	else if (bmp_version_minor < 0x6)
5665 		bmplength = 67; /* exact for 5.01 */
5666 	else if (bmp_version_minor < 0x10)
5667 		bmplength = 75; /* exact for 5.06 */
5668 	else if (bmp_version_minor == 0x10)
5669 		bmplength = 89; /* exact for 5.10h */
5670 	else if (bmp_version_minor < 0x14)
5671 		bmplength = 118; /* exact for 5.11h */
5672 	else if (bmp_version_minor < 0x24)
5673 		/*
5674 		 * Not sure of version where pll limits came in;
5675 		 * certainly exist by 0x24 though.
5676 		 */
5677 		/* length not exact: this is long enough to get lvds members */
5678 		bmplength = 123;
5679 	else if (bmp_version_minor < 0x27)
5680 		/*
5681 		 * Length not exact: this is long enough to get pll limit
5682 		 * member
5683 		 */
5684 		bmplength = 144;
5685 	else
5686 		/*
5687 		 * Length not exact: this is long enough to get dual link
5688 		 * transition clock.
5689 		 */
5690 		bmplength = 158;
5691 
5692 	/* checksum */
5693 	if (nv_cksum(bmp, 8)) {
5694 		NV_ERROR(dev, "Bad BMP checksum\n");
5695 		return -EINVAL;
5696 	}
5697 
5698 	/*
5699 	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5700 	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5701 	 * (not nv10gl), bit 5 that the flat panel tables are present, and
5702 	 * bit 6 a tv bios.
5703 	 */
5704 	bios->feature_byte = bmp[9];
5705 
5706 	parse_bios_version(dev, bios, offset + 10);
5707 
5708 	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5709 		bios->old_style_init = true;
5710 	legacy_scripts_offset = 18;
5711 	if (bmp_version_major < 2)
5712 		legacy_scripts_offset -= 4;
5713 	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5714 	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5715 
5716 	if (bmp_version_major > 2) {	/* appears in BMP 3 */
5717 		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5718 		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5719 		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5720 	}
5721 
5722 	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
5723 	if (bmplength > 61)
5724 		legacy_i2c_offset = offset + 54;
5725 	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5726 	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5727 	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5728 	if (bios->data[legacy_i2c_offset + 4])
5729 		bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
5730 	if (bios->data[legacy_i2c_offset + 5])
5731 		bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
5732 	if (bios->data[legacy_i2c_offset + 6])
5733 		bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
5734 	if (bios->data[legacy_i2c_offset + 7])
5735 		bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
5736 
5737 	if (bmplength > 74) {
5738 		bios->fmaxvco = ROM32(bmp[67]);
5739 		bios->fminvco = ROM32(bmp[71]);
5740 	}
5741 	if (bmplength > 88)
5742 		parse_script_table_pointers(bios, offset + 75);
5743 	if (bmplength > 94) {
5744 		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5745 		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5746 		/*
5747 		 * Never observed in use with lvds scripts, but is reused for
5748 		 * 18/24 bit panel interface default for EDID equipped panels
5749 		 * (if_is_24bit not set directly to avoid any oscillation).
5750 		 */
5751 		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5752 	}
5753 	if (bmplength > 108) {
5754 		bios->fp.fptablepointer = ROM16(bmp[105]);
5755 		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5756 		bios->fp.xlatwidth = 1;
5757 	}
5758 	if (bmplength > 120) {
5759 		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5760 		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5761 	}
5762 	if (bmplength > 143)
5763 		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5764 
5765 	if (bmplength > 157)
5766 		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5767 
5768 	return 0;
5769 }
5770 
5771 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5772 {
5773 	int i, j;
5774 
5775 	for (i = 0; i <= (n - len); i++) {
5776 		for (j = 0; j < len; j++)
5777 			if (data[i + j] != str[j])
5778 				break;
5779 		if (j == len)
5780 			return i;
5781 	}
5782 
5783 	return 0;
5784 }
5785 
5786 static struct dcb_gpio_entry *
5787 new_gpio_entry(struct nvbios *bios)
5788 {
5789 	struct drm_device *dev = bios->dev;
5790 	struct dcb_gpio_table *gpio = &bios->dcb.gpio;
5791 
5792 	if (gpio->entries >= DCB_MAX_NUM_GPIO_ENTRIES) {
5793 		NV_ERROR(dev, "exceeded maximum number of gpio entries!!\n");
5794 		return NULL;
5795 	}
5796 
5797 	return &gpio->entry[gpio->entries++];
5798 }
5799 
5800 struct dcb_gpio_entry *
5801 nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
5802 {
5803 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5804 	struct nvbios *bios = &dev_priv->vbios;
5805 	int i;
5806 
5807 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
5808 		if (bios->dcb.gpio.entry[i].tag != tag)
5809 			continue;
5810 
5811 		return &bios->dcb.gpio.entry[i];
5812 	}
5813 
5814 	return NULL;
5815 }
5816 
5817 static void
5818 parse_dcb_gpio_table(struct nvbios *bios)
5819 {
5820 	struct drm_device *dev = bios->dev;
5821 	struct dcb_gpio_entry *e;
5822 	u8 headerlen, entries, recordlen;
5823 	u8 *dcb, *gpio = NULL, *entry;
5824 	int i;
5825 
5826 	dcb = ROMPTR(bios, bios->data[0x36]);
5827 	if (dcb[0] >= 0x30) {
5828 		gpio = ROMPTR(bios, dcb[10]);
5829 		if (!gpio)
5830 			goto no_table;
5831 
5832 		headerlen = gpio[1];
5833 		entries   = gpio[2];
5834 		recordlen = gpio[3];
5835 	} else
5836 	if (dcb[0] >= 0x22 && dcb[-1] >= 0x13) {
5837 		gpio = ROMPTR(bios, dcb[-15]);
5838 		if (!gpio)
5839 			goto no_table;
5840 
5841 		headerlen = 3;
5842 		entries   = gpio[2];
5843 		recordlen = gpio[1];
5844 	} else
5845 	if (dcb[0] >= 0x22) {
5846 		/* No GPIO table present, parse the TVDAC GPIO data. */
5847 		uint8_t *tvdac_gpio = &dcb[-5];
5848 
5849 		if (tvdac_gpio[0] & 1) {
5850 			e = new_gpio_entry(bios);
5851 			e->tag = DCB_GPIO_TVDAC0;
5852 			e->line = tvdac_gpio[1] >> 4;
5853 			e->invert = tvdac_gpio[0] & 2;
5854 		}
5855 
5856 		goto no_table;
5857 	} else {
5858 		NV_DEBUG(dev, "no/unknown gpio table on DCB 0x%02x\n", dcb[0]);
5859 		goto no_table;
5860 	}
5861 
5862 	entry = gpio + headerlen;
5863 	for (i = 0; i < entries; i++, entry += recordlen) {
5864 		e = new_gpio_entry(bios);
5865 		if (!e)
5866 			break;
5867 
5868 		if (gpio[0] < 0x40) {
5869 			e->entry = ROM16(entry[0]);
5870 			e->tag = (e->entry & 0x07e0) >> 5;
5871 			if (e->tag == 0x3f) {
5872 				bios->dcb.gpio.entries--;
5873 				continue;
5874 			}
5875 
5876 			e->line = (e->entry & 0x001f);
5877 			e->invert = ((e->entry & 0xf800) >> 11) != 4;
5878 		} else {
5879 			e->entry = ROM32(entry[0]);
5880 			e->tag = (e->entry & 0x0000ff00) >> 8;
5881 			if (e->tag == 0xff) {
5882 				bios->dcb.gpio.entries--;
5883 				continue;
5884 			}
5885 
5886 			e->line = (e->entry & 0x0000001f) >> 0;
5887 			e->state_default = (e->entry & 0x01000000) >> 24;
5888 			e->state[0] = (e->entry & 0x18000000) >> 27;
5889 			e->state[1] = (e->entry & 0x60000000) >> 29;
5890 		}
5891 	}
5892 
5893 no_table:
5894 	/* Apple iMac G4 NV18 */
5895 	if (nv_match_device(dev, 0x0189, 0x10de, 0x0010)) {
5896 		e = new_gpio_entry(bios);
5897 		if (e) {
5898 			e->tag = DCB_GPIO_TVDAC0;
5899 			e->line = 4;
5900 		}
5901 	}
5902 }
5903 
5904 struct dcb_connector_table_entry *
5905 nouveau_bios_connector_entry(struct drm_device *dev, int index)
5906 {
5907 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5908 	struct nvbios *bios = &dev_priv->vbios;
5909 	struct dcb_connector_table_entry *cte;
5910 
5911 	if (index >= bios->dcb.connector.entries)
5912 		return NULL;
5913 
5914 	cte = &bios->dcb.connector.entry[index];
5915 	if (cte->type == 0xff)
5916 		return NULL;
5917 
5918 	return cte;
5919 }
5920 
5921 static enum dcb_connector_type
5922 divine_connector_type(struct nvbios *bios, int index)
5923 {
5924 	struct dcb_table *dcb = &bios->dcb;
5925 	unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
5926 	int i;
5927 
5928 	for (i = 0; i < dcb->entries; i++) {
5929 		if (dcb->entry[i].connector == index)
5930 			encoders |= (1 << dcb->entry[i].type);
5931 	}
5932 
5933 	if (encoders & (1 << OUTPUT_DP)) {
5934 		if (encoders & (1 << OUTPUT_TMDS))
5935 			type = DCB_CONNECTOR_DP;
5936 		else
5937 			type = DCB_CONNECTOR_eDP;
5938 	} else
5939 	if (encoders & (1 << OUTPUT_TMDS)) {
5940 		if (encoders & (1 << OUTPUT_ANALOG))
5941 			type = DCB_CONNECTOR_DVI_I;
5942 		else
5943 			type = DCB_CONNECTOR_DVI_D;
5944 	} else
5945 	if (encoders & (1 << OUTPUT_ANALOG)) {
5946 		type = DCB_CONNECTOR_VGA;
5947 	} else
5948 	if (encoders & (1 << OUTPUT_LVDS)) {
5949 		type = DCB_CONNECTOR_LVDS;
5950 	} else
5951 	if (encoders & (1 << OUTPUT_TV)) {
5952 		type = DCB_CONNECTOR_TV_0;
5953 	}
5954 
5955 	return type;
5956 }
5957 
5958 static void
5959 apply_dcb_connector_quirks(struct nvbios *bios, int idx)
5960 {
5961 	struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
5962 	struct drm_device *dev = bios->dev;
5963 
5964 	/* Gigabyte NX85T */
5965 	if (nv_match_device(dev, 0x0421, 0x1458, 0x344c)) {
5966 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5967 			cte->type = DCB_CONNECTOR_DVI_I;
5968 	}
5969 
5970 	/* Gigabyte GV-NX86T512H */
5971 	if (nv_match_device(dev, 0x0402, 0x1458, 0x3455)) {
5972 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5973 			cte->type = DCB_CONNECTOR_DVI_I;
5974 	}
5975 }
5976 
5977 static const u8 hpd_gpio[16] = {
5978 	0xff, 0x07, 0x08, 0xff, 0xff, 0x51, 0x52, 0xff,
5979 	0xff, 0xff, 0xff, 0xff, 0xff, 0x5e, 0x5f, 0x60,
5980 };
5981 
5982 static void
5983 parse_dcb_connector_table(struct nvbios *bios)
5984 {
5985 	struct drm_device *dev = bios->dev;
5986 	struct dcb_connector_table *ct = &bios->dcb.connector;
5987 	struct dcb_connector_table_entry *cte;
5988 	uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
5989 	uint8_t *entry;
5990 	int i;
5991 
5992 	if (!bios->dcb.connector_table_ptr) {
5993 		NV_DEBUG_KMS(dev, "No DCB connector table present\n");
5994 		return;
5995 	}
5996 
5997 	NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
5998 		conntab[0], conntab[1], conntab[2], conntab[3]);
5999 	if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
6000 	    (conntab[3] != 2 && conntab[3] != 4)) {
6001 		NV_ERROR(dev, "  Unknown!  Please report.\n");
6002 		return;
6003 	}
6004 
6005 	ct->entries = conntab[2];
6006 
6007 	entry = conntab + conntab[1];
6008 	cte = &ct->entry[0];
6009 	for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
6010 		cte->index = i;
6011 		if (conntab[3] == 2)
6012 			cte->entry = ROM16(entry[0]);
6013 		else
6014 			cte->entry = ROM32(entry[0]);
6015 
6016 		cte->type  = (cte->entry & 0x000000ff) >> 0;
6017 		cte->index2 = (cte->entry & 0x00000f00) >> 8;
6018 
6019 		cte->gpio_tag = ffs((cte->entry & 0x07033000) >> 12);
6020 		cte->gpio_tag = hpd_gpio[cte->gpio_tag];
6021 
6022 		if (cte->type == 0xff)
6023 			continue;
6024 
6025 		apply_dcb_connector_quirks(bios, i);
6026 
6027 		NV_INFO(dev, "  %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
6028 			i, cte->entry, cte->type, cte->index, cte->gpio_tag);
6029 
6030 		/* check for known types, fallback to guessing the type
6031 		 * from attached encoders if we hit an unknown.
6032 		 */
6033 		switch (cte->type) {
6034 		case DCB_CONNECTOR_VGA:
6035 		case DCB_CONNECTOR_TV_0:
6036 		case DCB_CONNECTOR_TV_1:
6037 		case DCB_CONNECTOR_TV_3:
6038 		case DCB_CONNECTOR_DVI_I:
6039 		case DCB_CONNECTOR_DVI_D:
6040 		case DCB_CONNECTOR_LVDS:
6041 		case DCB_CONNECTOR_LVDS_SPWG:
6042 		case DCB_CONNECTOR_DP:
6043 		case DCB_CONNECTOR_eDP:
6044 		case DCB_CONNECTOR_HDMI_0:
6045 		case DCB_CONNECTOR_HDMI_1:
6046 			break;
6047 		default:
6048 			cte->type = divine_connector_type(bios, cte->index);
6049 			NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
6050 			break;
6051 		}
6052 
6053 		if (nouveau_override_conntype) {
6054 			int type = divine_connector_type(bios, cte->index);
6055 			if (type != cte->type)
6056 				NV_WARN(dev, " -> type 0x%02x\n", cte->type);
6057 		}
6058 
6059 	}
6060 }
6061 
6062 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
6063 {
6064 	struct dcb_entry *entry = &dcb->entry[dcb->entries];
6065 
6066 	memset(entry, 0, sizeof(struct dcb_entry));
6067 	entry->index = dcb->entries++;
6068 
6069 	return entry;
6070 }
6071 
6072 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
6073 				 int heads, int or)
6074 {
6075 	struct dcb_entry *entry = new_dcb_entry(dcb);
6076 
6077 	entry->type = type;
6078 	entry->i2c_index = i2c;
6079 	entry->heads = heads;
6080 	if (type != OUTPUT_ANALOG)
6081 		entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
6082 	entry->or = or;
6083 }
6084 
6085 static bool
6086 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
6087 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6088 {
6089 	entry->type = conn & 0xf;
6090 	entry->i2c_index = (conn >> 4) & 0xf;
6091 	entry->heads = (conn >> 8) & 0xf;
6092 	if (dcb->version >= 0x40)
6093 		entry->connector = (conn >> 12) & 0xf;
6094 	entry->bus = (conn >> 16) & 0xf;
6095 	entry->location = (conn >> 20) & 0x3;
6096 	entry->or = (conn >> 24) & 0xf;
6097 
6098 	switch (entry->type) {
6099 	case OUTPUT_ANALOG:
6100 		/*
6101 		 * Although the rest of a CRT conf dword is usually
6102 		 * zeros, mac biosen have stuff there so we must mask
6103 		 */
6104 		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
6105 					 (conf & 0xffff) * 10 :
6106 					 (conf & 0xff) * 10000;
6107 		break;
6108 	case OUTPUT_LVDS:
6109 		{
6110 		uint32_t mask;
6111 		if (conf & 0x1)
6112 			entry->lvdsconf.use_straps_for_mode = true;
6113 		if (dcb->version < 0x22) {
6114 			mask = ~0xd;
6115 			/*
6116 			 * The laptop in bug 14567 lies and claims to not use
6117 			 * straps when it does, so assume all DCB 2.0 laptops
6118 			 * use straps, until a broken EDID using one is produced
6119 			 */
6120 			entry->lvdsconf.use_straps_for_mode = true;
6121 			/*
6122 			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
6123 			 * mean the same thing (probably wrong, but might work)
6124 			 */
6125 			if (conf & 0x4 || conf & 0x8)
6126 				entry->lvdsconf.use_power_scripts = true;
6127 		} else {
6128 			mask = ~0x7;
6129 			if (conf & 0x2)
6130 				entry->lvdsconf.use_acpi_for_edid = true;
6131 			if (conf & 0x4)
6132 				entry->lvdsconf.use_power_scripts = true;
6133 			entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
6134 		}
6135 		if (conf & mask) {
6136 			/*
6137 			 * Until we even try to use these on G8x, it's
6138 			 * useless reporting unknown bits.  They all are.
6139 			 */
6140 			if (dcb->version >= 0x40)
6141 				break;
6142 
6143 			NV_ERROR(dev, "Unknown LVDS configuration bits, "
6144 				      "please report\n");
6145 		}
6146 		break;
6147 		}
6148 	case OUTPUT_TV:
6149 	{
6150 		if (dcb->version >= 0x30)
6151 			entry->tvconf.has_component_output = conf & (0x8 << 4);
6152 		else
6153 			entry->tvconf.has_component_output = false;
6154 
6155 		break;
6156 	}
6157 	case OUTPUT_DP:
6158 		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
6159 		entry->dpconf.link_bw = (conf & 0x00e00000) >> 21;
6160 		switch ((conf & 0x0f000000) >> 24) {
6161 		case 0xf:
6162 			entry->dpconf.link_nr = 4;
6163 			break;
6164 		case 0x3:
6165 			entry->dpconf.link_nr = 2;
6166 			break;
6167 		default:
6168 			entry->dpconf.link_nr = 1;
6169 			break;
6170 		}
6171 		break;
6172 	case OUTPUT_TMDS:
6173 		if (dcb->version >= 0x40)
6174 			entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
6175 		else if (dcb->version >= 0x30)
6176 			entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
6177 		else if (dcb->version >= 0x22)
6178 			entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
6179 
6180 		break;
6181 	case OUTPUT_EOL:
6182 		/* weird g80 mobile type that "nv" treats as a terminator */
6183 		dcb->entries--;
6184 		return false;
6185 	default:
6186 		break;
6187 	}
6188 
6189 	if (dcb->version < 0x40) {
6190 		/* Normal entries consist of a single bit, but dual link has
6191 		 * the next most significant bit set too
6192 		 */
6193 		entry->duallink_possible =
6194 			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
6195 	} else {
6196 		entry->duallink_possible = (entry->sorconf.link == 3);
6197 	}
6198 
6199 	/* unsure what DCB version introduces this, 3.0? */
6200 	if (conf & 0x100000)
6201 		entry->i2c_upper_default = true;
6202 
6203 	return true;
6204 }
6205 
6206 static bool
6207 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
6208 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6209 {
6210 	switch (conn & 0x0000000f) {
6211 	case 0:
6212 		entry->type = OUTPUT_ANALOG;
6213 		break;
6214 	case 1:
6215 		entry->type = OUTPUT_TV;
6216 		break;
6217 	case 2:
6218 	case 4:
6219 		if (conn & 0x10)
6220 			entry->type = OUTPUT_LVDS;
6221 		else
6222 			entry->type = OUTPUT_TMDS;
6223 		break;
6224 	case 3:
6225 		entry->type = OUTPUT_LVDS;
6226 		break;
6227 	default:
6228 		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
6229 		return false;
6230 	}
6231 
6232 	entry->i2c_index = (conn & 0x0003c000) >> 14;
6233 	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
6234 	entry->or = entry->heads; /* same as heads, hopefully safe enough */
6235 	entry->location = (conn & 0x01e00000) >> 21;
6236 	entry->bus = (conn & 0x0e000000) >> 25;
6237 	entry->duallink_possible = false;
6238 
6239 	switch (entry->type) {
6240 	case OUTPUT_ANALOG:
6241 		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
6242 		break;
6243 	case OUTPUT_TV:
6244 		entry->tvconf.has_component_output = false;
6245 		break;
6246 	case OUTPUT_LVDS:
6247 		if ((conn & 0x00003f00) >> 8 != 0x10)
6248 			entry->lvdsconf.use_straps_for_mode = true;
6249 		entry->lvdsconf.use_power_scripts = true;
6250 		break;
6251 	default:
6252 		break;
6253 	}
6254 
6255 	return true;
6256 }
6257 
6258 static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
6259 			    uint32_t conn, uint32_t conf)
6260 {
6261 	struct dcb_entry *entry = new_dcb_entry(dcb);
6262 	bool ret;
6263 
6264 	if (dcb->version >= 0x20)
6265 		ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
6266 	else
6267 		ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
6268 	if (!ret)
6269 		return ret;
6270 
6271 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6272 			   entry->i2c_index, &dcb->i2c[entry->i2c_index]);
6273 
6274 	return true;
6275 }
6276 
6277 static
6278 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
6279 {
6280 	/*
6281 	 * DCB v2.0 lists each output combination separately.
6282 	 * Here we merge compatible entries to have fewer outputs, with
6283 	 * more options
6284 	 */
6285 
6286 	int i, newentries = 0;
6287 
6288 	for (i = 0; i < dcb->entries; i++) {
6289 		struct dcb_entry *ient = &dcb->entry[i];
6290 		int j;
6291 
6292 		for (j = i + 1; j < dcb->entries; j++) {
6293 			struct dcb_entry *jent = &dcb->entry[j];
6294 
6295 			if (jent->type == 100) /* already merged entry */
6296 				continue;
6297 
6298 			/* merge heads field when all other fields the same */
6299 			if (jent->i2c_index == ient->i2c_index &&
6300 			    jent->type == ient->type &&
6301 			    jent->location == ient->location &&
6302 			    jent->or == ient->or) {
6303 				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
6304 					 i, j);
6305 				ient->heads |= jent->heads;
6306 				jent->type = 100; /* dummy value */
6307 			}
6308 		}
6309 	}
6310 
6311 	/* Compact entries merged into others out of dcb */
6312 	for (i = 0; i < dcb->entries; i++) {
6313 		if (dcb->entry[i].type == 100)
6314 			continue;
6315 
6316 		if (newentries != i) {
6317 			dcb->entry[newentries] = dcb->entry[i];
6318 			dcb->entry[newentries].index = newentries;
6319 		}
6320 		newentries++;
6321 	}
6322 
6323 	dcb->entries = newentries;
6324 }
6325 
6326 static bool
6327 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
6328 {
6329 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6330 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
6331 
6332 	/* Dell Precision M6300
6333 	 *   DCB entry 2: 02025312 00000010
6334 	 *   DCB entry 3: 02026312 00000020
6335 	 *
6336 	 * Identical, except apparently a different connector on a
6337 	 * different SOR link.  Not a clue how we're supposed to know
6338 	 * which one is in use if it even shares an i2c line...
6339 	 *
6340 	 * Ignore the connector on the second SOR link to prevent
6341 	 * nasty problems until this is sorted (assuming it's not a
6342 	 * VBIOS bug).
6343 	 */
6344 	if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
6345 		if (*conn == 0x02026312 && *conf == 0x00000020)
6346 			return false;
6347 	}
6348 
6349 	/* GeForce3 Ti 200
6350 	 *
6351 	 * DCB reports an LVDS output that should be TMDS:
6352 	 *   DCB entry 1: f2005014 ffffffff
6353 	 */
6354 	if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
6355 		if (*conn == 0xf2005014 && *conf == 0xffffffff) {
6356 			fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
6357 			return false;
6358 		}
6359 	}
6360 
6361 	/* XFX GT-240X-YA
6362 	 *
6363 	 * So many things wrong here, replace the entire encoder table..
6364 	 */
6365 	if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
6366 		if (idx == 0) {
6367 			*conn = 0x02001300; /* VGA, connector 1 */
6368 			*conf = 0x00000028;
6369 		} else
6370 		if (idx == 1) {
6371 			*conn = 0x01010312; /* DVI, connector 0 */
6372 			*conf = 0x00020030;
6373 		} else
6374 		if (idx == 2) {
6375 			*conn = 0x01010310; /* VGA, connector 0 */
6376 			*conf = 0x00000028;
6377 		} else
6378 		if (idx == 3) {
6379 			*conn = 0x02022362; /* HDMI, connector 2 */
6380 			*conf = 0x00020010;
6381 		} else {
6382 			*conn = 0x0000000e; /* EOL */
6383 			*conf = 0x00000000;
6384 		}
6385 	}
6386 
6387 	/* Some other twisted XFX board (rhbz#694914)
6388 	 *
6389 	 * The DVI/VGA encoder combo that's supposed to represent the
6390 	 * DVI-I connector actually point at two different ones, and
6391 	 * the HDMI connector ends up paired with the VGA instead.
6392 	 *
6393 	 * Connector table is missing anything for VGA at all, pointing it
6394 	 * an invalid conntab entry 2 so we figure it out ourself.
6395 	 */
6396 	if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
6397 		if (idx == 0) {
6398 			*conn = 0x02002300; /* VGA, connector 2 */
6399 			*conf = 0x00000028;
6400 		} else
6401 		if (idx == 1) {
6402 			*conn = 0x01010312; /* DVI, connector 0 */
6403 			*conf = 0x00020030;
6404 		} else
6405 		if (idx == 2) {
6406 			*conn = 0x04020310; /* VGA, connector 0 */
6407 			*conf = 0x00000028;
6408 		} else
6409 		if (idx == 3) {
6410 			*conn = 0x02021322; /* HDMI, connector 1 */
6411 			*conf = 0x00020010;
6412 		} else {
6413 			*conn = 0x0000000e; /* EOL */
6414 			*conf = 0x00000000;
6415 		}
6416 	}
6417 
6418 	return true;
6419 }
6420 
6421 static void
6422 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
6423 {
6424 	struct dcb_table *dcb = &bios->dcb;
6425 	int all_heads = (nv_two_heads(dev) ? 3 : 1);
6426 
6427 #ifdef __powerpc__
6428 	/* Apple iMac G4 NV17 */
6429 	if (of_machine_is_compatible("PowerMac4,5")) {
6430 		fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
6431 		fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
6432 		return;
6433 	}
6434 #endif
6435 
6436 	/* Make up some sane defaults */
6437 	fabricate_dcb_output(dcb, OUTPUT_ANALOG, LEGACY_I2C_CRT, 1, 1);
6438 
6439 	if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6440 		fabricate_dcb_output(dcb, OUTPUT_TV, LEGACY_I2C_TV,
6441 				     all_heads, 0);
6442 
6443 	else if (bios->tmds.output0_script_ptr ||
6444 		 bios->tmds.output1_script_ptr)
6445 		fabricate_dcb_output(dcb, OUTPUT_TMDS, LEGACY_I2C_PANEL,
6446 				     all_heads, 1);
6447 }
6448 
6449 static int
6450 parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
6451 {
6452 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6453 	struct dcb_table *dcb = &bios->dcb;
6454 	uint16_t dcbptr = 0, i2ctabptr = 0;
6455 	uint8_t *dcbtable;
6456 	uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
6457 	bool configblock = true;
6458 	int recordlength = 8, confofs = 4;
6459 	int i;
6460 
6461 	/* get the offset from 0x36 */
6462 	if (dev_priv->card_type > NV_04) {
6463 		dcbptr = ROM16(bios->data[0x36]);
6464 		if (dcbptr == 0x0000)
6465 			NV_WARN(dev, "No output data (DCB) found in BIOS\n");
6466 	}
6467 
6468 	/* this situation likely means a really old card, pre DCB */
6469 	if (dcbptr == 0x0) {
6470 		fabricate_dcb_encoder_table(dev, bios);
6471 		return 0;
6472 	}
6473 
6474 	dcbtable = &bios->data[dcbptr];
6475 
6476 	/* get DCB version */
6477 	dcb->version = dcbtable[0];
6478 	NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
6479 		 dcb->version >> 4, dcb->version & 0xf);
6480 
6481 	if (dcb->version >= 0x20) { /* NV17+ */
6482 		uint32_t sig;
6483 
6484 		if (dcb->version >= 0x30) { /* NV40+ */
6485 			headerlen = dcbtable[1];
6486 			entries = dcbtable[2];
6487 			recordlength = dcbtable[3];
6488 			i2ctabptr = ROM16(dcbtable[4]);
6489 			sig = ROM32(dcbtable[6]);
6490 			dcb->gpio_table_ptr = ROM16(dcbtable[10]);
6491 			dcb->connector_table_ptr = ROM16(dcbtable[20]);
6492 		} else {
6493 			i2ctabptr = ROM16(dcbtable[2]);
6494 			sig = ROM32(dcbtable[4]);
6495 			headerlen = 8;
6496 		}
6497 
6498 		if (sig != 0x4edcbdcb) {
6499 			NV_ERROR(dev, "Bad Display Configuration Block "
6500 					"signature (%08X)\n", sig);
6501 			return -EINVAL;
6502 		}
6503 	} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
6504 		char sig[8] = { 0 };
6505 
6506 		strncpy(sig, (char *)&dcbtable[-7], 7);
6507 		i2ctabptr = ROM16(dcbtable[2]);
6508 		recordlength = 10;
6509 		confofs = 6;
6510 
6511 		if (strcmp(sig, "DEV_REC")) {
6512 			NV_ERROR(dev, "Bad Display Configuration Block "
6513 					"signature (%s)\n", sig);
6514 			return -EINVAL;
6515 		}
6516 	} else {
6517 		/*
6518 		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
6519 		 * has the same single (crt) entry, even when tv-out present, so
6520 		 * the conclusion is this version cannot really be used.
6521 		 * v1.2 tables (some NV6/10, and NV15+) normally have the same
6522 		 * 5 entries, which are not specific to the card and so no use.
6523 		 * v1.2 does have an I2C table that read_dcb_i2c_table can
6524 		 * handle, but cards exist (nv11 in #14821) with a bad i2c table
6525 		 * pointer, so use the indices parsed in parse_bmp_structure.
6526 		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
6527 		 */
6528 		NV_TRACEWARN(dev, "No useful information in BIOS output table; "
6529 				  "adding all possible outputs\n");
6530 		fabricate_dcb_encoder_table(dev, bios);
6531 		return 0;
6532 	}
6533 
6534 	if (!i2ctabptr)
6535 		NV_WARN(dev, "No pointer to DCB I2C port table\n");
6536 	else {
6537 		dcb->i2c_table = &bios->data[i2ctabptr];
6538 		if (dcb->version >= 0x30)
6539 			dcb->i2c_default_indices = dcb->i2c_table[4];
6540 
6541 		/*
6542 		 * Parse the "management" I2C bus, used for hardware
6543 		 * monitoring and some external TMDS transmitters.
6544 		 */
6545 		if (dcb->version >= 0x22) {
6546 			int idx = (dcb->version >= 0x40 ?
6547 				   dcb->i2c_default_indices & 0xf :
6548 				   2);
6549 
6550 			read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6551 					   idx, &dcb->i2c[idx]);
6552 		}
6553 	}
6554 
6555 	if (entries > DCB_MAX_NUM_ENTRIES)
6556 		entries = DCB_MAX_NUM_ENTRIES;
6557 
6558 	for (i = 0; i < entries; i++) {
6559 		uint32_t connection, config = 0;
6560 
6561 		connection = ROM32(dcbtable[headerlen + recordlength * i]);
6562 		if (configblock)
6563 			config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);
6564 
6565 		/* seen on an NV11 with DCB v1.5 */
6566 		if (connection == 0x00000000)
6567 			break;
6568 
6569 		/* seen on an NV17 with DCB v2.0 */
6570 		if (connection == 0xffffffff)
6571 			break;
6572 
6573 		if ((connection & 0x0000000f) == 0x0000000f)
6574 			continue;
6575 
6576 		if (!apply_dcb_encoder_quirks(dev, i, &connection, &config))
6577 			continue;
6578 
6579 		NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
6580 			     dcb->entries, connection, config);
6581 
6582 		if (!parse_dcb_entry(dev, dcb, connection, config))
6583 			break;
6584 	}
6585 
6586 	/*
6587 	 * apart for v2.1+ not being known for requiring merging, this
6588 	 * guarantees dcbent->index is the index of the entry in the rom image
6589 	 */
6590 	if (dcb->version < 0x21)
6591 		merge_like_dcb_entries(dev, dcb);
6592 
6593 	if (!dcb->entries)
6594 		return -ENXIO;
6595 
6596 	parse_dcb_gpio_table(bios);
6597 	parse_dcb_connector_table(bios);
6598 	return 0;
6599 }
6600 
6601 static void
6602 fixup_legacy_connector(struct nvbios *bios)
6603 {
6604 	struct dcb_table *dcb = &bios->dcb;
6605 	int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
6606 
6607 	/*
6608 	 * DCB 3.0 also has the table in most cases, but there are some cards
6609 	 * where the table is filled with stub entries, and the DCB entriy
6610 	 * indices are all 0.  We don't need the connector indices on pre-G80
6611 	 * chips (yet?) so limit the use to DCB 4.0 and above.
6612 	 */
6613 	if (dcb->version >= 0x40)
6614 		return;
6615 
6616 	dcb->connector.entries = 0;
6617 
6618 	/*
6619 	 * No known connector info before v3.0, so make it up.  the rule here
6620 	 * is: anything on the same i2c bus is considered to be on the same
6621 	 * connector.  any output without an associated i2c bus is assigned
6622 	 * its own unique connector index.
6623 	 */
6624 	for (i = 0; i < dcb->entries; i++) {
6625 		/*
6626 		 * Ignore the I2C index for on-chip TV-out, as there
6627 		 * are cards with bogus values (nv31m in bug 23212),
6628 		 * and it's otherwise useless.
6629 		 */
6630 		if (dcb->entry[i].type == OUTPUT_TV &&
6631 		    dcb->entry[i].location == DCB_LOC_ON_CHIP)
6632 			dcb->entry[i].i2c_index = 0xf;
6633 		i2c = dcb->entry[i].i2c_index;
6634 
6635 		if (i2c_conn[i2c]) {
6636 			dcb->entry[i].connector = i2c_conn[i2c] - 1;
6637 			continue;
6638 		}
6639 
6640 		dcb->entry[i].connector = dcb->connector.entries++;
6641 		if (i2c != 0xf)
6642 			i2c_conn[i2c] = dcb->connector.entries;
6643 	}
6644 
6645 	/* Fake the connector table as well as just connector indices */
6646 	for (i = 0; i < dcb->connector.entries; i++) {
6647 		dcb->connector.entry[i].index = i;
6648 		dcb->connector.entry[i].type = divine_connector_type(bios, i);
6649 		dcb->connector.entry[i].gpio_tag = 0xff;
6650 	}
6651 }
6652 
6653 static void
6654 fixup_legacy_i2c(struct nvbios *bios)
6655 {
6656 	struct dcb_table *dcb = &bios->dcb;
6657 	int i;
6658 
6659 	for (i = 0; i < dcb->entries; i++) {
6660 		if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
6661 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
6662 		if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
6663 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
6664 		if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
6665 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
6666 	}
6667 }
6668 
6669 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6670 {
6671 	/*
6672 	 * The header following the "HWSQ" signature has the number of entries,
6673 	 * and the entry size
6674 	 *
6675 	 * An entry consists of a dword to write to the sequencer control reg
6676 	 * (0x00001304), followed by the ucode bytes, written sequentially,
6677 	 * starting at reg 0x00001400
6678 	 */
6679 
6680 	uint8_t bytes_to_write;
6681 	uint16_t hwsq_entry_offset;
6682 	int i;
6683 
6684 	if (bios->data[hwsq_offset] <= entry) {
6685 		NV_ERROR(dev, "Too few entries in HW sequencer table for "
6686 				"requested entry\n");
6687 		return -ENOENT;
6688 	}
6689 
6690 	bytes_to_write = bios->data[hwsq_offset + 1];
6691 
6692 	if (bytes_to_write != 36) {
6693 		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6694 		return -EINVAL;
6695 	}
6696 
6697 	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6698 
6699 	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6700 
6701 	/* set sequencer control */
6702 	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6703 	bytes_to_write -= 4;
6704 
6705 	/* write ucode */
6706 	for (i = 0; i < bytes_to_write; i += 4)
6707 		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6708 
6709 	/* twiddle NV_PBUS_DEBUG_4 */
6710 	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6711 
6712 	return 0;
6713 }
6714 
6715 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6716 					struct nvbios *bios)
6717 {
6718 	/*
6719 	 * BMP based cards, from NV17, need a microcode loading to correctly
6720 	 * control the GPIO etc for LVDS panels
6721 	 *
6722 	 * BIT based cards seem to do this directly in the init scripts
6723 	 *
6724 	 * The microcode entries are found by the "HWSQ" signature.
6725 	 */
6726 
6727 	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6728 	const int sz = sizeof(hwsq_signature);
6729 	int hwsq_offset;
6730 
6731 	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6732 	if (!hwsq_offset)
6733 		return 0;
6734 
6735 	/* always use entry 0? */
6736 	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6737 }
6738 
6739 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6740 {
6741 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6742 	struct nvbios *bios = &dev_priv->vbios;
6743 	const uint8_t edid_sig[] = {
6744 			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6745 	uint16_t offset = 0;
6746 	uint16_t newoffset;
6747 	int searchlen = NV_PROM_SIZE;
6748 
6749 	if (bios->fp.edid)
6750 		return bios->fp.edid;
6751 
6752 	while (searchlen) {
6753 		newoffset = findstr(&bios->data[offset], searchlen,
6754 								edid_sig, 8);
6755 		if (!newoffset)
6756 			return NULL;
6757 		offset += newoffset;
6758 		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6759 			break;
6760 
6761 		searchlen -= offset;
6762 		offset++;
6763 	}
6764 
6765 	NV_TRACE(dev, "Found EDID in BIOS\n");
6766 
6767 	return bios->fp.edid = &bios->data[offset];
6768 }
6769 
6770 void
6771 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6772 			    struct dcb_entry *dcbent)
6773 {
6774 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6775 	struct nvbios *bios = &dev_priv->vbios;
6776 	struct init_exec iexec = { true, false };
6777 
6778 	spin_lock_bh(&bios->lock);
6779 	bios->display.output = dcbent;
6780 	parse_init_table(bios, table, &iexec);
6781 	bios->display.output = NULL;
6782 	spin_unlock_bh(&bios->lock);
6783 }
6784 
6785 static bool NVInitVBIOS(struct drm_device *dev)
6786 {
6787 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6788 	struct nvbios *bios = &dev_priv->vbios;
6789 
6790 	memset(bios, 0, sizeof(struct nvbios));
6791 	spin_lock_init(&bios->lock);
6792 	bios->dev = dev;
6793 
6794 	if (!NVShadowVBIOS(dev, bios->data))
6795 		return false;
6796 
6797 	bios->length = NV_PROM_SIZE;
6798 	return true;
6799 }
6800 
6801 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6802 {
6803 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6804 	struct nvbios *bios = &dev_priv->vbios;
6805 	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6806 	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6807 	int offset;
6808 
6809 	offset = findstr(bios->data, bios->length,
6810 					bit_signature, sizeof(bit_signature));
6811 	if (offset) {
6812 		NV_TRACE(dev, "BIT BIOS found\n");
6813 		bios->type = NVBIOS_BIT;
6814 		bios->offset = offset;
6815 		return parse_bit_structure(bios, offset + 6);
6816 	}
6817 
6818 	offset = findstr(bios->data, bios->length,
6819 					bmp_signature, sizeof(bmp_signature));
6820 	if (offset) {
6821 		NV_TRACE(dev, "BMP BIOS found\n");
6822 		bios->type = NVBIOS_BMP;
6823 		bios->offset = offset;
6824 		return parse_bmp_structure(dev, bios, offset);
6825 	}
6826 
6827 	NV_ERROR(dev, "No known BIOS signature found\n");
6828 	return -ENODEV;
6829 }
6830 
6831 int
6832 nouveau_run_vbios_init(struct drm_device *dev)
6833 {
6834 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6835 	struct nvbios *bios = &dev_priv->vbios;
6836 	int i, ret = 0;
6837 
6838 	/* Reset the BIOS head to 0. */
6839 	bios->state.crtchead = 0;
6840 
6841 	if (bios->major_version < 5)	/* BMP only */
6842 		load_nv17_hw_sequencer_ucode(dev, bios);
6843 
6844 	if (bios->execute) {
6845 		bios->fp.last_script_invoc = 0;
6846 		bios->fp.lvds_init_run = false;
6847 	}
6848 
6849 	parse_init_tables(bios);
6850 
6851 	/*
6852 	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
6853 	 * parser will run this right after the init tables, the binary
6854 	 * driver appears to run it at some point later.
6855 	 */
6856 	if (bios->some_script_ptr) {
6857 		struct init_exec iexec = {true, false};
6858 
6859 		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6860 			bios->some_script_ptr);
6861 		parse_init_table(bios, bios->some_script_ptr, &iexec);
6862 	}
6863 
6864 	if (dev_priv->card_type >= NV_50) {
6865 		for (i = 0; i < bios->dcb.entries; i++) {
6866 			nouveau_bios_run_display_table(dev,
6867 						       &bios->dcb.entry[i],
6868 						       0, 0);
6869 		}
6870 	}
6871 
6872 	return ret;
6873 }
6874 
6875 static void
6876 nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
6877 {
6878 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6879 	struct nvbios *bios = &dev_priv->vbios;
6880 	struct dcb_i2c_entry *entry;
6881 	int i;
6882 
6883 	entry = &bios->dcb.i2c[0];
6884 	for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
6885 		nouveau_i2c_fini(dev, entry);
6886 }
6887 
6888 static bool
6889 nouveau_bios_posted(struct drm_device *dev)
6890 {
6891 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6892 	unsigned htotal;
6893 
6894 	if (dev_priv->card_type >= NV_50) {
6895 		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6896 		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6897 			return false;
6898 		return true;
6899 	}
6900 
6901 	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
6902 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6903 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6904 	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6905 	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6906 
6907 	return (htotal != 0);
6908 }
6909 
6910 int
6911 nouveau_bios_init(struct drm_device *dev)
6912 {
6913 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6914 	struct nvbios *bios = &dev_priv->vbios;
6915 	int ret;
6916 
6917 	if (!NVInitVBIOS(dev))
6918 		return -ENODEV;
6919 
6920 	ret = nouveau_parse_vbios_struct(dev);
6921 	if (ret)
6922 		return ret;
6923 
6924 	ret = parse_dcb_table(dev, bios);
6925 	if (ret)
6926 		return ret;
6927 
6928 	fixup_legacy_i2c(bios);
6929 	fixup_legacy_connector(bios);
6930 
6931 	if (!bios->major_version)	/* we don't run version 0 bios */
6932 		return 0;
6933 
6934 	/* init script execution disabled */
6935 	bios->execute = false;
6936 
6937 	/* ... unless card isn't POSTed already */
6938 	if (!nouveau_bios_posted(dev)) {
6939 		NV_INFO(dev, "Adaptor not initialised, "
6940 			"running VBIOS init tables.\n");
6941 		bios->execute = true;
6942 	}
6943 	if (nouveau_force_post)
6944 		bios->execute = true;
6945 
6946 	ret = nouveau_run_vbios_init(dev);
6947 	if (ret)
6948 		return ret;
6949 
6950 	/* feature_byte on BMP is poor, but init always sets CR4B */
6951 	if (bios->major_version < 5)
6952 		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6953 
6954 	/* all BIT systems need p_f_m_t for digital_min_front_porch */
6955 	if (bios->is_mobile || bios->major_version >= 5)
6956 		ret = parse_fp_mode_table(dev, bios);
6957 
6958 	/* allow subsequent scripts to execute */
6959 	bios->execute = true;
6960 
6961 	return 0;
6962 }
6963 
6964 void
6965 nouveau_bios_takedown(struct drm_device *dev)
6966 {
6967 	nouveau_bios_i2c_devices_takedown(dev);
6968 }
6969