1 /*
2  * Copyright 2005-2006 Erik Waling
3  * Copyright 2006 Stephane Marchesin
4  * Copyright 2007-2009 Stuart Bennett
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 
31 /* these defines are made up */
32 #define NV_CIO_CRE_44_HEADA 0x0
33 #define NV_CIO_CRE_44_HEADB 0x3
34 #define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
35 #define LEGACY_I2C_CRT 0x80
36 #define LEGACY_I2C_PANEL 0x81
37 #define LEGACY_I2C_TV 0x82
38 
39 #define EDID1_LEN 128
40 
41 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
42 #define LOG_OLD_VALUE(x)
43 
44 #define ROM16(x) le16_to_cpu(*(uint16_t *)&(x))
45 #define ROM32(x) le32_to_cpu(*(uint32_t *)&(x))
46 
47 struct init_exec {
48 	bool execute;
49 	bool repeat;
50 };
51 
52 static bool nv_cksum(const uint8_t *data, unsigned int length)
53 {
54 	/*
55 	 * There's a few checksums in the BIOS, so here's a generic checking
56 	 * function.
57 	 */
58 	int i;
59 	uint8_t sum = 0;
60 
61 	for (i = 0; i < length; i++)
62 		sum += data[i];
63 
64 	if (sum)
65 		return true;
66 
67 	return false;
68 }
69 
70 static int
71 score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
72 {
73 	if (!(data[0] == 0x55 && data[1] == 0xAA)) {
74 		NV_TRACEWARN(dev, "... BIOS signature not found\n");
75 		return 0;
76 	}
77 
78 	if (nv_cksum(data, data[2] * 512)) {
79 		NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
80 		/* if a ro image is somewhat bad, it's probably all rubbish */
81 		return writeable ? 2 : 1;
82 	} else
83 		NV_TRACE(dev, "... appears to be valid\n");
84 
85 	return 3;
86 }
87 
88 static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
89 {
90 	struct drm_nouveau_private *dev_priv = dev->dev_private;
91 	uint32_t pci_nv_20, save_pci_nv_20;
92 	int pcir_ptr;
93 	int i;
94 
95 	if (dev_priv->card_type >= NV_50)
96 		pci_nv_20 = 0x88050;
97 	else
98 		pci_nv_20 = NV_PBUS_PCI_NV_20;
99 
100 	/* enable ROM access */
101 	save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
102 	nvWriteMC(dev, pci_nv_20,
103 		  save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
104 
105 	/* bail if no rom signature */
106 	if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
107 	    nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
108 		goto out;
109 
110 	/* additional check (see note below) - read PCI record header */
111 	pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
112 		   nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
113 	if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
114 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
115 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
116 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
117 		goto out;
118 
119 	/* on some 6600GT/6800LE prom reads are messed up.  nvclock alleges a
120 	 * a good read may be obtained by waiting or re-reading (cargocult: 5x)
121 	 * each byte.  we'll hope pramin has something usable instead
122 	 */
123 	for (i = 0; i < NV_PROM_SIZE; i++)
124 		data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
125 
126 out:
127 	/* disable ROM access */
128 	nvWriteMC(dev, pci_nv_20,
129 		  save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
130 }
131 
132 static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
133 {
134 	struct drm_nouveau_private *dev_priv = dev->dev_private;
135 	uint32_t old_bar0_pramin = 0;
136 	int i;
137 
138 	if (dev_priv->card_type >= NV_50) {
139 		uint32_t vbios_vram = (nv_rd32(dev, 0x619f04) & ~0xff) << 8;
140 
141 		if (!vbios_vram)
142 			vbios_vram = (nv_rd32(dev, 0x1700) << 16) + 0xf0000;
143 
144 		old_bar0_pramin = nv_rd32(dev, 0x1700);
145 		nv_wr32(dev, 0x1700, vbios_vram >> 16);
146 	}
147 
148 	/* bail if no rom signature */
149 	if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
150 	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
151 		goto out;
152 
153 	for (i = 0; i < NV_PROM_SIZE; i++)
154 		data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
155 
156 out:
157 	if (dev_priv->card_type >= NV_50)
158 		nv_wr32(dev, 0x1700, old_bar0_pramin);
159 }
160 
161 static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
162 {
163 	void __iomem *rom = NULL;
164 	size_t rom_len;
165 	int ret;
166 
167 	ret = pci_enable_rom(dev->pdev);
168 	if (ret)
169 		return;
170 
171 	rom = pci_map_rom(dev->pdev, &rom_len);
172 	if (!rom)
173 		goto out;
174 	memcpy_fromio(data, rom, rom_len);
175 	pci_unmap_rom(dev->pdev, rom);
176 
177 out:
178 	pci_disable_rom(dev->pdev);
179 }
180 
181 static void load_vbios_acpi(struct drm_device *dev, uint8_t *data)
182 {
183 	int i;
184 	int ret;
185 	int size = 64 * 1024;
186 
187 	if (!nouveau_acpi_rom_supported(dev->pdev))
188 		return;
189 
190 	for (i = 0; i < (size / ROM_BIOS_PAGE); i++) {
191 		ret = nouveau_acpi_get_bios_chunk(data,
192 						  (i * ROM_BIOS_PAGE),
193 						  ROM_BIOS_PAGE);
194 		if (ret <= 0)
195 			break;
196 	}
197 	return;
198 }
199 
200 struct methods {
201 	const char desc[8];
202 	void (*loadbios)(struct drm_device *, uint8_t *);
203 	const bool rw;
204 };
205 
206 static struct methods nv04_methods[] = {
207 	{ "PROM", load_vbios_prom, false },
208 	{ "PRAMIN", load_vbios_pramin, true },
209 	{ "PCIROM", load_vbios_pci, true },
210 };
211 
212 static struct methods nv50_methods[] = {
213 	{ "ACPI", load_vbios_acpi, true },
214 	{ "PRAMIN", load_vbios_pramin, true },
215 	{ "PROM", load_vbios_prom, false },
216 	{ "PCIROM", load_vbios_pci, true },
217 };
218 
219 #define METHODCNT 3
220 
221 static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
222 {
223 	struct drm_nouveau_private *dev_priv = dev->dev_private;
224 	struct methods *methods;
225 	int i;
226 	int testscore = 3;
227 	int scores[METHODCNT];
228 
229 	if (nouveau_vbios) {
230 		methods = nv04_methods;
231 		for (i = 0; i < METHODCNT; i++)
232 			if (!strcasecmp(nouveau_vbios, methods[i].desc))
233 				break;
234 
235 		if (i < METHODCNT) {
236 			NV_INFO(dev, "Attempting to use BIOS image from %s\n",
237 				methods[i].desc);
238 
239 			methods[i].loadbios(dev, data);
240 			if (score_vbios(dev, data, methods[i].rw))
241 				return true;
242 		}
243 
244 		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
245 	}
246 
247 	if (dev_priv->card_type < NV_50)
248 		methods = nv04_methods;
249 	else
250 		methods = nv50_methods;
251 
252 	for (i = 0; i < METHODCNT; i++) {
253 		NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
254 			 methods[i].desc);
255 		data[0] = data[1] = 0;	/* avoid reuse of previous image */
256 		methods[i].loadbios(dev, data);
257 		scores[i] = score_vbios(dev, data, methods[i].rw);
258 		if (scores[i] == testscore)
259 			return true;
260 	}
261 
262 	while (--testscore > 0) {
263 		for (i = 0; i < METHODCNT; i++) {
264 			if (scores[i] == testscore) {
265 				NV_TRACE(dev, "Using BIOS image from %s\n",
266 					 methods[i].desc);
267 				methods[i].loadbios(dev, data);
268 				return true;
269 			}
270 		}
271 	}
272 
273 	NV_ERROR(dev, "No valid BIOS image found\n");
274 	return false;
275 }
276 
277 struct init_tbl_entry {
278 	char *name;
279 	uint8_t id;
280 	/* Return:
281 	 *  > 0: success, length of opcode
282 	 *    0: success, but abort further parsing of table (INIT_DONE etc)
283 	 *  < 0: failure, table parsing will be aborted
284 	 */
285 	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
286 };
287 
288 struct bit_entry {
289 	uint8_t id[2];
290 	uint16_t length;
291 	uint16_t offset;
292 };
293 
294 static int parse_init_table(struct nvbios *, unsigned int, struct init_exec *);
295 
296 #define MACRO_INDEX_SIZE	2
297 #define MACRO_SIZE		8
298 #define CONDITION_SIZE		12
299 #define IO_FLAG_CONDITION_SIZE	9
300 #define IO_CONDITION_SIZE	5
301 #define MEM_INIT_SIZE		66
302 
303 static void still_alive(void)
304 {
305 #if 0
306 	sync();
307 	msleep(2);
308 #endif
309 }
310 
311 static uint32_t
312 munge_reg(struct nvbios *bios, uint32_t reg)
313 {
314 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
315 	struct dcb_entry *dcbent = bios->display.output;
316 
317 	if (dev_priv->card_type < NV_50)
318 		return reg;
319 
320 	if (reg & 0x40000000) {
321 		BUG_ON(!dcbent);
322 
323 		reg += (ffs(dcbent->or) - 1) * 0x800;
324 		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
325 			reg += 0x00000080;
326 	}
327 
328 	reg &= ~0x60000000;
329 	return reg;
330 }
331 
332 static int
333 valid_reg(struct nvbios *bios, uint32_t reg)
334 {
335 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
336 	struct drm_device *dev = bios->dev;
337 
338 	/* C51 has misaligned regs on purpose. Marvellous */
339 	if (reg & 0x2 ||
340 	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
341 		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
342 
343 	/* warn on C51 regs that haven't been verified accessible in tracing */
344 	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
345 	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
346 		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
347 			reg);
348 
349 	if (reg >= (8*1024*1024)) {
350 		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
351 		return 0;
352 	}
353 
354 	return 1;
355 }
356 
357 static bool
358 valid_idx_port(struct nvbios *bios, uint16_t port)
359 {
360 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
361 	struct drm_device *dev = bios->dev;
362 
363 	/*
364 	 * If adding more ports here, the read/write functions below will need
365 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
366 	 * used for the port in question
367 	 */
368 	if (dev_priv->card_type < NV_50) {
369 		if (port == NV_CIO_CRX__COLOR)
370 			return true;
371 		if (port == NV_VIO_SRX)
372 			return true;
373 	} else {
374 		if (port == NV_CIO_CRX__COLOR)
375 			return true;
376 	}
377 
378 	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
379 		 port);
380 
381 	return false;
382 }
383 
384 static bool
385 valid_port(struct nvbios *bios, uint16_t port)
386 {
387 	struct drm_device *dev = bios->dev;
388 
389 	/*
390 	 * If adding more ports here, the read/write functions below will need
391 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
392 	 * used for the port in question
393 	 */
394 	if (port == NV_VIO_VSE2)
395 		return true;
396 
397 	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
398 
399 	return false;
400 }
401 
402 static uint32_t
403 bios_rd32(struct nvbios *bios, uint32_t reg)
404 {
405 	uint32_t data;
406 
407 	reg = munge_reg(bios, reg);
408 	if (!valid_reg(bios, reg))
409 		return 0;
410 
411 	/*
412 	 * C51 sometimes uses regs with bit0 set in the address. For these
413 	 * cases there should exist a translation in a BIOS table to an IO
414 	 * port address which the BIOS uses for accessing the reg
415 	 *
416 	 * These only seem to appear for the power control regs to a flat panel,
417 	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
418 	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
419 	 * suspend-resume mmio trace from a C51 will be required to see if this
420 	 * is true for the power microcode in 0x14.., or whether the direct IO
421 	 * port access method is needed
422 	 */
423 	if (reg & 0x1)
424 		reg &= ~0x1;
425 
426 	data = nv_rd32(bios->dev, reg);
427 
428 	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);
429 
430 	return data;
431 }
432 
433 static void
434 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
435 {
436 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
437 
438 	reg = munge_reg(bios, reg);
439 	if (!valid_reg(bios, reg))
440 		return;
441 
442 	/* see note in bios_rd32 */
443 	if (reg & 0x1)
444 		reg &= 0xfffffffe;
445 
446 	LOG_OLD_VALUE(bios_rd32(bios, reg));
447 	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
448 
449 	if (dev_priv->vbios.execute) {
450 		still_alive();
451 		nv_wr32(bios->dev, reg, data);
452 	}
453 }
454 
455 static uint8_t
456 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
457 {
458 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
459 	struct drm_device *dev = bios->dev;
460 	uint8_t data;
461 
462 	if (!valid_idx_port(bios, port))
463 		return 0;
464 
465 	if (dev_priv->card_type < NV_50) {
466 		if (port == NV_VIO_SRX)
467 			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
468 		else	/* assume NV_CIO_CRX__COLOR */
469 			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
470 	} else {
471 		uint32_t data32;
472 
473 		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
474 		data = (data32 >> ((index & 3) << 3)) & 0xff;
475 	}
476 
477 	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
478 		      "Head: 0x%02X, Data: 0x%02X\n",
479 		port, index, bios->state.crtchead, data);
480 	return data;
481 }
482 
483 static void
484 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
485 {
486 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
487 	struct drm_device *dev = bios->dev;
488 
489 	if (!valid_idx_port(bios, port))
490 		return;
491 
492 	/*
493 	 * The current head is maintained in the nvbios member  state.crtchead.
494 	 * We trap changes to CR44 and update the head variable and hence the
495 	 * register set written.
496 	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
497 	 * of the write, and to head1 after the write
498 	 */
499 	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
500 	    data != NV_CIO_CRE_44_HEADB)
501 		bios->state.crtchead = 0;
502 
503 	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
504 	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
505 		      "Head: 0x%02X, Data: 0x%02X\n",
506 		port, index, bios->state.crtchead, data);
507 
508 	if (bios->execute && dev_priv->card_type < NV_50) {
509 		still_alive();
510 		if (port == NV_VIO_SRX)
511 			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
512 		else	/* assume NV_CIO_CRX__COLOR */
513 			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
514 	} else
515 	if (bios->execute) {
516 		uint32_t data32, shift = (index & 3) << 3;
517 
518 		still_alive();
519 
520 		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
521 		data32 &= ~(0xff << shift);
522 		data32 |= (data << shift);
523 		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
524 	}
525 
526 	if (port == NV_CIO_CRX__COLOR &&
527 	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
528 		bios->state.crtchead = 1;
529 }
530 
531 static uint8_t
532 bios_port_rd(struct nvbios *bios, uint16_t port)
533 {
534 	uint8_t data, head = bios->state.crtchead;
535 
536 	if (!valid_port(bios, port))
537 		return 0;
538 
539 	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
540 
541 	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
542 		port, head, data);
543 
544 	return data;
545 }
546 
547 static void
548 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
549 {
550 	int head = bios->state.crtchead;
551 
552 	if (!valid_port(bios, port))
553 		return;
554 
555 	LOG_OLD_VALUE(bios_port_rd(bios, port));
556 	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
557 		port, head, data);
558 
559 	if (!bios->execute)
560 		return;
561 
562 	still_alive();
563 	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
564 }
565 
566 static bool
567 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
568 {
569 	/*
570 	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
571 	 * for the CRTC index; 1 byte for the mask to apply to the value
572 	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
573 	 * masked CRTC value; 2 bytes for the offset to the flag array, to
574 	 * which the shifted value is added; 1 byte for the mask applied to the
575 	 * value read from the flag array; and 1 byte for the value to compare
576 	 * against the masked byte from the flag table.
577 	 */
578 
579 	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
580 	uint16_t crtcport = ROM16(bios->data[condptr]);
581 	uint8_t crtcindex = bios->data[condptr + 2];
582 	uint8_t mask = bios->data[condptr + 3];
583 	uint8_t shift = bios->data[condptr + 4];
584 	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
585 	uint8_t flagarraymask = bios->data[condptr + 7];
586 	uint8_t cmpval = bios->data[condptr + 8];
587 	uint8_t data;
588 
589 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
590 		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
591 		      "Cmpval: 0x%02X\n",
592 		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
593 
594 	data = bios_idxprt_rd(bios, crtcport, crtcindex);
595 
596 	data = bios->data[flagarray + ((data & mask) >> shift)];
597 	data &= flagarraymask;
598 
599 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
600 		offset, data, cmpval);
601 
602 	return (data == cmpval);
603 }
604 
605 static bool
606 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
607 {
608 	/*
609 	 * The condition table entry has 4 bytes for the address of the
610 	 * register to check, 4 bytes for a mask to apply to the register and
611 	 * 4 for a test comparison value
612 	 */
613 
614 	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
615 	uint32_t reg = ROM32(bios->data[condptr]);
616 	uint32_t mask = ROM32(bios->data[condptr + 4]);
617 	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
618 	uint32_t data;
619 
620 	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
621 		offset, cond, reg, mask);
622 
623 	data = bios_rd32(bios, reg) & mask;
624 
625 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
626 		offset, data, cmpval);
627 
628 	return (data == cmpval);
629 }
630 
631 static bool
632 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
633 {
634 	/*
635 	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
636 	 * for the index to write to io_port; 1 byte for the mask to apply to
637 	 * the byte read from io_port+1; and 1 byte for the value to compare
638 	 * against the masked byte.
639 	 */
640 
641 	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
642 	uint16_t io_port = ROM16(bios->data[condptr]);
643 	uint8_t port_index = bios->data[condptr + 2];
644 	uint8_t mask = bios->data[condptr + 3];
645 	uint8_t cmpval = bios->data[condptr + 4];
646 
647 	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
648 
649 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
650 		offset, data, cmpval);
651 
652 	return (data == cmpval);
653 }
654 
655 static int
656 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
657 {
658 	struct drm_nouveau_private *dev_priv = dev->dev_private;
659 	uint32_t reg0 = nv_rd32(dev, reg + 0);
660 	uint32_t reg1 = nv_rd32(dev, reg + 4);
661 	struct nouveau_pll_vals pll;
662 	struct pll_lims pll_limits;
663 	int ret;
664 
665 	ret = get_pll_limits(dev, reg, &pll_limits);
666 	if (ret)
667 		return ret;
668 
669 	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
670 	if (!clk)
671 		return -ERANGE;
672 
673 	reg0 = (reg0 & 0xfff8ffff) | (pll.log2P << 16);
674 	reg1 = (reg1 & 0xffff0000) | (pll.N1 << 8) | pll.M1;
675 
676 	if (dev_priv->vbios.execute) {
677 		still_alive();
678 		nv_wr32(dev, reg + 4, reg1);
679 		nv_wr32(dev, reg + 0, reg0);
680 	}
681 
682 	return 0;
683 }
684 
685 static int
686 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
687 {
688 	struct drm_device *dev = bios->dev;
689 	struct drm_nouveau_private *dev_priv = dev->dev_private;
690 	/* clk in kHz */
691 	struct pll_lims pll_lim;
692 	struct nouveau_pll_vals pllvals;
693 	int ret;
694 
695 	if (dev_priv->card_type >= NV_50)
696 		return nv50_pll_set(dev, reg, clk);
697 
698 	/* high regs (such as in the mac g5 table) are not -= 4 */
699 	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
700 	if (ret)
701 		return ret;
702 
703 	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
704 	if (!clk)
705 		return -ERANGE;
706 
707 	if (bios->execute) {
708 		still_alive();
709 		nouveau_hw_setpll(dev, reg, &pllvals);
710 	}
711 
712 	return 0;
713 }
714 
715 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
716 {
717 	struct drm_nouveau_private *dev_priv = dev->dev_private;
718 	struct nvbios *bios = &dev_priv->vbios;
719 
720 	/*
721 	 * For the results of this function to be correct, CR44 must have been
722 	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
723 	 * and the DCB table parsed, before the script calling the function is
724 	 * run.  run_digital_op_script is example of how to do such setup
725 	 */
726 
727 	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
728 
729 	if (dcb_entry > bios->dcb.entries) {
730 		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
731 				"(%02X)\n", dcb_entry);
732 		dcb_entry = 0x7f;	/* unused / invalid marker */
733 	}
734 
735 	return dcb_entry;
736 }
737 
738 static int
739 read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
740 {
741 	uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
742 	int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
743 	int recordoffset = 0, rdofs = 1, wrofs = 0;
744 	uint8_t port_type = 0;
745 
746 	if (!i2ctable)
747 		return -EINVAL;
748 
749 	if (dcb_version >= 0x30) {
750 		if (i2ctable[0] != dcb_version) /* necessary? */
751 			NV_WARN(dev,
752 				"DCB I2C table version mismatch (%02X vs %02X)\n",
753 				i2ctable[0], dcb_version);
754 		dcb_i2c_ver = i2ctable[0];
755 		headerlen = i2ctable[1];
756 		if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
757 			i2c_entries = i2ctable[2];
758 		else
759 			NV_WARN(dev,
760 				"DCB I2C table has more entries than indexable "
761 				"(%d entries, max %d)\n", i2ctable[2],
762 				DCB_MAX_NUM_I2C_ENTRIES);
763 		entry_len = i2ctable[3];
764 		/* [4] is i2c_default_indices, read in parse_dcb_table() */
765 	}
766 	/*
767 	 * It's your own fault if you call this function on a DCB 1.1 BIOS --
768 	 * the test below is for DCB 1.2
769 	 */
770 	if (dcb_version < 0x14) {
771 		recordoffset = 2;
772 		rdofs = 0;
773 		wrofs = 1;
774 	}
775 
776 	if (index == 0xf)
777 		return 0;
778 	if (index >= i2c_entries) {
779 		NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
780 			 index, i2ctable[2]);
781 		return -ENOENT;
782 	}
783 	if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
784 		NV_ERROR(dev, "DCB I2C entry invalid\n");
785 		return -EINVAL;
786 	}
787 
788 	if (dcb_i2c_ver >= 0x30) {
789 		port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];
790 
791 		/*
792 		 * Fixup for chips using same address offset for read and
793 		 * write.
794 		 */
795 		if (port_type == 4)	/* seen on C51 */
796 			rdofs = wrofs = 1;
797 		if (port_type >= 5)	/* G80+ */
798 			rdofs = wrofs = 0;
799 	}
800 
801 	if (dcb_i2c_ver >= 0x40) {
802 		if (port_type != 5 && port_type != 6)
803 			NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);
804 
805 		i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]);
806 	}
807 
808 	i2c->port_type = port_type;
809 	i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
810 	i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];
811 
812 	return 0;
813 }
814 
815 static struct nouveau_i2c_chan *
816 init_i2c_device_find(struct drm_device *dev, int i2c_index)
817 {
818 	struct drm_nouveau_private *dev_priv = dev->dev_private;
819 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
820 
821 	if (i2c_index == 0xff) {
822 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
823 		int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
824 		int default_indices = dcb->i2c_default_indices;
825 
826 		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
827 			shift = 4;
828 
829 		i2c_index = (default_indices >> shift) & 0xf;
830 	}
831 	if (i2c_index == 0x80)	/* g80+ */
832 		i2c_index = dcb->i2c_default_indices & 0xf;
833 	else
834 	if (i2c_index == 0x81)
835 		i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4;
836 
837 	if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) {
838 		NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index);
839 		return NULL;
840 	}
841 
842 	/* Make sure i2c table entry has been parsed, it may not
843 	 * have been if this is a bus not referenced by a DCB encoder
844 	 */
845 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
846 			   i2c_index, &dcb->i2c[i2c_index]);
847 
848 	return nouveau_i2c_find(dev, i2c_index);
849 }
850 
851 static uint32_t
852 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
853 {
854 	/*
855 	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
856 	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
857 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
858 	 * 0x6808b0 address.
859 	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
860 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
861 	 * 0x6808b0 address, and then flip the offset by 8.
862 	 */
863 
864 	struct drm_nouveau_private *dev_priv = dev->dev_private;
865 	struct nvbios *bios = &dev_priv->vbios;
866 	const int pramdac_offset[13] = {
867 		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
868 	const uint32_t pramdac_table[4] = {
869 		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
870 
871 	if (mlv >= 0x80) {
872 		int dcb_entry, dacoffset;
873 
874 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
875 		dcb_entry = dcb_entry_idx_from_crtchead(dev);
876 		if (dcb_entry == 0x7f)
877 			return 0;
878 		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
879 		if (mlv == 0x81)
880 			dacoffset ^= 8;
881 		return 0x6808b0 + dacoffset;
882 	} else {
883 		if (mlv >= ARRAY_SIZE(pramdac_table)) {
884 			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
885 									mlv);
886 			return 0;
887 		}
888 		return pramdac_table[mlv];
889 	}
890 }
891 
892 static int
893 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
894 		      struct init_exec *iexec)
895 {
896 	/*
897 	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
898 	 *
899 	 * offset      (8  bit): opcode
900 	 * offset + 1  (16 bit): CRTC port
901 	 * offset + 3  (8  bit): CRTC index
902 	 * offset + 4  (8  bit): mask
903 	 * offset + 5  (8  bit): shift
904 	 * offset + 6  (8  bit): count
905 	 * offset + 7  (32 bit): register
906 	 * offset + 11 (32 bit): configuration 1
907 	 * ...
908 	 *
909 	 * Starting at offset + 11 there are "count" 32 bit values.
910 	 * To find out which value to use read index "CRTC index" on "CRTC
911 	 * port", AND this value with "mask" and then bit shift right "shift"
912 	 * bits.  Read the appropriate value using this index and write to
913 	 * "register"
914 	 */
915 
916 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
917 	uint8_t crtcindex = bios->data[offset + 3];
918 	uint8_t mask = bios->data[offset + 4];
919 	uint8_t shift = bios->data[offset + 5];
920 	uint8_t count = bios->data[offset + 6];
921 	uint32_t reg = ROM32(bios->data[offset + 7]);
922 	uint8_t config;
923 	uint32_t configval;
924 	int len = 11 + count * 4;
925 
926 	if (!iexec->execute)
927 		return len;
928 
929 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
930 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
931 		offset, crtcport, crtcindex, mask, shift, count, reg);
932 
933 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
934 	if (config > count) {
935 		NV_ERROR(bios->dev,
936 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
937 			 offset, config, count);
938 		return -EINVAL;
939 	}
940 
941 	configval = ROM32(bios->data[offset + 11 + config * 4]);
942 
943 	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
944 
945 	bios_wr32(bios, reg, configval);
946 
947 	return len;
948 }
949 
950 static int
951 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
952 {
953 	/*
954 	 * INIT_REPEAT   opcode: 0x33 ('3')
955 	 *
956 	 * offset      (8 bit): opcode
957 	 * offset + 1  (8 bit): count
958 	 *
959 	 * Execute script following this opcode up to INIT_REPEAT_END
960 	 * "count" times
961 	 */
962 
963 	uint8_t count = bios->data[offset + 1];
964 	uint8_t i;
965 
966 	/* no iexec->execute check by design */
967 
968 	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
969 		offset, count);
970 
971 	iexec->repeat = true;
972 
973 	/*
974 	 * count - 1, as the script block will execute once when we leave this
975 	 * opcode -- this is compatible with bios behaviour as:
976 	 * a) the block is always executed at least once, even if count == 0
977 	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
978 	 * while we don't
979 	 */
980 	for (i = 0; i < count - 1; i++)
981 		parse_init_table(bios, offset + 2, iexec);
982 
983 	iexec->repeat = false;
984 
985 	return 2;
986 }
987 
988 static int
989 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
990 		     struct init_exec *iexec)
991 {
992 	/*
993 	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
994 	 *
995 	 * offset      (8  bit): opcode
996 	 * offset + 1  (16 bit): CRTC port
997 	 * offset + 3  (8  bit): CRTC index
998 	 * offset + 4  (8  bit): mask
999 	 * offset + 5  (8  bit): shift
1000 	 * offset + 6  (8  bit): IO flag condition index
1001 	 * offset + 7  (8  bit): count
1002 	 * offset + 8  (32 bit): register
1003 	 * offset + 12 (16 bit): frequency 1
1004 	 * ...
1005 	 *
1006 	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
1007 	 * Set PLL register "register" to coefficients for frequency n,
1008 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1009 	 * "mask" and shifted right by "shift".
1010 	 *
1011 	 * If "IO flag condition index" > 0, and condition met, double
1012 	 * frequency before setting it.
1013 	 */
1014 
1015 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1016 	uint8_t crtcindex = bios->data[offset + 3];
1017 	uint8_t mask = bios->data[offset + 4];
1018 	uint8_t shift = bios->data[offset + 5];
1019 	int8_t io_flag_condition_idx = bios->data[offset + 6];
1020 	uint8_t count = bios->data[offset + 7];
1021 	uint32_t reg = ROM32(bios->data[offset + 8]);
1022 	uint8_t config;
1023 	uint16_t freq;
1024 	int len = 12 + count * 2;
1025 
1026 	if (!iexec->execute)
1027 		return len;
1028 
1029 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1030 		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
1031 		      "Count: 0x%02X, Reg: 0x%08X\n",
1032 		offset, crtcport, crtcindex, mask, shift,
1033 		io_flag_condition_idx, count, reg);
1034 
1035 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1036 	if (config > count) {
1037 		NV_ERROR(bios->dev,
1038 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1039 			 offset, config, count);
1040 		return -EINVAL;
1041 	}
1042 
1043 	freq = ROM16(bios->data[offset + 12 + config * 2]);
1044 
1045 	if (io_flag_condition_idx > 0) {
1046 		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
1047 			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
1048 				      "frequency doubled\n", offset);
1049 			freq *= 2;
1050 		} else
1051 			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
1052 				      "frequency unchanged\n", offset);
1053 	}
1054 
1055 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
1056 		offset, reg, config, freq);
1057 
1058 	setPLL(bios, reg, freq * 10);
1059 
1060 	return len;
1061 }
1062 
1063 static int
1064 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1065 {
1066 	/*
1067 	 * INIT_END_REPEAT   opcode: 0x36 ('6')
1068 	 *
1069 	 * offset      (8 bit): opcode
1070 	 *
1071 	 * Marks the end of the block for INIT_REPEAT to repeat
1072 	 */
1073 
1074 	/* no iexec->execute check by design */
1075 
1076 	/*
1077 	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1078 	 * we're not in repeat mode
1079 	 */
1080 	if (iexec->repeat)
1081 		return 0;
1082 
1083 	return 1;
1084 }
1085 
1086 static int
1087 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1088 {
1089 	/*
1090 	 * INIT_COPY   opcode: 0x37 ('7')
1091 	 *
1092 	 * offset      (8  bit): opcode
1093 	 * offset + 1  (32 bit): register
1094 	 * offset + 5  (8  bit): shift
1095 	 * offset + 6  (8  bit): srcmask
1096 	 * offset + 7  (16 bit): CRTC port
1097 	 * offset + 9  (8 bit): CRTC index
1098 	 * offset + 10  (8 bit): mask
1099 	 *
1100 	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1101 	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1102 	 * port
1103 	 */
1104 
1105 	uint32_t reg = ROM32(bios->data[offset + 1]);
1106 	uint8_t shift = bios->data[offset + 5];
1107 	uint8_t srcmask = bios->data[offset + 6];
1108 	uint16_t crtcport = ROM16(bios->data[offset + 7]);
1109 	uint8_t crtcindex = bios->data[offset + 9];
1110 	uint8_t mask = bios->data[offset + 10];
1111 	uint32_t data;
1112 	uint8_t crtcdata;
1113 
1114 	if (!iexec->execute)
1115 		return 11;
1116 
1117 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1118 		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1119 		offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1120 
1121 	data = bios_rd32(bios, reg);
1122 
1123 	if (shift < 0x80)
1124 		data >>= shift;
1125 	else
1126 		data <<= (0x100 - shift);
1127 
1128 	data &= srcmask;
1129 
1130 	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1131 	crtcdata |= (uint8_t)data;
1132 	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1133 
1134 	return 11;
1135 }
1136 
1137 static int
1138 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1139 {
1140 	/*
1141 	 * INIT_NOT   opcode: 0x38 ('8')
1142 	 *
1143 	 * offset      (8  bit): opcode
1144 	 *
1145 	 * Invert the current execute / no-execute condition (i.e. "else")
1146 	 */
1147 	if (iexec->execute)
1148 		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
1149 	else
1150 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1151 
1152 	iexec->execute = !iexec->execute;
1153 	return 1;
1154 }
1155 
1156 static int
1157 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1158 		       struct init_exec *iexec)
1159 {
1160 	/*
1161 	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
1162 	 *
1163 	 * offset      (8 bit): opcode
1164 	 * offset + 1  (8 bit): condition number
1165 	 *
1166 	 * Check condition "condition number" in the IO flag condition table.
1167 	 * If condition not met skip subsequent opcodes until condition is
1168 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1169 	 */
1170 
1171 	uint8_t cond = bios->data[offset + 1];
1172 
1173 	if (!iexec->execute)
1174 		return 2;
1175 
1176 	if (io_flag_condition_met(bios, offset, cond))
1177 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1178 	else {
1179 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1180 		iexec->execute = false;
1181 	}
1182 
1183 	return 2;
1184 }
1185 
1186 static int
1187 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1188 {
1189 	/*
1190 	 * INIT_DP_CONDITION   opcode: 0x3A ('')
1191 	 *
1192 	 * offset      (8 bit): opcode
1193 	 * offset + 1  (8 bit): "sub" opcode
1194 	 * offset + 2  (8 bit): unknown
1195 	 *
1196 	 */
1197 
1198 	struct bit_displayport_encoder_table *dpe = NULL;
1199 	struct dcb_entry *dcb = bios->display.output;
1200 	struct drm_device *dev = bios->dev;
1201 	uint8_t cond = bios->data[offset + 1];
1202 	int dummy;
1203 
1204 	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1205 
1206 	if (!iexec->execute)
1207 		return 3;
1208 
1209 	dpe = nouveau_bios_dp_table(dev, dcb, &dummy);
1210 	if (!dpe) {
1211 		NV_ERROR(dev, "0x%04X: INIT_3A: no encoder table!!\n", offset);
1212 		return -EINVAL;
1213 	}
1214 
1215 	switch (cond) {
1216 	case 0:
1217 	{
1218 		struct dcb_connector_table_entry *ent =
1219 			&bios->dcb.connector.entry[dcb->connector];
1220 
1221 		if (ent->type != DCB_CONNECTOR_eDP)
1222 			iexec->execute = false;
1223 	}
1224 		break;
1225 	case 1:
1226 	case 2:
1227 		if (!(dpe->unknown & cond))
1228 			iexec->execute = false;
1229 		break;
1230 	case 5:
1231 	{
1232 		struct nouveau_i2c_chan *auxch;
1233 		int ret;
1234 
1235 		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1236 		if (!auxch)
1237 			return -ENODEV;
1238 
1239 		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1240 		if (ret)
1241 			return ret;
1242 
1243 		if (cond & 1)
1244 			iexec->execute = false;
1245 	}
1246 		break;
1247 	default:
1248 		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1249 		break;
1250 	}
1251 
1252 	if (iexec->execute)
1253 		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1254 	else
1255 		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1256 
1257 	return 3;
1258 }
1259 
1260 static int
1261 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1262 {
1263 	/*
1264 	 * INIT_3B   opcode: 0x3B ('')
1265 	 *
1266 	 * offset      (8 bit): opcode
1267 	 * offset + 1  (8 bit): crtc index
1268 	 *
1269 	 */
1270 
1271 	uint8_t or = ffs(bios->display.output->or) - 1;
1272 	uint8_t index = bios->data[offset + 1];
1273 	uint8_t data;
1274 
1275 	if (!iexec->execute)
1276 		return 2;
1277 
1278 	data = bios_idxprt_rd(bios, 0x3d4, index);
1279 	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1280 	return 2;
1281 }
1282 
1283 static int
1284 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1285 {
1286 	/*
1287 	 * INIT_3C   opcode: 0x3C ('')
1288 	 *
1289 	 * offset      (8 bit): opcode
1290 	 * offset + 1  (8 bit): crtc index
1291 	 *
1292 	 */
1293 
1294 	uint8_t or = ffs(bios->display.output->or) - 1;
1295 	uint8_t index = bios->data[offset + 1];
1296 	uint8_t data;
1297 
1298 	if (!iexec->execute)
1299 		return 2;
1300 
1301 	data = bios_idxprt_rd(bios, 0x3d4, index);
1302 	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1303 	return 2;
1304 }
1305 
1306 static int
1307 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1308 		      struct init_exec *iexec)
1309 {
1310 	/*
1311 	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
1312 	 *
1313 	 * offset      (8  bit): opcode
1314 	 * offset + 1  (32 bit): control register
1315 	 * offset + 5  (32 bit): data register
1316 	 * offset + 9  (32 bit): mask
1317 	 * offset + 13 (32 bit): data
1318 	 * offset + 17 (8  bit): count
1319 	 * offset + 18 (8  bit): address 1
1320 	 * offset + 19 (8  bit): data 1
1321 	 * ...
1322 	 *
1323 	 * For each of "count" address and data pairs, write "data n" to
1324 	 * "data register", read the current value of "control register",
1325 	 * and write it back once ANDed with "mask", ORed with "data",
1326 	 * and ORed with "address n"
1327 	 */
1328 
1329 	uint32_t controlreg = ROM32(bios->data[offset + 1]);
1330 	uint32_t datareg = ROM32(bios->data[offset + 5]);
1331 	uint32_t mask = ROM32(bios->data[offset + 9]);
1332 	uint32_t data = ROM32(bios->data[offset + 13]);
1333 	uint8_t count = bios->data[offset + 17];
1334 	int len = 18 + count * 2;
1335 	uint32_t value;
1336 	int i;
1337 
1338 	if (!iexec->execute)
1339 		return len;
1340 
1341 	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1342 		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1343 		offset, controlreg, datareg, mask, data, count);
1344 
1345 	for (i = 0; i < count; i++) {
1346 		uint8_t instaddress = bios->data[offset + 18 + i * 2];
1347 		uint8_t instdata = bios->data[offset + 19 + i * 2];
1348 
1349 		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1350 			offset, instaddress, instdata);
1351 
1352 		bios_wr32(bios, datareg, instdata);
1353 		value  = bios_rd32(bios, controlreg) & mask;
1354 		value |= data;
1355 		value |= instaddress;
1356 		bios_wr32(bios, controlreg, value);
1357 	}
1358 
1359 	return len;
1360 }
1361 
1362 static int
1363 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1364 		      struct init_exec *iexec)
1365 {
1366 	/*
1367 	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
1368 	 *
1369 	 * offset      (8  bit): opcode
1370 	 * offset + 1  (16 bit): CRTC port
1371 	 * offset + 3  (8  bit): CRTC index
1372 	 * offset + 4  (8  bit): mask
1373 	 * offset + 5  (8  bit): shift
1374 	 * offset + 6  (8  bit): count
1375 	 * offset + 7  (32 bit): register
1376 	 * offset + 11 (32 bit): frequency 1
1377 	 * ...
1378 	 *
1379 	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1380 	 * Set PLL register "register" to coefficients for frequency n,
1381 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1382 	 * "mask" and shifted right by "shift".
1383 	 */
1384 
1385 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1386 	uint8_t crtcindex = bios->data[offset + 3];
1387 	uint8_t mask = bios->data[offset + 4];
1388 	uint8_t shift = bios->data[offset + 5];
1389 	uint8_t count = bios->data[offset + 6];
1390 	uint32_t reg = ROM32(bios->data[offset + 7]);
1391 	int len = 11 + count * 4;
1392 	uint8_t config;
1393 	uint32_t freq;
1394 
1395 	if (!iexec->execute)
1396 		return len;
1397 
1398 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1399 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1400 		offset, crtcport, crtcindex, mask, shift, count, reg);
1401 
1402 	if (!reg)
1403 		return len;
1404 
1405 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1406 	if (config > count) {
1407 		NV_ERROR(bios->dev,
1408 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1409 			 offset, config, count);
1410 		return -EINVAL;
1411 	}
1412 
1413 	freq = ROM32(bios->data[offset + 11 + config * 4]);
1414 
1415 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1416 		offset, reg, config, freq);
1417 
1418 	setPLL(bios, reg, freq);
1419 
1420 	return len;
1421 }
1422 
1423 static int
1424 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1425 {
1426 	/*
1427 	 * INIT_PLL2   opcode: 0x4B ('K')
1428 	 *
1429 	 * offset      (8  bit): opcode
1430 	 * offset + 1  (32 bit): register
1431 	 * offset + 5  (32 bit): freq
1432 	 *
1433 	 * Set PLL register "register" to coefficients for frequency "freq"
1434 	 */
1435 
1436 	uint32_t reg = ROM32(bios->data[offset + 1]);
1437 	uint32_t freq = ROM32(bios->data[offset + 5]);
1438 
1439 	if (!iexec->execute)
1440 		return 9;
1441 
1442 	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1443 		offset, reg, freq);
1444 
1445 	setPLL(bios, reg, freq);
1446 	return 9;
1447 }
1448 
1449 static int
1450 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1451 {
1452 	/*
1453 	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
1454 	 *
1455 	 * offset      (8 bit): opcode
1456 	 * offset + 1  (8 bit): DCB I2C table entry index
1457 	 * offset + 2  (8 bit): I2C slave address
1458 	 * offset + 3  (8 bit): count
1459 	 * offset + 4  (8 bit): I2C register 1
1460 	 * offset + 5  (8 bit): mask 1
1461 	 * offset + 6  (8 bit): data 1
1462 	 * ...
1463 	 *
1464 	 * For each of "count" registers given by "I2C register n" on the device
1465 	 * addressed by "I2C slave address" on the I2C bus given by
1466 	 * "DCB I2C table entry index", read the register, AND the result with
1467 	 * "mask n" and OR it with "data n" before writing it back to the device
1468 	 */
1469 
1470 	uint8_t i2c_index = bios->data[offset + 1];
1471 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1472 	uint8_t count = bios->data[offset + 3];
1473 	struct nouveau_i2c_chan *chan;
1474 	int len = 4 + count * 3;
1475 	int ret, i;
1476 
1477 	if (!iexec->execute)
1478 		return len;
1479 
1480 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1481 		      "Count: 0x%02X\n",
1482 		offset, i2c_index, i2c_address, count);
1483 
1484 	chan = init_i2c_device_find(bios->dev, i2c_index);
1485 	if (!chan)
1486 		return -ENODEV;
1487 
1488 	for (i = 0; i < count; i++) {
1489 		uint8_t reg = bios->data[offset + 4 + i * 3];
1490 		uint8_t mask = bios->data[offset + 5 + i * 3];
1491 		uint8_t data = bios->data[offset + 6 + i * 3];
1492 		union i2c_smbus_data val;
1493 
1494 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1495 				     I2C_SMBUS_READ, reg,
1496 				     I2C_SMBUS_BYTE_DATA, &val);
1497 		if (ret < 0)
1498 			return ret;
1499 
1500 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1501 			      "Mask: 0x%02X, Data: 0x%02X\n",
1502 			offset, reg, val.byte, mask, data);
1503 
1504 		if (!bios->execute)
1505 			continue;
1506 
1507 		val.byte &= mask;
1508 		val.byte |= data;
1509 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1510 				     I2C_SMBUS_WRITE, reg,
1511 				     I2C_SMBUS_BYTE_DATA, &val);
1512 		if (ret < 0)
1513 			return ret;
1514 	}
1515 
1516 	return len;
1517 }
1518 
1519 static int
1520 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1521 {
1522 	/*
1523 	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
1524 	 *
1525 	 * offset      (8 bit): opcode
1526 	 * offset + 1  (8 bit): DCB I2C table entry index
1527 	 * offset + 2  (8 bit): I2C slave address
1528 	 * offset + 3  (8 bit): count
1529 	 * offset + 4  (8 bit): I2C register 1
1530 	 * offset + 5  (8 bit): data 1
1531 	 * ...
1532 	 *
1533 	 * For each of "count" registers given by "I2C register n" on the device
1534 	 * addressed by "I2C slave address" on the I2C bus given by
1535 	 * "DCB I2C table entry index", set the register to "data n"
1536 	 */
1537 
1538 	uint8_t i2c_index = bios->data[offset + 1];
1539 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1540 	uint8_t count = bios->data[offset + 3];
1541 	struct nouveau_i2c_chan *chan;
1542 	int len = 4 + count * 2;
1543 	int ret, i;
1544 
1545 	if (!iexec->execute)
1546 		return len;
1547 
1548 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1549 		      "Count: 0x%02X\n",
1550 		offset, i2c_index, i2c_address, count);
1551 
1552 	chan = init_i2c_device_find(bios->dev, i2c_index);
1553 	if (!chan)
1554 		return -ENODEV;
1555 
1556 	for (i = 0; i < count; i++) {
1557 		uint8_t reg = bios->data[offset + 4 + i * 2];
1558 		union i2c_smbus_data val;
1559 
1560 		val.byte = bios->data[offset + 5 + i * 2];
1561 
1562 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1563 			offset, reg, val.byte);
1564 
1565 		if (!bios->execute)
1566 			continue;
1567 
1568 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1569 				     I2C_SMBUS_WRITE, reg,
1570 				     I2C_SMBUS_BYTE_DATA, &val);
1571 		if (ret < 0)
1572 			return ret;
1573 	}
1574 
1575 	return len;
1576 }
1577 
1578 static int
1579 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1580 {
1581 	/*
1582 	 * INIT_ZM_I2C   opcode: 0x4E ('N')
1583 	 *
1584 	 * offset      (8 bit): opcode
1585 	 * offset + 1  (8 bit): DCB I2C table entry index
1586 	 * offset + 2  (8 bit): I2C slave address
1587 	 * offset + 3  (8 bit): count
1588 	 * offset + 4  (8 bit): data 1
1589 	 * ...
1590 	 *
1591 	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1592 	 * address" on the I2C bus given by "DCB I2C table entry index"
1593 	 */
1594 
1595 	uint8_t i2c_index = bios->data[offset + 1];
1596 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1597 	uint8_t count = bios->data[offset + 3];
1598 	int len = 4 + count;
1599 	struct nouveau_i2c_chan *chan;
1600 	struct i2c_msg msg;
1601 	uint8_t data[256];
1602 	int i;
1603 
1604 	if (!iexec->execute)
1605 		return len;
1606 
1607 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1608 		      "Count: 0x%02X\n",
1609 		offset, i2c_index, i2c_address, count);
1610 
1611 	chan = init_i2c_device_find(bios->dev, i2c_index);
1612 	if (!chan)
1613 		return -ENODEV;
1614 
1615 	for (i = 0; i < count; i++) {
1616 		data[i] = bios->data[offset + 4 + i];
1617 
1618 		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1619 	}
1620 
1621 	if (bios->execute) {
1622 		msg.addr = i2c_address;
1623 		msg.flags = 0;
1624 		msg.len = count;
1625 		msg.buf = data;
1626 		if (i2c_transfer(&chan->adapter, &msg, 1) != 1)
1627 			return -EIO;
1628 	}
1629 
1630 	return len;
1631 }
1632 
1633 static int
1634 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1635 {
1636 	/*
1637 	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
1638 	 *
1639 	 * offset      (8 bit): opcode
1640 	 * offset + 1  (8 bit): magic lookup value
1641 	 * offset + 2  (8 bit): TMDS address
1642 	 * offset + 3  (8 bit): mask
1643 	 * offset + 4  (8 bit): data
1644 	 *
1645 	 * Read the data reg for TMDS address "TMDS address", AND it with mask
1646 	 * and OR it with data, then write it back
1647 	 * "magic lookup value" determines which TMDS base address register is
1648 	 * used -- see get_tmds_index_reg()
1649 	 */
1650 
1651 	uint8_t mlv = bios->data[offset + 1];
1652 	uint32_t tmdsaddr = bios->data[offset + 2];
1653 	uint8_t mask = bios->data[offset + 3];
1654 	uint8_t data = bios->data[offset + 4];
1655 	uint32_t reg, value;
1656 
1657 	if (!iexec->execute)
1658 		return 5;
1659 
1660 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1661 		      "Mask: 0x%02X, Data: 0x%02X\n",
1662 		offset, mlv, tmdsaddr, mask, data);
1663 
1664 	reg = get_tmds_index_reg(bios->dev, mlv);
1665 	if (!reg)
1666 		return -EINVAL;
1667 
1668 	bios_wr32(bios, reg,
1669 		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1670 	value = (bios_rd32(bios, reg + 4) & mask) | data;
1671 	bios_wr32(bios, reg + 4, value);
1672 	bios_wr32(bios, reg, tmdsaddr);
1673 
1674 	return 5;
1675 }
1676 
1677 static int
1678 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1679 		   struct init_exec *iexec)
1680 {
1681 	/*
1682 	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
1683 	 *
1684 	 * offset      (8 bit): opcode
1685 	 * offset + 1  (8 bit): magic lookup value
1686 	 * offset + 2  (8 bit): count
1687 	 * offset + 3  (8 bit): addr 1
1688 	 * offset + 4  (8 bit): data 1
1689 	 * ...
1690 	 *
1691 	 * For each of "count" TMDS address and data pairs write "data n" to
1692 	 * "addr n".  "magic lookup value" determines which TMDS base address
1693 	 * register is used -- see get_tmds_index_reg()
1694 	 */
1695 
1696 	uint8_t mlv = bios->data[offset + 1];
1697 	uint8_t count = bios->data[offset + 2];
1698 	int len = 3 + count * 2;
1699 	uint32_t reg;
1700 	int i;
1701 
1702 	if (!iexec->execute)
1703 		return len;
1704 
1705 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1706 		offset, mlv, count);
1707 
1708 	reg = get_tmds_index_reg(bios->dev, mlv);
1709 	if (!reg)
1710 		return -EINVAL;
1711 
1712 	for (i = 0; i < count; i++) {
1713 		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1714 		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1715 
1716 		bios_wr32(bios, reg + 4, tmdsdata);
1717 		bios_wr32(bios, reg, tmdsaddr);
1718 	}
1719 
1720 	return len;
1721 }
1722 
1723 static int
1724 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1725 		      struct init_exec *iexec)
1726 {
1727 	/*
1728 	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
1729 	 *
1730 	 * offset      (8 bit): opcode
1731 	 * offset + 1  (8 bit): CRTC index1
1732 	 * offset + 2  (8 bit): CRTC index2
1733 	 * offset + 3  (8 bit): baseaddr
1734 	 * offset + 4  (8 bit): count
1735 	 * offset + 5  (8 bit): data 1
1736 	 * ...
1737 	 *
1738 	 * For each of "count" address and data pairs, write "baseaddr + n" to
1739 	 * "CRTC index1" and "data n" to "CRTC index2"
1740 	 * Once complete, restore initial value read from "CRTC index1"
1741 	 */
1742 	uint8_t crtcindex1 = bios->data[offset + 1];
1743 	uint8_t crtcindex2 = bios->data[offset + 2];
1744 	uint8_t baseaddr = bios->data[offset + 3];
1745 	uint8_t count = bios->data[offset + 4];
1746 	int len = 5 + count;
1747 	uint8_t oldaddr, data;
1748 	int i;
1749 
1750 	if (!iexec->execute)
1751 		return len;
1752 
1753 	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1754 		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
1755 		offset, crtcindex1, crtcindex2, baseaddr, count);
1756 
1757 	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1758 
1759 	for (i = 0; i < count; i++) {
1760 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1761 				     baseaddr + i);
1762 		data = bios->data[offset + 5 + i];
1763 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1764 	}
1765 
1766 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1767 
1768 	return len;
1769 }
1770 
1771 static int
1772 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1773 {
1774 	/*
1775 	 * INIT_CR   opcode: 0x52 ('R')
1776 	 *
1777 	 * offset      (8  bit): opcode
1778 	 * offset + 1  (8  bit): CRTC index
1779 	 * offset + 2  (8  bit): mask
1780 	 * offset + 3  (8  bit): data
1781 	 *
1782 	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1783 	 * data back to "CRTC index"
1784 	 */
1785 
1786 	uint8_t crtcindex = bios->data[offset + 1];
1787 	uint8_t mask = bios->data[offset + 2];
1788 	uint8_t data = bios->data[offset + 3];
1789 	uint8_t value;
1790 
1791 	if (!iexec->execute)
1792 		return 4;
1793 
1794 	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1795 		offset, crtcindex, mask, data);
1796 
1797 	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1798 	value |= data;
1799 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1800 
1801 	return 4;
1802 }
1803 
1804 static int
1805 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1806 {
1807 	/*
1808 	 * INIT_ZM_CR   opcode: 0x53 ('S')
1809 	 *
1810 	 * offset      (8 bit): opcode
1811 	 * offset + 1  (8 bit): CRTC index
1812 	 * offset + 2  (8 bit): value
1813 	 *
1814 	 * Assign "value" to CRTC register with index "CRTC index".
1815 	 */
1816 
1817 	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1818 	uint8_t data = bios->data[offset + 2];
1819 
1820 	if (!iexec->execute)
1821 		return 3;
1822 
1823 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1824 
1825 	return 3;
1826 }
1827 
1828 static int
1829 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1830 {
1831 	/*
1832 	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
1833 	 *
1834 	 * offset      (8 bit): opcode
1835 	 * offset + 1  (8 bit): count
1836 	 * offset + 2  (8 bit): CRTC index 1
1837 	 * offset + 3  (8 bit): value 1
1838 	 * ...
1839 	 *
1840 	 * For "count", assign "value n" to CRTC register with index
1841 	 * "CRTC index n".
1842 	 */
1843 
1844 	uint8_t count = bios->data[offset + 1];
1845 	int len = 2 + count * 2;
1846 	int i;
1847 
1848 	if (!iexec->execute)
1849 		return len;
1850 
1851 	for (i = 0; i < count; i++)
1852 		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1853 
1854 	return len;
1855 }
1856 
1857 static int
1858 init_condition_time(struct nvbios *bios, uint16_t offset,
1859 		    struct init_exec *iexec)
1860 {
1861 	/*
1862 	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
1863 	 *
1864 	 * offset      (8 bit): opcode
1865 	 * offset + 1  (8 bit): condition number
1866 	 * offset + 2  (8 bit): retries / 50
1867 	 *
1868 	 * Check condition "condition number" in the condition table.
1869 	 * Bios code then sleeps for 2ms if the condition is not met, and
1870 	 * repeats up to "retries" times, but on one C51 this has proved
1871 	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
1872 	 * this, and bail after "retries" times, or 2s, whichever is less.
1873 	 * If still not met after retries, clear execution flag for this table.
1874 	 */
1875 
1876 	uint8_t cond = bios->data[offset + 1];
1877 	uint16_t retries = bios->data[offset + 2] * 50;
1878 	unsigned cnt;
1879 
1880 	if (!iexec->execute)
1881 		return 3;
1882 
1883 	if (retries > 100)
1884 		retries = 100;
1885 
1886 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1887 		offset, cond, retries);
1888 
1889 	if (!bios->execute) /* avoid 2s delays when "faking" execution */
1890 		retries = 1;
1891 
1892 	for (cnt = 0; cnt < retries; cnt++) {
1893 		if (bios_condition_met(bios, offset, cond)) {
1894 			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1895 								offset);
1896 			break;
1897 		} else {
1898 			BIOSLOG(bios, "0x%04X: "
1899 				"Condition not met, sleeping for 20ms\n",
1900 								offset);
1901 			msleep(20);
1902 		}
1903 	}
1904 
1905 	if (!bios_condition_met(bios, offset, cond)) {
1906 		NV_WARN(bios->dev,
1907 			"0x%04X: Condition still not met after %dms, "
1908 			"skipping following opcodes\n", offset, 20 * retries);
1909 		iexec->execute = false;
1910 	}
1911 
1912 	return 3;
1913 }
1914 
1915 static int
1916 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1917 		     struct init_exec *iexec)
1918 {
1919 	/*
1920 	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
1921 	 *
1922 	 * offset      (8  bit): opcode
1923 	 * offset + 1  (32 bit): base register
1924 	 * offset + 5  (8  bit): count
1925 	 * offset + 6  (32 bit): value 1
1926 	 * ...
1927 	 *
1928 	 * Starting at offset + 6 there are "count" 32 bit values.
1929 	 * For "count" iterations set "base register" + 4 * current_iteration
1930 	 * to "value current_iteration"
1931 	 */
1932 
1933 	uint32_t basereg = ROM32(bios->data[offset + 1]);
1934 	uint32_t count = bios->data[offset + 5];
1935 	int len = 6 + count * 4;
1936 	int i;
1937 
1938 	if (!iexec->execute)
1939 		return len;
1940 
1941 	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1942 		offset, basereg, count);
1943 
1944 	for (i = 0; i < count; i++) {
1945 		uint32_t reg = basereg + i * 4;
1946 		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1947 
1948 		bios_wr32(bios, reg, data);
1949 	}
1950 
1951 	return len;
1952 }
1953 
1954 static int
1955 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1956 {
1957 	/*
1958 	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
1959 	 *
1960 	 * offset      (8  bit): opcode
1961 	 * offset + 1  (16 bit): subroutine offset (in bios)
1962 	 *
1963 	 * Calls a subroutine that will execute commands until INIT_DONE
1964 	 * is found.
1965 	 */
1966 
1967 	uint16_t sub_offset = ROM16(bios->data[offset + 1]);
1968 
1969 	if (!iexec->execute)
1970 		return 3;
1971 
1972 	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
1973 		offset, sub_offset);
1974 
1975 	parse_init_table(bios, sub_offset, iexec);
1976 
1977 	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
1978 
1979 	return 3;
1980 }
1981 
1982 static int
1983 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1984 {
1985 	/*
1986 	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
1987 	 *
1988 	 * offset      (8  bit): opcode
1989 	 * offset + 1  (32 bit): src reg
1990 	 * offset + 5  (8  bit): shift
1991 	 * offset + 6  (32 bit): src mask
1992 	 * offset + 10 (32 bit): xor
1993 	 * offset + 14 (32 bit): dst reg
1994 	 * offset + 18 (32 bit): dst mask
1995 	 *
1996 	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
1997 	 * "src mask", then XOR with "xor". Write this OR'd with
1998 	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
1999 	 */
2000 
2001 	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2002 	uint8_t shift = bios->data[offset + 5];
2003 	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2004 	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2005 	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2006 	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2007 	uint32_t srcvalue, dstvalue;
2008 
2009 	if (!iexec->execute)
2010 		return 22;
2011 
2012 	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2013 		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2014 		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2015 
2016 	srcvalue = bios_rd32(bios, srcreg);
2017 
2018 	if (shift < 0x80)
2019 		srcvalue >>= shift;
2020 	else
2021 		srcvalue <<= (0x100 - shift);
2022 
2023 	srcvalue = (srcvalue & srcmask) ^ xor;
2024 
2025 	dstvalue = bios_rd32(bios, dstreg) & dstmask;
2026 
2027 	bios_wr32(bios, dstreg, dstvalue | srcvalue);
2028 
2029 	return 22;
2030 }
2031 
2032 static int
2033 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2034 {
2035 	/*
2036 	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
2037 	 *
2038 	 * offset      (8  bit): opcode
2039 	 * offset + 1  (16 bit): CRTC port
2040 	 * offset + 3  (8  bit): CRTC index
2041 	 * offset + 4  (8  bit): data
2042 	 *
2043 	 * Write "data" to index "CRTC index" of "CRTC port"
2044 	 */
2045 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2046 	uint8_t crtcindex = bios->data[offset + 3];
2047 	uint8_t data = bios->data[offset + 4];
2048 
2049 	if (!iexec->execute)
2050 		return 5;
2051 
2052 	bios_idxprt_wr(bios, crtcport, crtcindex, data);
2053 
2054 	return 5;
2055 }
2056 
2057 static int
2058 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2059 {
2060 	/*
2061 	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
2062 	 *
2063 	 * offset      (8 bit): opcode
2064 	 *
2065 	 * This opcode is meant to set NV_PFB_CFG0 (0x100200) appropriately so
2066 	 * that the hardware can correctly calculate how much VRAM it has
2067 	 * (and subsequently report that value in NV_PFB_CSTATUS (0x10020C))
2068 	 *
2069 	 * The implementation of this opcode in general consists of two parts:
2070 	 * 1) determination of the memory bus width
2071 	 * 2) determination of how many of the card's RAM pads have ICs attached
2072 	 *
2073 	 * 1) is done by a cunning combination of writes to offsets 0x1c and
2074 	 * 0x3c in the framebuffer, and seeing whether the written values are
2075 	 * read back correctly. This then affects bits 4-7 of NV_PFB_CFG0
2076 	 *
2077 	 * 2) is done by a cunning combination of writes to an offset slightly
2078 	 * less than the maximum memory reported by NV_PFB_CSTATUS, then seeing
2079 	 * if the test pattern can be read back. This then affects bits 12-15 of
2080 	 * NV_PFB_CFG0
2081 	 *
2082 	 * In this context a "cunning combination" may include multiple reads
2083 	 * and writes to varying locations, often alternating the test pattern
2084 	 * and 0, doubtless to make sure buffers are filled, residual charges
2085 	 * on tracks are removed etc.
2086 	 *
2087 	 * Unfortunately, the "cunning combination"s mentioned above, and the
2088 	 * changes to the bits in NV_PFB_CFG0 differ with nearly every bios
2089 	 * trace I have.
2090 	 *
2091 	 * Therefore, we cheat and assume the value of NV_PFB_CFG0 with which
2092 	 * we started was correct, and use that instead
2093 	 */
2094 
2095 	/* no iexec->execute check by design */
2096 
2097 	/*
2098 	 * This appears to be a NOP on G8x chipsets, both io logs of the VBIOS
2099 	 * and kmmio traces of the binary driver POSTing the card show nothing
2100 	 * being done for this opcode.  why is it still listed in the table?!
2101 	 */
2102 
2103 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2104 
2105 	if (dev_priv->card_type >= NV_40)
2106 		return 1;
2107 
2108 	/*
2109 	 * On every card I've seen, this step gets done for us earlier in
2110 	 * the init scripts
2111 	uint8_t crdata = bios_idxprt_rd(dev, NV_VIO_SRX, 0x01);
2112 	bios_idxprt_wr(dev, NV_VIO_SRX, 0x01, crdata | 0x20);
2113 	 */
2114 
2115 	/*
2116 	 * This also has probably been done in the scripts, but an mmio trace of
2117 	 * s3 resume shows nvidia doing it anyway (unlike the NV_VIO_SRX write)
2118 	 */
2119 	bios_wr32(bios, NV_PFB_REFCTRL, NV_PFB_REFCTRL_VALID_1);
2120 
2121 	/* write back the saved configuration value */
2122 	bios_wr32(bios, NV_PFB_CFG0, bios->state.saved_nv_pfb_cfg0);
2123 
2124 	return 1;
2125 }
2126 
2127 static int
2128 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2129 {
2130 	/*
2131 	 * INIT_RESET   opcode: 0x65 ('e')
2132 	 *
2133 	 * offset      (8  bit): opcode
2134 	 * offset + 1  (32 bit): register
2135 	 * offset + 5  (32 bit): value1
2136 	 * offset + 9  (32 bit): value2
2137 	 *
2138 	 * Assign "value1" to "register", then assign "value2" to "register"
2139 	 */
2140 
2141 	uint32_t reg = ROM32(bios->data[offset + 1]);
2142 	uint32_t value1 = ROM32(bios->data[offset + 5]);
2143 	uint32_t value2 = ROM32(bios->data[offset + 9]);
2144 	uint32_t pci_nv_19, pci_nv_20;
2145 
2146 	/* no iexec->execute check by design */
2147 
2148 	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2149 	bios_wr32(bios, NV_PBUS_PCI_NV_19, 0);
2150 	bios_wr32(bios, reg, value1);
2151 
2152 	udelay(10);
2153 
2154 	bios_wr32(bios, reg, value2);
2155 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2156 
2157 	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2158 	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
2159 	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2160 
2161 	return 13;
2162 }
2163 
2164 static int
2165 init_configure_mem(struct nvbios *bios, uint16_t offset,
2166 		   struct init_exec *iexec)
2167 {
2168 	/*
2169 	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
2170 	 *
2171 	 * offset      (8 bit): opcode
2172 	 *
2173 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2174 	 * For early bios versions, sets up the memory registers, using values
2175 	 * taken from the memory init table
2176 	 */
2177 
2178 	/* no iexec->execute check by design */
2179 
2180 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2181 	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2182 	uint32_t reg, data;
2183 
2184 	if (bios->major_version > 2)
2185 		return -ENODEV;
2186 
2187 	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2188 		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2189 
2190 	if (bios->data[meminitoffs] & 1)
2191 		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2192 
2193 	for (reg = ROM32(bios->data[seqtbloffs]);
2194 	     reg != 0xffffffff;
2195 	     reg = ROM32(bios->data[seqtbloffs += 4])) {
2196 
2197 		switch (reg) {
2198 		case NV_PFB_PRE:
2199 			data = NV_PFB_PRE_CMD_PRECHARGE;
2200 			break;
2201 		case NV_PFB_PAD:
2202 			data = NV_PFB_PAD_CKE_NORMAL;
2203 			break;
2204 		case NV_PFB_REF:
2205 			data = NV_PFB_REF_CMD_REFRESH;
2206 			break;
2207 		default:
2208 			data = ROM32(bios->data[meminitdata]);
2209 			meminitdata += 4;
2210 			if (data == 0xffffffff)
2211 				continue;
2212 		}
2213 
2214 		bios_wr32(bios, reg, data);
2215 	}
2216 
2217 	return 1;
2218 }
2219 
2220 static int
2221 init_configure_clk(struct nvbios *bios, uint16_t offset,
2222 		   struct init_exec *iexec)
2223 {
2224 	/*
2225 	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
2226 	 *
2227 	 * offset      (8 bit): opcode
2228 	 *
2229 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2230 	 * For early bios versions, sets up the NVClk and MClk PLLs, using
2231 	 * values taken from the memory init table
2232 	 */
2233 
2234 	/* no iexec->execute check by design */
2235 
2236 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2237 	int clock;
2238 
2239 	if (bios->major_version > 2)
2240 		return -ENODEV;
2241 
2242 	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2243 	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2244 
2245 	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2246 	if (bios->data[meminitoffs] & 1) /* DDR */
2247 		clock *= 2;
2248 	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2249 
2250 	return 1;
2251 }
2252 
2253 static int
2254 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2255 		       struct init_exec *iexec)
2256 {
2257 	/*
2258 	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
2259 	 *
2260 	 * offset      (8 bit): opcode
2261 	 *
2262 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2263 	 * For early bios versions, does early init, loading ram and crystal
2264 	 * configuration from straps into CR3C
2265 	 */
2266 
2267 	/* no iexec->execute check by design */
2268 
2269 	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2270 	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & (1 << 6));
2271 
2272 	if (bios->major_version > 2)
2273 		return -ENODEV;
2274 
2275 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2276 			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2277 
2278 	return 1;
2279 }
2280 
2281 static int
2282 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2283 {
2284 	/*
2285 	 * INIT_IO   opcode: 0x69 ('i')
2286 	 *
2287 	 * offset      (8  bit): opcode
2288 	 * offset + 1  (16 bit): CRTC port
2289 	 * offset + 3  (8  bit): mask
2290 	 * offset + 4  (8  bit): data
2291 	 *
2292 	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2293 	 */
2294 
2295 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2296 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2297 	uint8_t mask = bios->data[offset + 3];
2298 	uint8_t data = bios->data[offset + 4];
2299 
2300 	if (!iexec->execute)
2301 		return 5;
2302 
2303 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2304 		offset, crtcport, mask, data);
2305 
2306 	/*
2307 	 * I have no idea what this does, but NVIDIA do this magic sequence
2308 	 * in the places where this INIT_IO happens..
2309 	 */
2310 	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2311 		int i;
2312 
2313 		bios_wr32(bios, 0x614100, (bios_rd32(
2314 			  bios, 0x614100) & 0x0fffffff) | 0x00800000);
2315 
2316 		bios_wr32(bios, 0x00e18c, bios_rd32(
2317 			  bios, 0x00e18c) | 0x00020000);
2318 
2319 		bios_wr32(bios, 0x614900, (bios_rd32(
2320 			  bios, 0x614900) & 0x0fffffff) | 0x00800000);
2321 
2322 		bios_wr32(bios, 0x000200, bios_rd32(
2323 			  bios, 0x000200) & ~0x40000000);
2324 
2325 		mdelay(10);
2326 
2327 		bios_wr32(bios, 0x00e18c, bios_rd32(
2328 			  bios, 0x00e18c) & ~0x00020000);
2329 
2330 		bios_wr32(bios, 0x000200, bios_rd32(
2331 			  bios, 0x000200) | 0x40000000);
2332 
2333 		bios_wr32(bios, 0x614100, 0x00800018);
2334 		bios_wr32(bios, 0x614900, 0x00800018);
2335 
2336 		mdelay(10);
2337 
2338 		bios_wr32(bios, 0x614100, 0x10000018);
2339 		bios_wr32(bios, 0x614900, 0x10000018);
2340 
2341 		for (i = 0; i < 3; i++)
2342 			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2343 				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2344 
2345 		for (i = 0; i < 2; i++)
2346 			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2347 				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2348 
2349 		for (i = 0; i < 3; i++)
2350 			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2351 				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2352 
2353 		for (i = 0; i < 2; i++)
2354 			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2355 				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2356 
2357 		for (i = 0; i < 2; i++)
2358 			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2359 				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2360 		return 5;
2361 	}
2362 
2363 	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2364 									data);
2365 	return 5;
2366 }
2367 
2368 static int
2369 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2370 {
2371 	/*
2372 	 * INIT_SUB   opcode: 0x6B ('k')
2373 	 *
2374 	 * offset      (8 bit): opcode
2375 	 * offset + 1  (8 bit): script number
2376 	 *
2377 	 * Execute script number "script number", as a subroutine
2378 	 */
2379 
2380 	uint8_t sub = bios->data[offset + 1];
2381 
2382 	if (!iexec->execute)
2383 		return 2;
2384 
2385 	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2386 
2387 	parse_init_table(bios,
2388 			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2389 			 iexec);
2390 
2391 	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2392 
2393 	return 2;
2394 }
2395 
2396 static int
2397 init_ram_condition(struct nvbios *bios, uint16_t offset,
2398 		   struct init_exec *iexec)
2399 {
2400 	/*
2401 	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
2402 	 *
2403 	 * offset      (8 bit): opcode
2404 	 * offset + 1  (8 bit): mask
2405 	 * offset + 2  (8 bit): cmpval
2406 	 *
2407 	 * Test if (NV_PFB_BOOT_0 & "mask") equals "cmpval".
2408 	 * If condition not met skip subsequent opcodes until condition is
2409 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2410 	 */
2411 
2412 	uint8_t mask = bios->data[offset + 1];
2413 	uint8_t cmpval = bios->data[offset + 2];
2414 	uint8_t data;
2415 
2416 	if (!iexec->execute)
2417 		return 3;
2418 
2419 	data = bios_rd32(bios, NV_PFB_BOOT_0) & mask;
2420 
2421 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2422 		offset, data, cmpval);
2423 
2424 	if (data == cmpval)
2425 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2426 	else {
2427 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2428 		iexec->execute = false;
2429 	}
2430 
2431 	return 3;
2432 }
2433 
2434 static int
2435 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2436 {
2437 	/*
2438 	 * INIT_NV_REG   opcode: 0x6E ('n')
2439 	 *
2440 	 * offset      (8  bit): opcode
2441 	 * offset + 1  (32 bit): register
2442 	 * offset + 5  (32 bit): mask
2443 	 * offset + 9  (32 bit): data
2444 	 *
2445 	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2446 	 */
2447 
2448 	uint32_t reg = ROM32(bios->data[offset + 1]);
2449 	uint32_t mask = ROM32(bios->data[offset + 5]);
2450 	uint32_t data = ROM32(bios->data[offset + 9]);
2451 
2452 	if (!iexec->execute)
2453 		return 13;
2454 
2455 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2456 		offset, reg, mask, data);
2457 
2458 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2459 
2460 	return 13;
2461 }
2462 
2463 static int
2464 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2465 {
2466 	/*
2467 	 * INIT_MACRO   opcode: 0x6F ('o')
2468 	 *
2469 	 * offset      (8 bit): opcode
2470 	 * offset + 1  (8 bit): macro number
2471 	 *
2472 	 * Look up macro index "macro number" in the macro index table.
2473 	 * The macro index table entry has 1 byte for the index in the macro
2474 	 * table, and 1 byte for the number of times to repeat the macro.
2475 	 * The macro table entry has 4 bytes for the register address and
2476 	 * 4 bytes for the value to write to that register
2477 	 */
2478 
2479 	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2480 	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2481 	uint8_t macro_tbl_idx = bios->data[tmp];
2482 	uint8_t count = bios->data[tmp + 1];
2483 	uint32_t reg, data;
2484 	int i;
2485 
2486 	if (!iexec->execute)
2487 		return 2;
2488 
2489 	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2490 		      "Count: 0x%02X\n",
2491 		offset, macro_index_tbl_idx, macro_tbl_idx, count);
2492 
2493 	for (i = 0; i < count; i++) {
2494 		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2495 
2496 		reg = ROM32(bios->data[macroentryptr]);
2497 		data = ROM32(bios->data[macroentryptr + 4]);
2498 
2499 		bios_wr32(bios, reg, data);
2500 	}
2501 
2502 	return 2;
2503 }
2504 
2505 static int
2506 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2507 {
2508 	/*
2509 	 * INIT_DONE   opcode: 0x71 ('q')
2510 	 *
2511 	 * offset      (8  bit): opcode
2512 	 *
2513 	 * End the current script
2514 	 */
2515 
2516 	/* mild retval abuse to stop parsing this table */
2517 	return 0;
2518 }
2519 
2520 static int
2521 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2522 {
2523 	/*
2524 	 * INIT_RESUME   opcode: 0x72 ('r')
2525 	 *
2526 	 * offset      (8  bit): opcode
2527 	 *
2528 	 * End the current execute / no-execute condition
2529 	 */
2530 
2531 	if (iexec->execute)
2532 		return 1;
2533 
2534 	iexec->execute = true;
2535 	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2536 
2537 	return 1;
2538 }
2539 
2540 static int
2541 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2542 {
2543 	/*
2544 	 * INIT_TIME   opcode: 0x74 ('t')
2545 	 *
2546 	 * offset      (8  bit): opcode
2547 	 * offset + 1  (16 bit): time
2548 	 *
2549 	 * Sleep for "time" microseconds.
2550 	 */
2551 
2552 	unsigned time = ROM16(bios->data[offset + 1]);
2553 
2554 	if (!iexec->execute)
2555 		return 3;
2556 
2557 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2558 		offset, time);
2559 
2560 	if (time < 1000)
2561 		udelay(time);
2562 	else
2563 		msleep((time + 900) / 1000);
2564 
2565 	return 3;
2566 }
2567 
2568 static int
2569 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2570 {
2571 	/*
2572 	 * INIT_CONDITION   opcode: 0x75 ('u')
2573 	 *
2574 	 * offset      (8 bit): opcode
2575 	 * offset + 1  (8 bit): condition number
2576 	 *
2577 	 * Check condition "condition number" in the condition table.
2578 	 * If condition not met skip subsequent opcodes until condition is
2579 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2580 	 */
2581 
2582 	uint8_t cond = bios->data[offset + 1];
2583 
2584 	if (!iexec->execute)
2585 		return 2;
2586 
2587 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
2588 
2589 	if (bios_condition_met(bios, offset, cond))
2590 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2591 	else {
2592 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2593 		iexec->execute = false;
2594 	}
2595 
2596 	return 2;
2597 }
2598 
2599 static int
2600 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2601 {
2602 	/*
2603 	 * INIT_IO_CONDITION  opcode: 0x76
2604 	 *
2605 	 * offset      (8 bit): opcode
2606 	 * offset + 1  (8 bit): condition number
2607 	 *
2608 	 * Check condition "condition number" in the io condition table.
2609 	 * If condition not met skip subsequent opcodes until condition is
2610 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2611 	 */
2612 
2613 	uint8_t cond = bios->data[offset + 1];
2614 
2615 	if (!iexec->execute)
2616 		return 2;
2617 
2618 	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
2619 
2620 	if (io_condition_met(bios, offset, cond))
2621 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2622 	else {
2623 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2624 		iexec->execute = false;
2625 	}
2626 
2627 	return 2;
2628 }
2629 
2630 static int
2631 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2632 {
2633 	/*
2634 	 * INIT_INDEX_IO   opcode: 0x78 ('x')
2635 	 *
2636 	 * offset      (8  bit): opcode
2637 	 * offset + 1  (16 bit): CRTC port
2638 	 * offset + 3  (8  bit): CRTC index
2639 	 * offset + 4  (8  bit): mask
2640 	 * offset + 5  (8  bit): data
2641 	 *
2642 	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
2643 	 * OR with "data", write-back
2644 	 */
2645 
2646 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2647 	uint8_t crtcindex = bios->data[offset + 3];
2648 	uint8_t mask = bios->data[offset + 4];
2649 	uint8_t data = bios->data[offset + 5];
2650 	uint8_t value;
2651 
2652 	if (!iexec->execute)
2653 		return 6;
2654 
2655 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
2656 		      "Data: 0x%02X\n",
2657 		offset, crtcport, crtcindex, mask, data);
2658 
2659 	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
2660 	bios_idxprt_wr(bios, crtcport, crtcindex, value);
2661 
2662 	return 6;
2663 }
2664 
2665 static int
2666 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2667 {
2668 	/*
2669 	 * INIT_PLL   opcode: 0x79 ('y')
2670 	 *
2671 	 * offset      (8  bit): opcode
2672 	 * offset + 1  (32 bit): register
2673 	 * offset + 5  (16 bit): freq
2674 	 *
2675 	 * Set PLL register "register" to coefficients for frequency (10kHz)
2676 	 * "freq"
2677 	 */
2678 
2679 	uint32_t reg = ROM32(bios->data[offset + 1]);
2680 	uint16_t freq = ROM16(bios->data[offset + 5]);
2681 
2682 	if (!iexec->execute)
2683 		return 7;
2684 
2685 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
2686 
2687 	setPLL(bios, reg, freq * 10);
2688 
2689 	return 7;
2690 }
2691 
2692 static int
2693 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2694 {
2695 	/*
2696 	 * INIT_ZM_REG   opcode: 0x7A ('z')
2697 	 *
2698 	 * offset      (8  bit): opcode
2699 	 * offset + 1  (32 bit): register
2700 	 * offset + 5  (32 bit): value
2701 	 *
2702 	 * Assign "value" to "register"
2703 	 */
2704 
2705 	uint32_t reg = ROM32(bios->data[offset + 1]);
2706 	uint32_t value = ROM32(bios->data[offset + 5]);
2707 
2708 	if (!iexec->execute)
2709 		return 9;
2710 
2711 	if (reg == 0x000200)
2712 		value |= 1;
2713 
2714 	bios_wr32(bios, reg, value);
2715 
2716 	return 9;
2717 }
2718 
2719 static int
2720 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
2721 		      struct init_exec *iexec)
2722 {
2723 	/*
2724 	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
2725 	 *
2726 	 * offset      (8 bit): opcode
2727 	 * offset + 1  (8 bit): PLL type
2728 	 * offset + 2 (32 bit): frequency 0
2729 	 *
2730 	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
2731 	 * ram_restrict_table_ptr.  The value read from there is used to select
2732 	 * a frequency from the table starting at 'frequency 0' to be
2733 	 * programmed into the PLL corresponding to 'type'.
2734 	 *
2735 	 * The PLL limits table on cards using this opcode has a mapping of
2736 	 * 'type' to the relevant registers.
2737 	 */
2738 
2739 	struct drm_device *dev = bios->dev;
2740 	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
2741 	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
2742 	uint8_t type = bios->data[offset + 1];
2743 	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
2744 	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
2745 	int len = 2 + bios->ram_restrict_group_count * 4;
2746 	int i;
2747 
2748 	if (!iexec->execute)
2749 		return len;
2750 
2751 	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
2752 		NV_ERROR(dev, "PLL limits table not version 3.x\n");
2753 		return len; /* deliberate, allow default clocks to remain */
2754 	}
2755 
2756 	entry = pll_limits + pll_limits[1];
2757 	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
2758 		if (entry[0] == type) {
2759 			uint32_t reg = ROM32(entry[3]);
2760 
2761 			BIOSLOG(bios, "0x%04X: "
2762 				      "Type %02x Reg 0x%08x Freq %dKHz\n",
2763 				offset, type, reg, freq);
2764 
2765 			setPLL(bios, reg, freq);
2766 			return len;
2767 		}
2768 	}
2769 
2770 	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
2771 	return len;
2772 }
2773 
2774 static int
2775 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2776 {
2777 	/*
2778 	 * INIT_8C   opcode: 0x8C ('')
2779 	 *
2780 	 * NOP so far....
2781 	 *
2782 	 */
2783 
2784 	return 1;
2785 }
2786 
2787 static int
2788 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2789 {
2790 	/*
2791 	 * INIT_8D   opcode: 0x8D ('')
2792 	 *
2793 	 * NOP so far....
2794 	 *
2795 	 */
2796 
2797 	return 1;
2798 }
2799 
2800 static int
2801 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2802 {
2803 	/*
2804 	 * INIT_GPIO   opcode: 0x8E ('')
2805 	 *
2806 	 * offset      (8 bit): opcode
2807 	 *
2808 	 * Loop over all entries in the DCB GPIO table, and initialise
2809 	 * each GPIO according to various values listed in each entry
2810 	 */
2811 
2812 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2813 	const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
2814 	int i;
2815 
2816 	if (dev_priv->card_type != NV_50) {
2817 		NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n");
2818 		return -ENODEV;
2819 	}
2820 
2821 	if (!iexec->execute)
2822 		return 1;
2823 
2824 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
2825 		struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i];
2826 		uint32_t r, s, v;
2827 
2828 		BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry);
2829 
2830 		BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n",
2831 			offset, gpio->tag, gpio->state_default);
2832 		if (bios->execute)
2833 			nv50_gpio_set(bios->dev, gpio->tag, gpio->state_default);
2834 
2835 		/* The NVIDIA binary driver doesn't appear to actually do
2836 		 * any of this, my VBIOS does however.
2837 		 */
2838 		/* Not a clue, needs de-magicing */
2839 		r = nv50_gpio_ctl[gpio->line >> 4];
2840 		s = (gpio->line & 0x0f);
2841 		v = bios_rd32(bios, r) & ~(0x00010001 << s);
2842 		switch ((gpio->entry & 0x06000000) >> 25) {
2843 		case 1:
2844 			v |= (0x00000001 << s);
2845 			break;
2846 		case 2:
2847 			v |= (0x00010000 << s);
2848 			break;
2849 		default:
2850 			break;
2851 		}
2852 		bios_wr32(bios, r, v);
2853 	}
2854 
2855 	return 1;
2856 }
2857 
2858 static int
2859 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
2860 			       struct init_exec *iexec)
2861 {
2862 	/*
2863 	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
2864 	 *
2865 	 * offset      (8  bit): opcode
2866 	 * offset + 1  (32 bit): reg
2867 	 * offset + 5  (8  bit): regincrement
2868 	 * offset + 6  (8  bit): count
2869 	 * offset + 7  (32 bit): value 1,1
2870 	 * ...
2871 	 *
2872 	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
2873 	 * ram_restrict_table_ptr. The value read from here is 'n', and
2874 	 * "value 1,n" gets written to "reg". This repeats "count" times and on
2875 	 * each iteration 'm', "reg" increases by "regincrement" and
2876 	 * "value m,n" is used. The extent of n is limited by a number read
2877 	 * from the 'M' BIT table, herein called "blocklen"
2878 	 */
2879 
2880 	uint32_t reg = ROM32(bios->data[offset + 1]);
2881 	uint8_t regincrement = bios->data[offset + 5];
2882 	uint8_t count = bios->data[offset + 6];
2883 	uint32_t strap_ramcfg, data;
2884 	/* previously set by 'M' BIT table */
2885 	uint16_t blocklen = bios->ram_restrict_group_count * 4;
2886 	int len = 7 + count * blocklen;
2887 	uint8_t index;
2888 	int i;
2889 
2890 
2891 	if (!iexec->execute)
2892 		return len;
2893 
2894 	if (!blocklen) {
2895 		NV_ERROR(bios->dev,
2896 			 "0x%04X: Zero block length - has the M table "
2897 			 "been parsed?\n", offset);
2898 		return -EINVAL;
2899 	}
2900 
2901 	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
2902 	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
2903 
2904 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
2905 		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
2906 		offset, reg, regincrement, count, strap_ramcfg, index);
2907 
2908 	for (i = 0; i < count; i++) {
2909 		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
2910 
2911 		bios_wr32(bios, reg, data);
2912 
2913 		reg += regincrement;
2914 	}
2915 
2916 	return len;
2917 }
2918 
2919 static int
2920 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2921 {
2922 	/*
2923 	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
2924 	 *
2925 	 * offset      (8  bit): opcode
2926 	 * offset + 1  (32 bit): src reg
2927 	 * offset + 5  (32 bit): dst reg
2928 	 *
2929 	 * Put contents of "src reg" into "dst reg"
2930 	 */
2931 
2932 	uint32_t srcreg = ROM32(bios->data[offset + 1]);
2933 	uint32_t dstreg = ROM32(bios->data[offset + 5]);
2934 
2935 	if (!iexec->execute)
2936 		return 9;
2937 
2938 	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
2939 
2940 	return 9;
2941 }
2942 
2943 static int
2944 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
2945 			       struct init_exec *iexec)
2946 {
2947 	/*
2948 	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
2949 	 *
2950 	 * offset      (8  bit): opcode
2951 	 * offset + 1  (32 bit): dst reg
2952 	 * offset + 5  (8  bit): count
2953 	 * offset + 6  (32 bit): data 1
2954 	 * ...
2955 	 *
2956 	 * For each of "count" values write "data n" to "dst reg"
2957 	 */
2958 
2959 	uint32_t reg = ROM32(bios->data[offset + 1]);
2960 	uint8_t count = bios->data[offset + 5];
2961 	int len = 6 + count * 4;
2962 	int i;
2963 
2964 	if (!iexec->execute)
2965 		return len;
2966 
2967 	for (i = 0; i < count; i++) {
2968 		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
2969 		bios_wr32(bios, reg, data);
2970 	}
2971 
2972 	return len;
2973 }
2974 
2975 static int
2976 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2977 {
2978 	/*
2979 	 * INIT_RESERVED   opcode: 0x92 ('')
2980 	 *
2981 	 * offset      (8 bit): opcode
2982 	 *
2983 	 * Seemingly does nothing
2984 	 */
2985 
2986 	return 1;
2987 }
2988 
2989 static int
2990 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2991 {
2992 	/*
2993 	 * INIT_96   opcode: 0x96 ('')
2994 	 *
2995 	 * offset      (8  bit): opcode
2996 	 * offset + 1  (32 bit): sreg
2997 	 * offset + 5  (8  bit): sshift
2998 	 * offset + 6  (8  bit): smask
2999 	 * offset + 7  (8  bit): index
3000 	 * offset + 8  (32 bit): reg
3001 	 * offset + 12 (32 bit): mask
3002 	 * offset + 16 (8  bit): shift
3003 	 *
3004 	 */
3005 
3006 	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3007 	uint32_t reg = ROM32(bios->data[offset + 8]);
3008 	uint32_t mask = ROM32(bios->data[offset + 12]);
3009 	uint32_t val;
3010 
3011 	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3012 	if (bios->data[offset + 5] < 0x80)
3013 		val >>= bios->data[offset + 5];
3014 	else
3015 		val <<= (0x100 - bios->data[offset + 5]);
3016 	val &= bios->data[offset + 6];
3017 
3018 	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
3019 	val <<= bios->data[offset + 16];
3020 
3021 	if (!iexec->execute)
3022 		return 17;
3023 
3024 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3025 	return 17;
3026 }
3027 
3028 static int
3029 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3030 {
3031 	/*
3032 	 * INIT_97   opcode: 0x97 ('')
3033 	 *
3034 	 * offset      (8  bit): opcode
3035 	 * offset + 1  (32 bit): register
3036 	 * offset + 5  (32 bit): mask
3037 	 * offset + 9  (32 bit): value
3038 	 *
3039 	 * Adds "value" to "register" preserving the fields specified
3040 	 * by "mask"
3041 	 */
3042 
3043 	uint32_t reg = ROM32(bios->data[offset + 1]);
3044 	uint32_t mask = ROM32(bios->data[offset + 5]);
3045 	uint32_t add = ROM32(bios->data[offset + 9]);
3046 	uint32_t val;
3047 
3048 	val = bios_rd32(bios, reg);
3049 	val = (val & mask) | ((val + add) & ~mask);
3050 
3051 	if (!iexec->execute)
3052 		return 13;
3053 
3054 	bios_wr32(bios, reg, val);
3055 	return 13;
3056 }
3057 
3058 static int
3059 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3060 {
3061 	/*
3062 	 * INIT_AUXCH   opcode: 0x98 ('')
3063 	 *
3064 	 * offset      (8  bit): opcode
3065 	 * offset + 1  (32 bit): address
3066 	 * offset + 5  (8  bit): count
3067 	 * offset + 6  (8  bit): mask 0
3068 	 * offset + 7  (8  bit): data 0
3069 	 *  ...
3070 	 *
3071 	 */
3072 
3073 	struct drm_device *dev = bios->dev;
3074 	struct nouveau_i2c_chan *auxch;
3075 	uint32_t addr = ROM32(bios->data[offset + 1]);
3076 	uint8_t count = bios->data[offset + 5];
3077 	int len = 6 + count * 2;
3078 	int ret, i;
3079 
3080 	if (!bios->display.output) {
3081 		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3082 		return -EINVAL;
3083 	}
3084 
3085 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3086 	if (!auxch) {
3087 		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3088 			 bios->display.output->i2c_index);
3089 		return -ENODEV;
3090 	}
3091 
3092 	if (!iexec->execute)
3093 		return len;
3094 
3095 	offset += 6;
3096 	for (i = 0; i < count; i++, offset += 2) {
3097 		uint8_t data;
3098 
3099 		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3100 		if (ret) {
3101 			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3102 			return ret;
3103 		}
3104 
3105 		data &= bios->data[offset + 0];
3106 		data |= bios->data[offset + 1];
3107 
3108 		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3109 		if (ret) {
3110 			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3111 			return ret;
3112 		}
3113 	}
3114 
3115 	return len;
3116 }
3117 
3118 static int
3119 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3120 {
3121 	/*
3122 	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
3123 	 *
3124 	 * offset      (8  bit): opcode
3125 	 * offset + 1  (32 bit): address
3126 	 * offset + 5  (8  bit): count
3127 	 * offset + 6  (8  bit): data 0
3128 	 *  ...
3129 	 *
3130 	 */
3131 
3132 	struct drm_device *dev = bios->dev;
3133 	struct nouveau_i2c_chan *auxch;
3134 	uint32_t addr = ROM32(bios->data[offset + 1]);
3135 	uint8_t count = bios->data[offset + 5];
3136 	int len = 6 + count;
3137 	int ret, i;
3138 
3139 	if (!bios->display.output) {
3140 		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3141 		return -EINVAL;
3142 	}
3143 
3144 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3145 	if (!auxch) {
3146 		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3147 			 bios->display.output->i2c_index);
3148 		return -ENODEV;
3149 	}
3150 
3151 	if (!iexec->execute)
3152 		return len;
3153 
3154 	offset += 6;
3155 	for (i = 0; i < count; i++, offset++) {
3156 		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3157 		if (ret) {
3158 			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3159 			return ret;
3160 		}
3161 	}
3162 
3163 	return len;
3164 }
3165 
3166 static struct init_tbl_entry itbl_entry[] = {
3167 	/* command name                       , id  , length  , offset  , mult    , command handler                 */
3168 	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3169 	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
3170 	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
3171 	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
3172 	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
3173 	{ "INIT_COPY"                         , 0x37, init_copy                       },
3174 	{ "INIT_NOT"                          , 0x38, init_not                        },
3175 	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3176 	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
3177 	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
3178 	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3179 	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
3180 	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
3181 	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
3182 	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
3183 	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
3184 	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
3185 	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
3186 	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
3187 	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
3188 	{ "INIT_CR"                           , 0x52, init_cr                         },
3189 	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
3190 	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
3191 	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3192 	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3193 	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3194 	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3195 	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
3196 	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
3197 	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
3198 	{ "INIT_RESET"                        , 0x65, init_reset                      },
3199 	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
3200 	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
3201 	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
3202 	{ "INIT_IO"                           , 0x69, init_io                         },
3203 	{ "INIT_SUB"                          , 0x6B, init_sub                        },
3204 	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
3205 	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
3206 	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
3207 	{ "INIT_DONE"                         , 0x71, init_done                       },
3208 	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3209 	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3210 	{ "INIT_TIME"                         , 0x74, init_time                       },
3211 	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
3212 	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
3213 	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
3214 	{ "INIT_PLL"                          , 0x79, init_pll                        },
3215 	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
3216 	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
3217 	{ "INIT_8C"                           , 0x8C, init_8c                         },
3218 	{ "INIT_8D"                           , 0x8D, init_8d                         },
3219 	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
3220 	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
3221 	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
3222 	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
3223 	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
3224 	{ "INIT_96"                           , 0x96, init_96                         },
3225 	{ "INIT_97"                           , 0x97, init_97                         },
3226 	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
3227 	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3228 	{ NULL                                , 0   , NULL                            }
3229 };
3230 
3231 #define MAX_TABLE_OPS 1000
3232 
3233 static int
3234 parse_init_table(struct nvbios *bios, unsigned int offset,
3235 		 struct init_exec *iexec)
3236 {
3237 	/*
3238 	 * Parses all commands in an init table.
3239 	 *
3240 	 * We start out executing all commands found in the init table. Some
3241 	 * opcodes may change the status of iexec->execute to SKIP, which will
3242 	 * cause the following opcodes to perform no operation until the value
3243 	 * is changed back to EXECUTE.
3244 	 */
3245 
3246 	int count = 0, i, ret;
3247 	uint8_t id;
3248 
3249 	/*
3250 	 * Loop until INIT_DONE causes us to break out of the loop
3251 	 * (or until offset > bios length just in case... )
3252 	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3253 	 */
3254 	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3255 		id = bios->data[offset];
3256 
3257 		/* Find matching id in itbl_entry */
3258 		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3259 			;
3260 
3261 		if (!itbl_entry[i].name) {
3262 			NV_ERROR(bios->dev,
3263 				 "0x%04X: Init table command not found: "
3264 				 "0x%02X\n", offset, id);
3265 			return -ENOENT;
3266 		}
3267 
3268 		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3269 			itbl_entry[i].id, itbl_entry[i].name);
3270 
3271 		/* execute eventual command handler */
3272 		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3273 		if (ret < 0) {
3274 			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3275 				 "table opcode: %s %d\n", offset,
3276 				 itbl_entry[i].name, ret);
3277 		}
3278 
3279 		if (ret <= 0)
3280 			break;
3281 
3282 		/*
3283 		 * Add the offset of the current command including all data
3284 		 * of that command. The offset will then be pointing on the
3285 		 * next op code.
3286 		 */
3287 		offset += ret;
3288 	}
3289 
3290 	if (offset >= bios->length)
3291 		NV_WARN(bios->dev,
3292 			"Offset 0x%04X greater than known bios image length.  "
3293 			"Corrupt image?\n", offset);
3294 	if (count >= MAX_TABLE_OPS)
3295 		NV_WARN(bios->dev,
3296 			"More than %d opcodes to a table is unlikely, "
3297 			"is the bios image corrupt?\n", MAX_TABLE_OPS);
3298 
3299 	return 0;
3300 }
3301 
3302 static void
3303 parse_init_tables(struct nvbios *bios)
3304 {
3305 	/* Loops and calls parse_init_table() for each present table. */
3306 
3307 	int i = 0;
3308 	uint16_t table;
3309 	struct init_exec iexec = {true, false};
3310 
3311 	if (bios->old_style_init) {
3312 		if (bios->init_script_tbls_ptr)
3313 			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3314 		if (bios->extra_init_script_tbl_ptr)
3315 			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3316 
3317 		return;
3318 	}
3319 
3320 	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3321 		NV_INFO(bios->dev,
3322 			"Parsing VBIOS init table %d at offset 0x%04X\n",
3323 			i / 2, table);
3324 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3325 
3326 		parse_init_table(bios, table, &iexec);
3327 		i += 2;
3328 	}
3329 }
3330 
3331 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3332 {
3333 	int compare_record_len, i = 0;
3334 	uint16_t compareclk, scriptptr = 0;
3335 
3336 	if (bios->major_version < 5) /* pre BIT */
3337 		compare_record_len = 3;
3338 	else
3339 		compare_record_len = 4;
3340 
3341 	do {
3342 		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3343 		if (pxclk >= compareclk * 10) {
3344 			if (bios->major_version < 5) {
3345 				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3346 				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3347 			} else
3348 				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3349 			break;
3350 		}
3351 		i++;
3352 	} while (compareclk);
3353 
3354 	return scriptptr;
3355 }
3356 
3357 static void
3358 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3359 		      struct dcb_entry *dcbent, int head, bool dl)
3360 {
3361 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3362 	struct nvbios *bios = &dev_priv->vbios;
3363 	struct init_exec iexec = {true, false};
3364 
3365 	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3366 		 scriptptr);
3367 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3368 		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3369 	/* note: if dcb entries have been merged, index may be misleading */
3370 	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3371 	parse_init_table(bios, scriptptr, &iexec);
3372 
3373 	nv04_dfp_bind_head(dev, dcbent, head, dl);
3374 }
3375 
3376 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3377 {
3378 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3379 	struct nvbios *bios = &dev_priv->vbios;
3380 	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3381 	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3382 
3383 	if (!bios->fp.xlated_entry || !sub || !scriptofs)
3384 		return -EINVAL;
3385 
3386 	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3387 
3388 	if (script == LVDS_PANEL_OFF) {
3389 		/* off-on delay in ms */
3390 		msleep(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3391 	}
3392 #ifdef __powerpc__
3393 	/* Powerbook specific quirks */
3394 	if ((dev->pci_device & 0xffff) == 0x0179 ||
3395 	    (dev->pci_device & 0xffff) == 0x0189 ||
3396 	    (dev->pci_device & 0xffff) == 0x0329) {
3397 		if (script == LVDS_RESET) {
3398 			nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3399 
3400 		} else if (script == LVDS_PANEL_ON) {
3401 			bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL,
3402 				  bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL)
3403 				  | (1 << 31));
3404 			bios_wr32(bios, NV_PCRTC_GPIO_EXT,
3405 				  bios_rd32(bios, NV_PCRTC_GPIO_EXT) | 1);
3406 
3407 		} else if (script == LVDS_PANEL_OFF) {
3408 			bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL,
3409 				  bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL)
3410 				  & ~(1 << 31));
3411 			bios_wr32(bios, NV_PCRTC_GPIO_EXT,
3412 				  bios_rd32(bios, NV_PCRTC_GPIO_EXT) & ~3);
3413 		}
3414 	}
3415 #endif
3416 
3417 	return 0;
3418 }
3419 
3420 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3421 {
3422 	/*
3423 	 * The BIT LVDS table's header has the information to setup the
3424 	 * necessary registers. Following the standard 4 byte header are:
3425 	 * A bitmask byte and a dual-link transition pxclk value for use in
3426 	 * selecting the init script when not using straps; 4 script pointers
3427 	 * for panel power, selected by output and on/off; and 8 table pointers
3428 	 * for panel init, the needed one determined by output, and bits in the
3429 	 * conf byte. These tables are similar to the TMDS tables, consisting
3430 	 * of a list of pxclks and script pointers.
3431 	 */
3432 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3433 	struct nvbios *bios = &dev_priv->vbios;
3434 	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3435 	uint16_t scriptptr = 0, clktable;
3436 
3437 	/*
3438 	 * For now we assume version 3.0 table - g80 support will need some
3439 	 * changes
3440 	 */
3441 
3442 	switch (script) {
3443 	case LVDS_INIT:
3444 		return -ENOSYS;
3445 	case LVDS_BACKLIGHT_ON:
3446 	case LVDS_PANEL_ON:
3447 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3448 		break;
3449 	case LVDS_BACKLIGHT_OFF:
3450 	case LVDS_PANEL_OFF:
3451 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3452 		break;
3453 	case LVDS_RESET:
3454 		clktable = bios->fp.lvdsmanufacturerpointer + 15;
3455 		if (dcbent->or == 4)
3456 			clktable += 8;
3457 
3458 		if (dcbent->lvdsconf.use_straps_for_mode) {
3459 			if (bios->fp.dual_link)
3460 				clktable += 4;
3461 			if (bios->fp.if_is_24bit)
3462 				clktable += 2;
3463 		} else {
3464 			/* using EDID */
3465 			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3466 
3467 			if (bios->fp.dual_link) {
3468 				clktable += 4;
3469 				cmpval_24bit <<= 1;
3470 			}
3471 
3472 			if (bios->fp.strapless_is_24bit & cmpval_24bit)
3473 				clktable += 2;
3474 		}
3475 
3476 		clktable = ROM16(bios->data[clktable]);
3477 		if (!clktable) {
3478 			NV_ERROR(dev, "Pixel clock comparison table not found\n");
3479 			return -ENOENT;
3480 		}
3481 		scriptptr = clkcmptable(bios, clktable, pxclk);
3482 	}
3483 
3484 	if (!scriptptr) {
3485 		NV_ERROR(dev, "LVDS output init script not found\n");
3486 		return -ENOENT;
3487 	}
3488 	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
3489 
3490 	return 0;
3491 }
3492 
3493 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3494 {
3495 	/*
3496 	 * LVDS operations are multiplexed in an effort to present a single API
3497 	 * which works with two vastly differing underlying structures.
3498 	 * This acts as the demux
3499 	 */
3500 
3501 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3502 	struct nvbios *bios = &dev_priv->vbios;
3503 	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3504 	uint32_t sel_clk_binding, sel_clk;
3505 	int ret;
3506 
3507 	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
3508 	    (lvds_ver >= 0x30 && script == LVDS_INIT))
3509 		return 0;
3510 
3511 	if (!bios->fp.lvds_init_run) {
3512 		bios->fp.lvds_init_run = true;
3513 		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
3514 	}
3515 
3516 	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
3517 		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
3518 	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
3519 		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
3520 
3521 	NV_TRACE(dev, "Calling LVDS script %d:\n", script);
3522 
3523 	/* don't let script change pll->head binding */
3524 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
3525 
3526 	if (lvds_ver < 0x30)
3527 		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
3528 	else
3529 		ret = run_lvds_table(dev, dcbent, head, script, pxclk);
3530 
3531 	bios->fp.last_script_invoc = (script << 1 | head);
3532 
3533 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
3534 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
3535 	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
3536 	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
3537 
3538 	return ret;
3539 }
3540 
3541 struct lvdstableheader {
3542 	uint8_t lvds_ver, headerlen, recordlen;
3543 };
3544 
3545 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
3546 {
3547 	/*
3548 	 * BMP version (0xa) LVDS table has a simple header of version and
3549 	 * record length. The BIT LVDS table has the typical BIT table header:
3550 	 * version byte, header length byte, record length byte, and a byte for
3551 	 * the maximum number of records that can be held in the table.
3552 	 */
3553 
3554 	uint8_t lvds_ver, headerlen, recordlen;
3555 
3556 	memset(lth, 0, sizeof(struct lvdstableheader));
3557 
3558 	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
3559 		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
3560 		return -EINVAL;
3561 	}
3562 
3563 	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3564 
3565 	switch (lvds_ver) {
3566 	case 0x0a:	/* pre NV40 */
3567 		headerlen = 2;
3568 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3569 		break;
3570 	case 0x30:	/* NV4x */
3571 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3572 		if (headerlen < 0x1f) {
3573 			NV_ERROR(dev, "LVDS table header not understood\n");
3574 			return -EINVAL;
3575 		}
3576 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3577 		break;
3578 	case 0x40:	/* G80/G90 */
3579 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3580 		if (headerlen < 0x7) {
3581 			NV_ERROR(dev, "LVDS table header not understood\n");
3582 			return -EINVAL;
3583 		}
3584 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3585 		break;
3586 	default:
3587 		NV_ERROR(dev,
3588 			 "LVDS table revision %d.%d not currently supported\n",
3589 			 lvds_ver >> 4, lvds_ver & 0xf);
3590 		return -ENOSYS;
3591 	}
3592 
3593 	lth->lvds_ver = lvds_ver;
3594 	lth->headerlen = headerlen;
3595 	lth->recordlen = recordlen;
3596 
3597 	return 0;
3598 }
3599 
3600 static int
3601 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
3602 {
3603 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3604 
3605 	/*
3606 	 * The fp strap is normally dictated by the "User Strap" in
3607 	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
3608 	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
3609 	 * by the PCI subsystem ID during POST, but not before the previous user
3610 	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
3611 	 * read and used instead
3612 	 */
3613 
3614 	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
3615 		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
3616 
3617 	if (dev_priv->card_type >= NV_50)
3618 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
3619 	else
3620 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
3621 }
3622 
3623 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
3624 {
3625 	uint8_t *fptable;
3626 	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
3627 	int ret, ofs, fpstrapping;
3628 	struct lvdstableheader lth;
3629 
3630 	if (bios->fp.fptablepointer == 0x0) {
3631 		/* Apple cards don't have the fp table; the laptops use DDC */
3632 		/* The table is also missing on some x86 IGPs */
3633 #ifndef __powerpc__
3634 		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
3635 #endif
3636 		bios->digital_min_front_porch = 0x4b;
3637 		return 0;
3638 	}
3639 
3640 	fptable = &bios->data[bios->fp.fptablepointer];
3641 	fptable_ver = fptable[0];
3642 
3643 	switch (fptable_ver) {
3644 	/*
3645 	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
3646 	 * version field, and miss one of the spread spectrum/PWM bytes.
3647 	 * This could affect early GF2Go parts (not seen any appropriate ROMs
3648 	 * though). Here we assume that a version of 0x05 matches this case
3649 	 * (combining with a BMP version check would be better), as the
3650 	 * common case for the panel type field is 0x0005, and that is in
3651 	 * fact what we are reading the first byte of.
3652 	 */
3653 	case 0x05:	/* some NV10, 11, 15, 16 */
3654 		recordlen = 42;
3655 		ofs = -1;
3656 		break;
3657 	case 0x10:	/* some NV15/16, and NV11+ */
3658 		recordlen = 44;
3659 		ofs = 0;
3660 		break;
3661 	case 0x20:	/* NV40+ */
3662 		headerlen = fptable[1];
3663 		recordlen = fptable[2];
3664 		fpentries = fptable[3];
3665 		/*
3666 		 * fptable[4] is the minimum
3667 		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
3668 		 */
3669 		bios->digital_min_front_porch = fptable[4];
3670 		ofs = -7;
3671 		break;
3672 	default:
3673 		NV_ERROR(dev,
3674 			 "FP table revision %d.%d not currently supported\n",
3675 			 fptable_ver >> 4, fptable_ver & 0xf);
3676 		return -ENOSYS;
3677 	}
3678 
3679 	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
3680 		return 0;
3681 
3682 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
3683 	if (ret)
3684 		return ret;
3685 
3686 	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
3687 		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
3688 							lth.headerlen + 1;
3689 		bios->fp.xlatwidth = lth.recordlen;
3690 	}
3691 	if (bios->fp.fpxlatetableptr == 0x0) {
3692 		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
3693 		return -EINVAL;
3694 	}
3695 
3696 	fpstrapping = get_fp_strap(dev, bios);
3697 
3698 	fpindex = bios->data[bios->fp.fpxlatetableptr +
3699 					fpstrapping * bios->fp.xlatwidth];
3700 
3701 	if (fpindex > fpentries) {
3702 		NV_ERROR(dev, "Bad flat panel table index\n");
3703 		return -ENOENT;
3704 	}
3705 
3706 	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
3707 	if (lth.lvds_ver > 0x10)
3708 		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
3709 
3710 	/*
3711 	 * If either the strap or xlated fpindex value are 0xf there is no
3712 	 * panel using a strap-derived bios mode present.  this condition
3713 	 * includes, but is different from, the DDC panel indicator above
3714 	 */
3715 	if (fpstrapping == 0xf || fpindex == 0xf)
3716 		return 0;
3717 
3718 	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
3719 			    recordlen * fpindex + ofs;
3720 
3721 	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
3722 		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
3723 		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
3724 		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
3725 
3726 	return 0;
3727 }
3728 
3729 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
3730 {
3731 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3732 	struct nvbios *bios = &dev_priv->vbios;
3733 	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
3734 
3735 	if (!mode)	/* just checking whether we can produce a mode */
3736 		return bios->fp.mode_ptr;
3737 
3738 	memset(mode, 0, sizeof(struct drm_display_mode));
3739 	/*
3740 	 * For version 1.0 (version in byte 0):
3741 	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
3742 	 * single/dual link, and type (TFT etc.)
3743 	 * bytes 3-6 are bits per colour in RGBX
3744 	 */
3745 	mode->clock = ROM16(mode_entry[7]) * 10;
3746 	/* bytes 9-10 is HActive */
3747 	mode->hdisplay = ROM16(mode_entry[11]) + 1;
3748 	/*
3749 	 * bytes 13-14 is HValid Start
3750 	 * bytes 15-16 is HValid End
3751 	 */
3752 	mode->hsync_start = ROM16(mode_entry[17]) + 1;
3753 	mode->hsync_end = ROM16(mode_entry[19]) + 1;
3754 	mode->htotal = ROM16(mode_entry[21]) + 1;
3755 	/* bytes 23-24, 27-30 similarly, but vertical */
3756 	mode->vdisplay = ROM16(mode_entry[25]) + 1;
3757 	mode->vsync_start = ROM16(mode_entry[31]) + 1;
3758 	mode->vsync_end = ROM16(mode_entry[33]) + 1;
3759 	mode->vtotal = ROM16(mode_entry[35]) + 1;
3760 	mode->flags |= (mode_entry[37] & 0x10) ?
3761 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3762 	mode->flags |= (mode_entry[37] & 0x1) ?
3763 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3764 	/*
3765 	 * bytes 38-39 relate to spread spectrum settings
3766 	 * bytes 40-43 are something to do with PWM
3767 	 */
3768 
3769 	mode->status = MODE_OK;
3770 	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
3771 	drm_mode_set_name(mode);
3772 	return bios->fp.mode_ptr;
3773 }
3774 
3775 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
3776 {
3777 	/*
3778 	 * The LVDS table header is (mostly) described in
3779 	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
3780 	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
3781 	 * straps are not being used for the panel, this specifies the frequency
3782 	 * at which modes should be set up in the dual link style.
3783 	 *
3784 	 * Following the header, the BMP (ver 0xa) table has several records,
3785 	 * indexed by a separate xlat table, indexed in turn by the fp strap in
3786 	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
3787 	 * numbers for use by INIT_SUB which controlled panel init and power,
3788 	 * and finally a dword of ms to sleep between power off and on
3789 	 * operations.
3790 	 *
3791 	 * In the BIT versions, the table following the header serves as an
3792 	 * integrated config and xlat table: the records in the table are
3793 	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
3794 	 * two bytes - the first as a config byte, the second for indexing the
3795 	 * fp mode table pointed to by the BIT 'D' table
3796 	 *
3797 	 * DDC is not used until after card init, so selecting the correct table
3798 	 * entry and setting the dual link flag for EDID equipped panels,
3799 	 * requiring tests against the native-mode pixel clock, cannot be done
3800 	 * until later, when this function should be called with non-zero pxclk
3801 	 */
3802 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3803 	struct nvbios *bios = &dev_priv->vbios;
3804 	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
3805 	struct lvdstableheader lth;
3806 	uint16_t lvdsofs;
3807 	int ret, chip_version = bios->chip_version;
3808 
3809 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
3810 	if (ret)
3811 		return ret;
3812 
3813 	switch (lth.lvds_ver) {
3814 	case 0x0a:	/* pre NV40 */
3815 		lvdsmanufacturerindex = bios->data[
3816 					bios->fp.fpxlatemanufacturertableptr +
3817 					fpstrapping];
3818 
3819 		/* we're done if this isn't the EDID panel case */
3820 		if (!pxclk)
3821 			break;
3822 
3823 		if (chip_version < 0x25) {
3824 			/* nv17 behaviour
3825 			 *
3826 			 * It seems the old style lvds script pointer is reused
3827 			 * to select 18/24 bit colour depth for EDID panels.
3828 			 */
3829 			lvdsmanufacturerindex =
3830 				(bios->legacy.lvds_single_a_script_ptr & 1) ?
3831 									2 : 0;
3832 			if (pxclk >= bios->fp.duallink_transition_clk)
3833 				lvdsmanufacturerindex++;
3834 		} else if (chip_version < 0x30) {
3835 			/* nv28 behaviour (off-chip encoder)
3836 			 *
3837 			 * nv28 does a complex dance of first using byte 121 of
3838 			 * the EDID to choose the lvdsmanufacturerindex, then
3839 			 * later attempting to match the EDID manufacturer and
3840 			 * product IDs in a table (signature 'pidt' (panel id
3841 			 * table?)), setting an lvdsmanufacturerindex of 0 and
3842 			 * an fp strap of the match index (or 0xf if none)
3843 			 */
3844 			lvdsmanufacturerindex = 0;
3845 		} else {
3846 			/* nv31, nv34 behaviour */
3847 			lvdsmanufacturerindex = 0;
3848 			if (pxclk >= bios->fp.duallink_transition_clk)
3849 				lvdsmanufacturerindex = 2;
3850 			if (pxclk >= 140000)
3851 				lvdsmanufacturerindex = 3;
3852 		}
3853 
3854 		/*
3855 		 * nvidia set the high nibble of (cr57=f, cr58) to
3856 		 * lvdsmanufacturerindex in this case; we don't
3857 		 */
3858 		break;
3859 	case 0x30:	/* NV4x */
3860 	case 0x40:	/* G80/G90 */
3861 		lvdsmanufacturerindex = fpstrapping;
3862 		break;
3863 	default:
3864 		NV_ERROR(dev, "LVDS table revision not currently supported\n");
3865 		return -ENOSYS;
3866 	}
3867 
3868 	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
3869 	switch (lth.lvds_ver) {
3870 	case 0x0a:
3871 		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
3872 		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
3873 		bios->fp.dual_link = bios->data[lvdsofs] & 4;
3874 		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
3875 		*if_is_24bit = bios->data[lvdsofs] & 16;
3876 		break;
3877 	case 0x30:
3878 	case 0x40:
3879 		/*
3880 		 * No sign of the "power off for reset" or "reset for panel
3881 		 * on" bits, but it's safer to assume we should
3882 		 */
3883 		bios->fp.power_off_for_reset = true;
3884 		bios->fp.reset_after_pclk_change = true;
3885 
3886 		/*
3887 		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
3888 		 * over-written, and if_is_24bit isn't used
3889 		 */
3890 		bios->fp.dual_link = bios->data[lvdsofs] & 1;
3891 		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
3892 		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
3893 		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
3894 		break;
3895 	}
3896 
3897 	/* Dell Latitude D620 reports a too-high value for the dual-link
3898 	 * transition freq, causing us to program the panel incorrectly.
3899 	 *
3900 	 * It doesn't appear the VBIOS actually uses its transition freq
3901 	 * (90000kHz), instead it uses the "Number of LVDS channels" field
3902 	 * out of the panel ID structure (http://www.spwg.org/).
3903 	 *
3904 	 * For the moment, a quirk will do :)
3905 	 */
3906 	if ((dev->pdev->device == 0x01d7) &&
3907 	    (dev->pdev->subsystem_vendor == 0x1028) &&
3908 	    (dev->pdev->subsystem_device == 0x01c2)) {
3909 		bios->fp.duallink_transition_clk = 80000;
3910 	}
3911 
3912 	/* set dual_link flag for EDID case */
3913 	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
3914 		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
3915 
3916 	*dl = bios->fp.dual_link;
3917 
3918 	return 0;
3919 }
3920 
3921 static uint8_t *
3922 bios_output_config_match(struct drm_device *dev, struct dcb_entry *dcbent,
3923 			 uint16_t record, int record_len, int record_nr,
3924 			 bool match_link)
3925 {
3926 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3927 	struct nvbios *bios = &dev_priv->vbios;
3928 	uint32_t entry;
3929 	uint16_t table;
3930 	int i, v;
3931 
3932 	switch (dcbent->type) {
3933 	case OUTPUT_TMDS:
3934 	case OUTPUT_LVDS:
3935 	case OUTPUT_DP:
3936 		break;
3937 	default:
3938 		match_link = false;
3939 		break;
3940 	}
3941 
3942 	for (i = 0; i < record_nr; i++, record += record_len) {
3943 		table = ROM16(bios->data[record]);
3944 		if (!table)
3945 			continue;
3946 		entry = ROM32(bios->data[table]);
3947 
3948 		if (match_link) {
3949 			v = (entry & 0x00c00000) >> 22;
3950 			if (!(v & dcbent->sorconf.link))
3951 				continue;
3952 		}
3953 
3954 		v = (entry & 0x000f0000) >> 16;
3955 		if (!(v & dcbent->or))
3956 			continue;
3957 
3958 		v = (entry & 0x000000f0) >> 4;
3959 		if (v != dcbent->location)
3960 			continue;
3961 
3962 		v = (entry & 0x0000000f);
3963 		if (v != dcbent->type)
3964 			continue;
3965 
3966 		return &bios->data[table];
3967 	}
3968 
3969 	return NULL;
3970 }
3971 
3972 void *
3973 nouveau_bios_dp_table(struct drm_device *dev, struct dcb_entry *dcbent,
3974 		      int *length)
3975 {
3976 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3977 	struct nvbios *bios = &dev_priv->vbios;
3978 	uint8_t *table;
3979 
3980 	if (!bios->display.dp_table_ptr) {
3981 		NV_ERROR(dev, "No pointer to DisplayPort table\n");
3982 		return NULL;
3983 	}
3984 	table = &bios->data[bios->display.dp_table_ptr];
3985 
3986 	if (table[0] != 0x20 && table[0] != 0x21) {
3987 		NV_ERROR(dev, "DisplayPort table version 0x%02x unknown\n",
3988 			 table[0]);
3989 		return NULL;
3990 	}
3991 
3992 	*length = table[4];
3993 	return bios_output_config_match(dev, dcbent,
3994 					bios->display.dp_table_ptr + table[1],
3995 					table[2], table[3], table[0] >= 0x21);
3996 }
3997 
3998 int
3999 nouveau_bios_run_display_table(struct drm_device *dev, struct dcb_entry *dcbent,
4000 			       uint32_t sub, int pxclk)
4001 {
4002 	/*
4003 	 * The display script table is located by the BIT 'U' table.
4004 	 *
4005 	 * It contains an array of pointers to various tables describing
4006 	 * a particular output type.  The first 32-bits of the output
4007 	 * tables contains similar information to a DCB entry, and is
4008 	 * used to decide whether that particular table is suitable for
4009 	 * the output you want to access.
4010 	 *
4011 	 * The "record header length" field here seems to indicate the
4012 	 * offset of the first configuration entry in the output tables.
4013 	 * This is 10 on most cards I've seen, but 12 has been witnessed
4014 	 * on DP cards, and there's another script pointer within the
4015 	 * header.
4016 	 *
4017 	 * offset + 0   ( 8 bits): version
4018 	 * offset + 1   ( 8 bits): header length
4019 	 * offset + 2   ( 8 bits): record length
4020 	 * offset + 3   ( 8 bits): number of records
4021 	 * offset + 4   ( 8 bits): record header length
4022 	 * offset + 5   (16 bits): pointer to first output script table
4023 	 */
4024 
4025 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4026 	struct nvbios *bios = &dev_priv->vbios;
4027 	uint8_t *table = &bios->data[bios->display.script_table_ptr];
4028 	uint8_t *otable = NULL;
4029 	uint16_t script;
4030 	int i = 0;
4031 
4032 	if (!bios->display.script_table_ptr) {
4033 		NV_ERROR(dev, "No pointer to output script table\n");
4034 		return 1;
4035 	}
4036 
4037 	/*
4038 	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4039 	 * so until they are, we really don't need to care.
4040 	 */
4041 	if (table[0] < 0x20)
4042 		return 1;
4043 
4044 	if (table[0] != 0x20 && table[0] != 0x21) {
4045 		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4046 			 table[0]);
4047 		return 1;
4048 	}
4049 
4050 	/*
4051 	 * The output script tables describing a particular output type
4052 	 * look as follows:
4053 	 *
4054 	 * offset + 0   (32 bits): output this table matches (hash of DCB)
4055 	 * offset + 4   ( 8 bits): unknown
4056 	 * offset + 5   ( 8 bits): number of configurations
4057 	 * offset + 6   (16 bits): pointer to some script
4058 	 * offset + 8   (16 bits): pointer to some script
4059 	 *
4060 	 * headerlen == 10
4061 	 * offset + 10           : configuration 0
4062 	 *
4063 	 * headerlen == 12
4064 	 * offset + 10           : pointer to some script
4065 	 * offset + 12           : configuration 0
4066 	 *
4067 	 * Each config entry is as follows:
4068 	 *
4069 	 * offset + 0   (16 bits): unknown, assumed to be a match value
4070 	 * offset + 2   (16 bits): pointer to script table (clock set?)
4071 	 * offset + 4   (16 bits): pointer to script table (reset?)
4072 	 *
4073 	 * There doesn't appear to be a count value to say how many
4074 	 * entries exist in each script table, instead, a 0 value in
4075 	 * the first 16-bit word seems to indicate both the end of the
4076 	 * list and the default entry.  The second 16-bit word in the
4077 	 * script tables is a pointer to the script to execute.
4078 	 */
4079 
4080 	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4081 			dcbent->type, dcbent->location, dcbent->or);
4082 	otable = bios_output_config_match(dev, dcbent, table[1] +
4083 					  bios->display.script_table_ptr,
4084 					  table[2], table[3], table[0] >= 0x21);
4085 	if (!otable) {
4086 		NV_ERROR(dev, "Couldn't find matching output script table\n");
4087 		return 1;
4088 	}
4089 
4090 	if (pxclk < -2 || pxclk > 0) {
4091 		/* Try to find matching script table entry */
4092 		for (i = 0; i < otable[5]; i++) {
4093 			if (ROM16(otable[table[4] + i*6]) == sub)
4094 				break;
4095 		}
4096 
4097 		if (i == otable[5]) {
4098 			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4099 				      "using first\n",
4100 				 sub, dcbent->type, dcbent->or);
4101 			i = 0;
4102 		}
4103 	}
4104 
4105 	if (pxclk == 0) {
4106 		script = ROM16(otable[6]);
4107 		if (!script) {
4108 			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4109 			return 1;
4110 		}
4111 
4112 		NV_TRACE(dev, "0x%04X: parsing output script 0\n", script);
4113 		nouveau_bios_run_init_table(dev, script, dcbent);
4114 	} else
4115 	if (pxclk == -1) {
4116 		script = ROM16(otable[8]);
4117 		if (!script) {
4118 			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4119 			return 1;
4120 		}
4121 
4122 		NV_TRACE(dev, "0x%04X: parsing output script 1\n", script);
4123 		nouveau_bios_run_init_table(dev, script, dcbent);
4124 	} else
4125 	if (pxclk == -2) {
4126 		if (table[4] >= 12)
4127 			script = ROM16(otable[10]);
4128 		else
4129 			script = 0;
4130 		if (!script) {
4131 			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4132 			return 1;
4133 		}
4134 
4135 		NV_TRACE(dev, "0x%04X: parsing output script 2\n", script);
4136 		nouveau_bios_run_init_table(dev, script, dcbent);
4137 	} else
4138 	if (pxclk > 0) {
4139 		script = ROM16(otable[table[4] + i*6 + 2]);
4140 		if (script)
4141 			script = clkcmptable(bios, script, pxclk);
4142 		if (!script) {
4143 			NV_ERROR(dev, "clock script 0 not found\n");
4144 			return 1;
4145 		}
4146 
4147 		NV_TRACE(dev, "0x%04X: parsing clock script 0\n", script);
4148 		nouveau_bios_run_init_table(dev, script, dcbent);
4149 	} else
4150 	if (pxclk < 0) {
4151 		script = ROM16(otable[table[4] + i*6 + 4]);
4152 		if (script)
4153 			script = clkcmptable(bios, script, -pxclk);
4154 		if (!script) {
4155 			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4156 			return 1;
4157 		}
4158 
4159 		NV_TRACE(dev, "0x%04X: parsing clock script 1\n", script);
4160 		nouveau_bios_run_init_table(dev, script, dcbent);
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 
4167 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4168 {
4169 	/*
4170 	 * the pxclk parameter is in kHz
4171 	 *
4172 	 * This runs the TMDS regs setting code found on BIT bios cards
4173 	 *
4174 	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4175 	 * ffs(or) == 3, use the second.
4176 	 */
4177 
4178 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4179 	struct nvbios *bios = &dev_priv->vbios;
4180 	int cv = bios->chip_version;
4181 	uint16_t clktable = 0, scriptptr;
4182 	uint32_t sel_clk_binding, sel_clk;
4183 
4184 	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4185 	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4186 	    dcbent->location != DCB_LOC_ON_CHIP)
4187 		return 0;
4188 
4189 	switch (ffs(dcbent->or)) {
4190 	case 1:
4191 		clktable = bios->tmds.output0_script_ptr;
4192 		break;
4193 	case 2:
4194 	case 3:
4195 		clktable = bios->tmds.output1_script_ptr;
4196 		break;
4197 	}
4198 
4199 	if (!clktable) {
4200 		NV_ERROR(dev, "Pixel clock comparison table not found\n");
4201 		return -EINVAL;
4202 	}
4203 
4204 	scriptptr = clkcmptable(bios, clktable, pxclk);
4205 
4206 	if (!scriptptr) {
4207 		NV_ERROR(dev, "TMDS output init script not found\n");
4208 		return -ENOENT;
4209 	}
4210 
4211 	/* don't let script change pll->head binding */
4212 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4213 	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4214 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4215 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4216 
4217 	return 0;
4218 }
4219 
4220 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4221 {
4222 	/*
4223 	 * PLL limits table
4224 	 *
4225 	 * Version 0x10: NV30, NV31
4226 	 * One byte header (version), one record of 24 bytes
4227 	 * Version 0x11: NV36 - Not implemented
4228 	 * Seems to have same record style as 0x10, but 3 records rather than 1
4229 	 * Version 0x20: Found on Geforce 6 cards
4230 	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4231 	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4232 	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4233 	 * length in general, some (integrated) have an extra configuration byte
4234 	 * Version 0x30: Found on Geforce 8, separates the register mapping
4235 	 * from the limits tables.
4236 	 */
4237 
4238 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4239 	struct nvbios *bios = &dev_priv->vbios;
4240 	int cv = bios->chip_version, pllindex = 0;
4241 	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4242 	uint32_t crystal_strap_mask, crystal_straps;
4243 
4244 	if (!bios->pll_limit_tbl_ptr) {
4245 		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4246 		    cv >= 0x40) {
4247 			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4248 			return -EINVAL;
4249 		}
4250 	} else
4251 		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4252 
4253 	crystal_strap_mask = 1 << 6;
4254 	/* open coded dev->twoHeads test */
4255 	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4256 		crystal_strap_mask |= 1 << 22;
4257 	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4258 							crystal_strap_mask;
4259 
4260 	switch (pll_lim_ver) {
4261 	/*
4262 	 * We use version 0 to indicate a pre limit table bios (single stage
4263 	 * pll) and load the hard coded limits instead.
4264 	 */
4265 	case 0:
4266 		break;
4267 	case 0x10:
4268 	case 0x11:
4269 		/*
4270 		 * Strictly v0x11 has 3 entries, but the last two don't seem
4271 		 * to get used.
4272 		 */
4273 		headerlen = 1;
4274 		recordlen = 0x18;
4275 		entries = 1;
4276 		pllindex = 0;
4277 		break;
4278 	case 0x20:
4279 	case 0x21:
4280 	case 0x30:
4281 	case 0x40:
4282 		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4283 		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4284 		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4285 		break;
4286 	default:
4287 		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4288 				"supported\n", pll_lim_ver);
4289 		return -ENOSYS;
4290 	}
4291 
4292 	/* initialize all members to zero */
4293 	memset(pll_lim, 0, sizeof(struct pll_lims));
4294 
4295 	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4296 		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4297 
4298 		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4299 		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4300 		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4301 		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4302 		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4303 		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4304 		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4305 
4306 		/* these values taken from nv30/31/36 */
4307 		pll_lim->vco1.min_n = 0x1;
4308 		if (cv == 0x36)
4309 			pll_lim->vco1.min_n = 0x5;
4310 		pll_lim->vco1.max_n = 0xff;
4311 		pll_lim->vco1.min_m = 0x1;
4312 		pll_lim->vco1.max_m = 0xd;
4313 		pll_lim->vco2.min_n = 0x4;
4314 		/*
4315 		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4316 		 * table version (apart from nv35)), N2 is compared to
4317 		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4318 		 * save a comparison
4319 		 */
4320 		pll_lim->vco2.max_n = 0x28;
4321 		if (cv == 0x30 || cv == 0x35)
4322 			/* only 5 bits available for N2 on nv30/35 */
4323 			pll_lim->vco2.max_n = 0x1f;
4324 		pll_lim->vco2.min_m = 0x1;
4325 		pll_lim->vco2.max_m = 0x4;
4326 		pll_lim->max_log2p = 0x7;
4327 		pll_lim->max_usable_log2p = 0x6;
4328 	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4329 		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4330 		uint32_t reg = 0; /* default match */
4331 		uint8_t *pll_rec;
4332 		int i;
4333 
4334 		/*
4335 		 * First entry is default match, if nothing better. warn if
4336 		 * reg field nonzero
4337 		 */
4338 		if (ROM32(bios->data[plloffs]))
4339 			NV_WARN(dev, "Default PLL limit entry has non-zero "
4340 				       "register field\n");
4341 
4342 		if (limit_match > MAX_PLL_TYPES)
4343 			/* we've been passed a reg as the match */
4344 			reg = limit_match;
4345 		else /* limit match is a pll type */
4346 			for (i = 1; i < entries && !reg; i++) {
4347 				uint32_t cmpreg = ROM32(bios->data[plloffs + recordlen * i]);
4348 
4349 				if (limit_match == NVPLL &&
4350 				    (cmpreg == NV_PRAMDAC_NVPLL_COEFF || cmpreg == 0x4000))
4351 					reg = cmpreg;
4352 				if (limit_match == MPLL &&
4353 				    (cmpreg == NV_PRAMDAC_MPLL_COEFF || cmpreg == 0x4020))
4354 					reg = cmpreg;
4355 				if (limit_match == VPLL1 &&
4356 				    (cmpreg == NV_PRAMDAC_VPLL_COEFF || cmpreg == 0x4010))
4357 					reg = cmpreg;
4358 				if (limit_match == VPLL2 &&
4359 				    (cmpreg == NV_RAMDAC_VPLL2 || cmpreg == 0x4018))
4360 					reg = cmpreg;
4361 			}
4362 
4363 		for (i = 1; i < entries; i++)
4364 			if (ROM32(bios->data[plloffs + recordlen * i]) == reg) {
4365 				pllindex = i;
4366 				break;
4367 			}
4368 
4369 		pll_rec = &bios->data[plloffs + recordlen * pllindex];
4370 
4371 		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4372 			pllindex ? reg : 0);
4373 
4374 		/*
4375 		 * Frequencies are stored in tables in MHz, kHz are more
4376 		 * useful, so we convert.
4377 		 */
4378 
4379 		/* What output frequencies can each VCO generate? */
4380 		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4381 		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4382 		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4383 		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4384 
4385 		/* What input frequencies they accept (past the m-divider)? */
4386 		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4387 		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4388 		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4389 		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4390 
4391 		/* What values are accepted as multiplier and divider? */
4392 		pll_lim->vco1.min_n = pll_rec[20];
4393 		pll_lim->vco1.max_n = pll_rec[21];
4394 		pll_lim->vco1.min_m = pll_rec[22];
4395 		pll_lim->vco1.max_m = pll_rec[23];
4396 		pll_lim->vco2.min_n = pll_rec[24];
4397 		pll_lim->vco2.max_n = pll_rec[25];
4398 		pll_lim->vco2.min_m = pll_rec[26];
4399 		pll_lim->vco2.max_m = pll_rec[27];
4400 
4401 		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4402 		if (pll_lim->max_log2p > 0x7)
4403 			/* pll decoding in nv_hw.c assumes never > 7 */
4404 			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4405 				pll_lim->max_log2p);
4406 		if (cv < 0x60)
4407 			pll_lim->max_usable_log2p = 0x6;
4408 		pll_lim->log2p_bias = pll_rec[30];
4409 
4410 		if (recordlen > 0x22)
4411 			pll_lim->refclk = ROM32(pll_rec[31]);
4412 
4413 		if (recordlen > 0x23 && pll_rec[35])
4414 			NV_WARN(dev,
4415 				"Bits set in PLL configuration byte (%x)\n",
4416 				pll_rec[35]);
4417 
4418 		/* C51 special not seen elsewhere */
4419 		if (cv == 0x51 && !pll_lim->refclk) {
4420 			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4421 
4422 			if (((limit_match == NV_PRAMDAC_VPLL_COEFF || limit_match == VPLL1) && sel_clk & 0x20) ||
4423 			    ((limit_match == NV_RAMDAC_VPLL2 || limit_match == VPLL2) && sel_clk & 0x80)) {
4424 				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4425 					pll_lim->refclk = 200000;
4426 				else
4427 					pll_lim->refclk = 25000;
4428 			}
4429 		}
4430 	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4431 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4432 		uint8_t *record = NULL;
4433 		int i;
4434 
4435 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4436 			limit_match);
4437 
4438 		for (i = 0; i < entries; i++, entry += recordlen) {
4439 			if (ROM32(entry[3]) == limit_match) {
4440 				record = &bios->data[ROM16(entry[1])];
4441 				break;
4442 			}
4443 		}
4444 
4445 		if (!record) {
4446 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4447 				 "limits table", limit_match);
4448 			return -ENOENT;
4449 		}
4450 
4451 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4452 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4453 		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
4454 		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
4455 		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
4456 		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
4457 		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
4458 		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
4459 		pll_lim->vco1.min_n = record[16];
4460 		pll_lim->vco1.max_n = record[17];
4461 		pll_lim->vco1.min_m = record[18];
4462 		pll_lim->vco1.max_m = record[19];
4463 		pll_lim->vco2.min_n = record[20];
4464 		pll_lim->vco2.max_n = record[21];
4465 		pll_lim->vco2.min_m = record[22];
4466 		pll_lim->vco2.max_m = record[23];
4467 		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
4468 		pll_lim->log2p_bias = record[27];
4469 		pll_lim->refclk = ROM32(record[28]);
4470 	} else if (pll_lim_ver) { /* ver 0x40 */
4471 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4472 		uint8_t *record = NULL;
4473 		int i;
4474 
4475 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4476 			limit_match);
4477 
4478 		for (i = 0; i < entries; i++, entry += recordlen) {
4479 			if (ROM32(entry[3]) == limit_match) {
4480 				record = &bios->data[ROM16(entry[1])];
4481 				break;
4482 			}
4483 		}
4484 
4485 		if (!record) {
4486 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4487 				 "limits table", limit_match);
4488 			return -ENOENT;
4489 		}
4490 
4491 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4492 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4493 		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
4494 		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
4495 		pll_lim->vco1.min_m = record[8];
4496 		pll_lim->vco1.max_m = record[9];
4497 		pll_lim->vco1.min_n = record[10];
4498 		pll_lim->vco1.max_n = record[11];
4499 		pll_lim->min_p = record[12];
4500 		pll_lim->max_p = record[13];
4501 		/* where did this go to?? */
4502 		if (limit_match == 0x00614100 || limit_match == 0x00614900)
4503 			pll_lim->refclk = 27000;
4504 		else
4505 			pll_lim->refclk = 100000;
4506 	}
4507 
4508 	/*
4509 	 * By now any valid limit table ought to have set a max frequency for
4510 	 * vco1, so if it's zero it's either a pre limit table bios, or one
4511 	 * with an empty limit table (seen on nv18)
4512 	 */
4513 	if (!pll_lim->vco1.maxfreq) {
4514 		pll_lim->vco1.minfreq = bios->fminvco;
4515 		pll_lim->vco1.maxfreq = bios->fmaxvco;
4516 		pll_lim->vco1.min_inputfreq = 0;
4517 		pll_lim->vco1.max_inputfreq = INT_MAX;
4518 		pll_lim->vco1.min_n = 0x1;
4519 		pll_lim->vco1.max_n = 0xff;
4520 		pll_lim->vco1.min_m = 0x1;
4521 		if (crystal_straps == 0) {
4522 			/* nv05 does this, nv11 doesn't, nv10 unknown */
4523 			if (cv < 0x11)
4524 				pll_lim->vco1.min_m = 0x7;
4525 			pll_lim->vco1.max_m = 0xd;
4526 		} else {
4527 			if (cv < 0x11)
4528 				pll_lim->vco1.min_m = 0x8;
4529 			pll_lim->vco1.max_m = 0xe;
4530 		}
4531 		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
4532 			pll_lim->max_log2p = 4;
4533 		else
4534 			pll_lim->max_log2p = 5;
4535 		pll_lim->max_usable_log2p = pll_lim->max_log2p;
4536 	}
4537 
4538 	if (!pll_lim->refclk)
4539 		switch (crystal_straps) {
4540 		case 0:
4541 			pll_lim->refclk = 13500;
4542 			break;
4543 		case (1 << 6):
4544 			pll_lim->refclk = 14318;
4545 			break;
4546 		case (1 << 22):
4547 			pll_lim->refclk = 27000;
4548 			break;
4549 		case (1 << 22 | 1 << 6):
4550 			pll_lim->refclk = 25000;
4551 			break;
4552 		}
4553 
4554 	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
4555 	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
4556 	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
4557 	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
4558 	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
4559 	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
4560 	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
4561 	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
4562 	if (pll_lim->vco2.maxfreq) {
4563 		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
4564 		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
4565 		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
4566 		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
4567 		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
4568 		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
4569 		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
4570 		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
4571 	}
4572 	if (!pll_lim->max_p) {
4573 		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
4574 		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
4575 	} else {
4576 		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
4577 		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
4578 	}
4579 	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
4580 
4581 	return 0;
4582 }
4583 
4584 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
4585 {
4586 	/*
4587 	 * offset + 0  (8 bits): Micro version
4588 	 * offset + 1  (8 bits): Minor version
4589 	 * offset + 2  (8 bits): Chip version
4590 	 * offset + 3  (8 bits): Major version
4591 	 */
4592 
4593 	bios->major_version = bios->data[offset + 3];
4594 	bios->chip_version = bios->data[offset + 2];
4595 	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
4596 		 bios->data[offset + 3], bios->data[offset + 2],
4597 		 bios->data[offset + 1], bios->data[offset]);
4598 }
4599 
4600 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
4601 {
4602 	/*
4603 	 * Parses the init table segment for pointers used in script execution.
4604 	 *
4605 	 * offset + 0  (16 bits): init script tables pointer
4606 	 * offset + 2  (16 bits): macro index table pointer
4607 	 * offset + 4  (16 bits): macro table pointer
4608 	 * offset + 6  (16 bits): condition table pointer
4609 	 * offset + 8  (16 bits): io condition table pointer
4610 	 * offset + 10 (16 bits): io flag condition table pointer
4611 	 * offset + 12 (16 bits): init function table pointer
4612 	 */
4613 
4614 	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
4615 	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
4616 	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
4617 	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
4618 	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
4619 	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
4620 	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
4621 }
4622 
4623 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4624 {
4625 	/*
4626 	 * Parses the load detect values for g80 cards.
4627 	 *
4628 	 * offset + 0 (16 bits): loadval table pointer
4629 	 */
4630 
4631 	uint16_t load_table_ptr;
4632 	uint8_t version, headerlen, entrylen, num_entries;
4633 
4634 	if (bitentry->length != 3) {
4635 		NV_ERROR(dev, "Do not understand BIT A table\n");
4636 		return -EINVAL;
4637 	}
4638 
4639 	load_table_ptr = ROM16(bios->data[bitentry->offset]);
4640 
4641 	if (load_table_ptr == 0x0) {
4642 		NV_ERROR(dev, "Pointer to BIT loadval table invalid\n");
4643 		return -EINVAL;
4644 	}
4645 
4646 	version = bios->data[load_table_ptr];
4647 
4648 	if (version != 0x10) {
4649 		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
4650 			 version >> 4, version & 0xF);
4651 		return -ENOSYS;
4652 	}
4653 
4654 	headerlen = bios->data[load_table_ptr + 1];
4655 	entrylen = bios->data[load_table_ptr + 2];
4656 	num_entries = bios->data[load_table_ptr + 3];
4657 
4658 	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
4659 		NV_ERROR(dev, "Do not understand BIT loadval table\n");
4660 		return -EINVAL;
4661 	}
4662 
4663 	/* First entry is normal dac, 2nd tv-out perhaps? */
4664 	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
4665 
4666 	return 0;
4667 }
4668 
4669 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4670 {
4671 	/*
4672 	 * offset + 8  (16 bits): PLL limits table pointer
4673 	 *
4674 	 * There's more in here, but that's unknown.
4675 	 */
4676 
4677 	if (bitentry->length < 10) {
4678 		NV_ERROR(dev, "Do not understand BIT C table\n");
4679 		return -EINVAL;
4680 	}
4681 
4682 	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
4683 
4684 	return 0;
4685 }
4686 
4687 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4688 {
4689 	/*
4690 	 * Parses the flat panel table segment that the bit entry points to.
4691 	 * Starting at bitentry->offset:
4692 	 *
4693 	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
4694 	 * records beginning with a freq.
4695 	 * offset + 2  (16 bits): mode table pointer
4696 	 */
4697 
4698 	if (bitentry->length != 4) {
4699 		NV_ERROR(dev, "Do not understand BIT display table\n");
4700 		return -EINVAL;
4701 	}
4702 
4703 	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
4704 
4705 	return 0;
4706 }
4707 
4708 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4709 {
4710 	/*
4711 	 * Parses the init table segment that the bit entry points to.
4712 	 *
4713 	 * See parse_script_table_pointers for layout
4714 	 */
4715 
4716 	if (bitentry->length < 14) {
4717 		NV_ERROR(dev, "Do not understand init table\n");
4718 		return -EINVAL;
4719 	}
4720 
4721 	parse_script_table_pointers(bios, bitentry->offset);
4722 
4723 	if (bitentry->length >= 16)
4724 		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
4725 	if (bitentry->length >= 18)
4726 		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
4727 
4728 	return 0;
4729 }
4730 
4731 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4732 {
4733 	/*
4734 	 * BIT 'i' (info?) table
4735 	 *
4736 	 * offset + 0  (32 bits): BIOS version dword (as in B table)
4737 	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
4738 	 * offset + 13 (16 bits): pointer to table containing DAC load
4739 	 * detection comparison values
4740 	 *
4741 	 * There's other things in the table, purpose unknown
4742 	 */
4743 
4744 	uint16_t daccmpoffset;
4745 	uint8_t dacver, dacheaderlen;
4746 
4747 	if (bitentry->length < 6) {
4748 		NV_ERROR(dev, "BIT i table too short for needed information\n");
4749 		return -EINVAL;
4750 	}
4751 
4752 	parse_bios_version(dev, bios, bitentry->offset);
4753 
4754 	/*
4755 	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
4756 	 * Quadro identity crisis), other bits possibly as for BMP feature byte
4757 	 */
4758 	bios->feature_byte = bios->data[bitentry->offset + 5];
4759 	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
4760 
4761 	if (bitentry->length < 15) {
4762 		NV_WARN(dev, "BIT i table not long enough for DAC load "
4763 			       "detection comparison table\n");
4764 		return -EINVAL;
4765 	}
4766 
4767 	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
4768 
4769 	/* doesn't exist on g80 */
4770 	if (!daccmpoffset)
4771 		return 0;
4772 
4773 	/*
4774 	 * The first value in the table, following the header, is the
4775 	 * comparison value, the second entry is a comparison value for
4776 	 * TV load detection.
4777 	 */
4778 
4779 	dacver = bios->data[daccmpoffset];
4780 	dacheaderlen = bios->data[daccmpoffset + 1];
4781 
4782 	if (dacver != 0x00 && dacver != 0x10) {
4783 		NV_WARN(dev, "DAC load detection comparison table version "
4784 			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
4785 		return -ENOSYS;
4786 	}
4787 
4788 	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
4789 	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
4790 
4791 	return 0;
4792 }
4793 
4794 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4795 {
4796 	/*
4797 	 * Parses the LVDS table segment that the bit entry points to.
4798 	 * Starting at bitentry->offset:
4799 	 *
4800 	 * offset + 0  (16 bits): LVDS strap xlate table pointer
4801 	 */
4802 
4803 	if (bitentry->length != 2) {
4804 		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
4805 		return -EINVAL;
4806 	}
4807 
4808 	/*
4809 	 * No idea if it's still called the LVDS manufacturer table, but
4810 	 * the concept's close enough.
4811 	 */
4812 	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
4813 
4814 	return 0;
4815 }
4816 
4817 static int
4818 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
4819 		      struct bit_entry *bitentry)
4820 {
4821 	/*
4822 	 * offset + 2  (8  bits): number of options in an
4823 	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
4824 	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
4825 	 * 	restrict option selection
4826 	 *
4827 	 * There's a bunch of bits in this table other than the RAM restrict
4828 	 * stuff that we don't use - their use currently unknown
4829 	 */
4830 
4831 	/*
4832 	 * Older bios versions don't have a sufficiently long table for
4833 	 * what we want
4834 	 */
4835 	if (bitentry->length < 0x5)
4836 		return 0;
4837 
4838 	if (bitentry->id[1] < 2) {
4839 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
4840 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
4841 	} else {
4842 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
4843 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
4844 	}
4845 
4846 	return 0;
4847 }
4848 
4849 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
4850 {
4851 	/*
4852 	 * Parses the pointer to the TMDS table
4853 	 *
4854 	 * Starting at bitentry->offset:
4855 	 *
4856 	 * offset + 0  (16 bits): TMDS table pointer
4857 	 *
4858 	 * The TMDS table is typically found just before the DCB table, with a
4859 	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
4860 	 * length?)
4861 	 *
4862 	 * At offset +7 is a pointer to a script, which I don't know how to
4863 	 * run yet.
4864 	 * At offset +9 is a pointer to another script, likewise
4865 	 * Offset +11 has a pointer to a table where the first word is a pxclk
4866 	 * frequency and the second word a pointer to a script, which should be
4867 	 * run if the comparison pxclk frequency is less than the pxclk desired.
4868 	 * This repeats for decreasing comparison frequencies
4869 	 * Offset +13 has a pointer to a similar table
4870 	 * The selection of table (and possibly +7/+9 script) is dictated by
4871 	 * "or" from the DCB.
4872 	 */
4873 
4874 	uint16_t tmdstableptr, script1, script2;
4875 
4876 	if (bitentry->length != 2) {
4877 		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
4878 		return -EINVAL;
4879 	}
4880 
4881 	tmdstableptr = ROM16(bios->data[bitentry->offset]);
4882 
4883 	if (tmdstableptr == 0x0) {
4884 		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
4885 		return -EINVAL;
4886 	}
4887 
4888 	/* nv50+ has v2.0, but we don't parse it atm */
4889 	if (bios->data[tmdstableptr] != 0x11) {
4890 		NV_WARN(dev,
4891 			"TMDS table revision %d.%d not currently supported\n",
4892 			bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
4893 		return -ENOSYS;
4894 	}
4895 
4896 	/*
4897 	 * These two scripts are odd: they don't seem to get run even when
4898 	 * they are not stubbed.
4899 	 */
4900 	script1 = ROM16(bios->data[tmdstableptr + 7]);
4901 	script2 = ROM16(bios->data[tmdstableptr + 9]);
4902 	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
4903 		NV_WARN(dev, "TMDS table script pointers not stubbed\n");
4904 
4905 	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
4906 	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
4907 
4908 	return 0;
4909 }
4910 
4911 static int
4912 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
4913 		      struct bit_entry *bitentry)
4914 {
4915 	/*
4916 	 * Parses the pointer to the G80 output script tables
4917 	 *
4918 	 * Starting at bitentry->offset:
4919 	 *
4920 	 * offset + 0  (16 bits): output script table pointer
4921 	 */
4922 
4923 	uint16_t outputscripttableptr;
4924 
4925 	if (bitentry->length != 3) {
4926 		NV_ERROR(dev, "Do not understand BIT U table\n");
4927 		return -EINVAL;
4928 	}
4929 
4930 	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
4931 	bios->display.script_table_ptr = outputscripttableptr;
4932 	return 0;
4933 }
4934 
4935 static int
4936 parse_bit_displayport_tbl_entry(struct drm_device *dev, struct nvbios *bios,
4937 				struct bit_entry *bitentry)
4938 {
4939 	bios->display.dp_table_ptr = ROM16(bios->data[bitentry->offset]);
4940 	return 0;
4941 }
4942 
4943 struct bit_table {
4944 	const char id;
4945 	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
4946 };
4947 
4948 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
4949 
4950 static int
4951 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
4952 		struct bit_table *table)
4953 {
4954 	struct drm_device *dev = bios->dev;
4955 	uint8_t maxentries = bios->data[bitoffset + 4];
4956 	int i, offset;
4957 	struct bit_entry bitentry;
4958 
4959 	for (i = 0, offset = bitoffset + 6; i < maxentries; i++, offset += 6) {
4960 		bitentry.id[0] = bios->data[offset];
4961 
4962 		if (bitentry.id[0] != table->id)
4963 			continue;
4964 
4965 		bitentry.id[1] = bios->data[offset + 1];
4966 		bitentry.length = ROM16(bios->data[offset + 2]);
4967 		bitentry.offset = ROM16(bios->data[offset + 4]);
4968 
4969 		return table->parse_fn(dev, bios, &bitentry);
4970 	}
4971 
4972 	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
4973 	return -ENOSYS;
4974 }
4975 
4976 static int
4977 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
4978 {
4979 	int ret;
4980 
4981 	/*
4982 	 * The only restriction on parsing order currently is having 'i' first
4983 	 * for use of bios->*_version or bios->feature_byte while parsing;
4984 	 * functions shouldn't be actually *doing* anything apart from pulling
4985 	 * data from the image into the bios struct, thus no interdependencies
4986 	 */
4987 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
4988 	if (ret) /* info? */
4989 		return ret;
4990 	if (bios->major_version >= 0x60) /* g80+ */
4991 		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
4992 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
4993 	if (ret)
4994 		return ret;
4995 	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
4996 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
4997 	if (ret)
4998 		return ret;
4999 	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5000 	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5001 	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5002 	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5003 	parse_bit_table(bios, bitoffset, &BIT_TABLE('d', displayport));
5004 
5005 	return 0;
5006 }
5007 
5008 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5009 {
5010 	/*
5011 	 * Parses the BMP structure for useful things, but does not act on them
5012 	 *
5013 	 * offset +   5: BMP major version
5014 	 * offset +   6: BMP minor version
5015 	 * offset +   9: BMP feature byte
5016 	 * offset +  10: BCD encoded BIOS version
5017 	 *
5018 	 * offset +  18: init script table pointer (for bios versions < 5.10h)
5019 	 * offset +  20: extra init script table pointer (for bios
5020 	 * versions < 5.10h)
5021 	 *
5022 	 * offset +  24: memory init table pointer (used on early bios versions)
5023 	 * offset +  26: SDR memory sequencing setup data table
5024 	 * offset +  28: DDR memory sequencing setup data table
5025 	 *
5026 	 * offset +  54: index of I2C CRTC pair to use for CRT output
5027 	 * offset +  55: index of I2C CRTC pair to use for TV output
5028 	 * offset +  56: index of I2C CRTC pair to use for flat panel output
5029 	 * offset +  58: write CRTC index for I2C pair 0
5030 	 * offset +  59: read CRTC index for I2C pair 0
5031 	 * offset +  60: write CRTC index for I2C pair 1
5032 	 * offset +  61: read CRTC index for I2C pair 1
5033 	 *
5034 	 * offset +  67: maximum internal PLL frequency (single stage PLL)
5035 	 * offset +  71: minimum internal PLL frequency (single stage PLL)
5036 	 *
5037 	 * offset +  75: script table pointers, as described in
5038 	 * parse_script_table_pointers
5039 	 *
5040 	 * offset +  89: TMDS single link output A table pointer
5041 	 * offset +  91: TMDS single link output B table pointer
5042 	 * offset +  95: LVDS single link output A table pointer
5043 	 * offset + 105: flat panel timings table pointer
5044 	 * offset + 107: flat panel strapping translation table pointer
5045 	 * offset + 117: LVDS manufacturer panel config table pointer
5046 	 * offset + 119: LVDS manufacturer strapping translation table pointer
5047 	 *
5048 	 * offset + 142: PLL limits table pointer
5049 	 *
5050 	 * offset + 156: minimum pixel clock for LVDS dual link
5051 	 */
5052 
5053 	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5054 	uint16_t bmplength;
5055 	uint16_t legacy_scripts_offset, legacy_i2c_offset;
5056 
5057 	/* load needed defaults in case we can't parse this info */
5058 	bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
5059 	bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
5060 	bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
5061 	bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
5062 	bios->digital_min_front_porch = 0x4b;
5063 	bios->fmaxvco = 256000;
5064 	bios->fminvco = 128000;
5065 	bios->fp.duallink_transition_clk = 90000;
5066 
5067 	bmp_version_major = bmp[5];
5068 	bmp_version_minor = bmp[6];
5069 
5070 	NV_TRACE(dev, "BMP version %d.%d\n",
5071 		 bmp_version_major, bmp_version_minor);
5072 
5073 	/*
5074 	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5075 	 * pointer on early versions
5076 	 */
5077 	if (bmp_version_major < 5)
5078 		*(uint16_t *)&bios->data[0x36] = 0;
5079 
5080 	/*
5081 	 * Seems that the minor version was 1 for all major versions prior
5082 	 * to 5. Version 6 could theoretically exist, but I suspect BIT
5083 	 * happened instead.
5084 	 */
5085 	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5086 		NV_ERROR(dev, "You have an unsupported BMP version. "
5087 				"Please send in your bios\n");
5088 		return -ENOSYS;
5089 	}
5090 
5091 	if (bmp_version_major == 0)
5092 		/* nothing that's currently useful in this version */
5093 		return 0;
5094 	else if (bmp_version_major == 1)
5095 		bmplength = 44; /* exact for 1.01 */
5096 	else if (bmp_version_major == 2)
5097 		bmplength = 48; /* exact for 2.01 */
5098 	else if (bmp_version_major == 3)
5099 		bmplength = 54;
5100 		/* guessed - mem init tables added in this version */
5101 	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5102 		/* don't know if 5.0 exists... */
5103 		bmplength = 62;
5104 		/* guessed - BMP I2C indices added in version 4*/
5105 	else if (bmp_version_minor < 0x6)
5106 		bmplength = 67; /* exact for 5.01 */
5107 	else if (bmp_version_minor < 0x10)
5108 		bmplength = 75; /* exact for 5.06 */
5109 	else if (bmp_version_minor == 0x10)
5110 		bmplength = 89; /* exact for 5.10h */
5111 	else if (bmp_version_minor < 0x14)
5112 		bmplength = 118; /* exact for 5.11h */
5113 	else if (bmp_version_minor < 0x24)
5114 		/*
5115 		 * Not sure of version where pll limits came in;
5116 		 * certainly exist by 0x24 though.
5117 		 */
5118 		/* length not exact: this is long enough to get lvds members */
5119 		bmplength = 123;
5120 	else if (bmp_version_minor < 0x27)
5121 		/*
5122 		 * Length not exact: this is long enough to get pll limit
5123 		 * member
5124 		 */
5125 		bmplength = 144;
5126 	else
5127 		/*
5128 		 * Length not exact: this is long enough to get dual link
5129 		 * transition clock.
5130 		 */
5131 		bmplength = 158;
5132 
5133 	/* checksum */
5134 	if (nv_cksum(bmp, 8)) {
5135 		NV_ERROR(dev, "Bad BMP checksum\n");
5136 		return -EINVAL;
5137 	}
5138 
5139 	/*
5140 	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5141 	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5142 	 * (not nv10gl), bit 5 that the flat panel tables are present, and
5143 	 * bit 6 a tv bios.
5144 	 */
5145 	bios->feature_byte = bmp[9];
5146 
5147 	parse_bios_version(dev, bios, offset + 10);
5148 
5149 	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5150 		bios->old_style_init = true;
5151 	legacy_scripts_offset = 18;
5152 	if (bmp_version_major < 2)
5153 		legacy_scripts_offset -= 4;
5154 	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5155 	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5156 
5157 	if (bmp_version_major > 2) {	/* appears in BMP 3 */
5158 		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5159 		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5160 		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5161 	}
5162 
5163 	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
5164 	if (bmplength > 61)
5165 		legacy_i2c_offset = offset + 54;
5166 	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5167 	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5168 	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5169 	bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
5170 	bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
5171 	bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
5172 	bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
5173 
5174 	if (bmplength > 74) {
5175 		bios->fmaxvco = ROM32(bmp[67]);
5176 		bios->fminvco = ROM32(bmp[71]);
5177 	}
5178 	if (bmplength > 88)
5179 		parse_script_table_pointers(bios, offset + 75);
5180 	if (bmplength > 94) {
5181 		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5182 		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5183 		/*
5184 		 * Never observed in use with lvds scripts, but is reused for
5185 		 * 18/24 bit panel interface default for EDID equipped panels
5186 		 * (if_is_24bit not set directly to avoid any oscillation).
5187 		 */
5188 		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5189 	}
5190 	if (bmplength > 108) {
5191 		bios->fp.fptablepointer = ROM16(bmp[105]);
5192 		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5193 		bios->fp.xlatwidth = 1;
5194 	}
5195 	if (bmplength > 120) {
5196 		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5197 		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5198 	}
5199 	if (bmplength > 143)
5200 		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5201 
5202 	if (bmplength > 157)
5203 		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5204 
5205 	return 0;
5206 }
5207 
5208 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5209 {
5210 	int i, j;
5211 
5212 	for (i = 0; i <= (n - len); i++) {
5213 		for (j = 0; j < len; j++)
5214 			if (data[i + j] != str[j])
5215 				break;
5216 		if (j == len)
5217 			return i;
5218 	}
5219 
5220 	return 0;
5221 }
5222 
5223 static struct dcb_gpio_entry *
5224 new_gpio_entry(struct nvbios *bios)
5225 {
5226 	struct dcb_gpio_table *gpio = &bios->dcb.gpio;
5227 
5228 	return &gpio->entry[gpio->entries++];
5229 }
5230 
5231 struct dcb_gpio_entry *
5232 nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
5233 {
5234 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5235 	struct nvbios *bios = &dev_priv->vbios;
5236 	int i;
5237 
5238 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
5239 		if (bios->dcb.gpio.entry[i].tag != tag)
5240 			continue;
5241 
5242 		return &bios->dcb.gpio.entry[i];
5243 	}
5244 
5245 	return NULL;
5246 }
5247 
5248 static void
5249 parse_dcb30_gpio_entry(struct nvbios *bios, uint16_t offset)
5250 {
5251 	struct dcb_gpio_entry *gpio;
5252 	uint16_t ent = ROM16(bios->data[offset]);
5253 	uint8_t line = ent & 0x1f,
5254 		tag = ent >> 5 & 0x3f,
5255 		flags = ent >> 11 & 0x1f;
5256 
5257 	if (tag == 0x3f)
5258 		return;
5259 
5260 	gpio = new_gpio_entry(bios);
5261 
5262 	gpio->tag = tag;
5263 	gpio->line = line;
5264 	gpio->invert = flags != 4;
5265 	gpio->entry = ent;
5266 }
5267 
5268 static void
5269 parse_dcb40_gpio_entry(struct nvbios *bios, uint16_t offset)
5270 {
5271 	uint32_t entry = ROM32(bios->data[offset]);
5272 	struct dcb_gpio_entry *gpio;
5273 
5274 	if ((entry & 0x0000ff00) == 0x0000ff00)
5275 		return;
5276 
5277 	gpio = new_gpio_entry(bios);
5278 	gpio->tag = (entry & 0x0000ff00) >> 8;
5279 	gpio->line = (entry & 0x0000001f) >> 0;
5280 	gpio->state_default = (entry & 0x01000000) >> 24;
5281 	gpio->state[0] = (entry & 0x18000000) >> 27;
5282 	gpio->state[1] = (entry & 0x60000000) >> 29;
5283 	gpio->entry = entry;
5284 }
5285 
5286 static void
5287 parse_dcb_gpio_table(struct nvbios *bios)
5288 {
5289 	struct drm_device *dev = bios->dev;
5290 	uint16_t gpio_table_ptr = bios->dcb.gpio_table_ptr;
5291 	uint8_t *gpio_table = &bios->data[gpio_table_ptr];
5292 	int header_len = gpio_table[1],
5293 	    entries = gpio_table[2],
5294 	    entry_len = gpio_table[3];
5295 	void (*parse_entry)(struct nvbios *, uint16_t) = NULL;
5296 	int i;
5297 
5298 	if (bios->dcb.version >= 0x40) {
5299 		if (gpio_table_ptr && entry_len != 4) {
5300 			NV_WARN(dev, "Invalid DCB GPIO table entry length.\n");
5301 			return;
5302 		}
5303 
5304 		parse_entry = parse_dcb40_gpio_entry;
5305 
5306 	} else if (bios->dcb.version >= 0x30) {
5307 		if (gpio_table_ptr && entry_len != 2) {
5308 			NV_WARN(dev, "Invalid DCB GPIO table entry length.\n");
5309 			return;
5310 		}
5311 
5312 		parse_entry = parse_dcb30_gpio_entry;
5313 
5314 	} else if (bios->dcb.version >= 0x22) {
5315 		/*
5316 		 * DCBs older than v3.0 don't really have a GPIO
5317 		 * table, instead they keep some GPIO info at fixed
5318 		 * locations.
5319 		 */
5320 		uint16_t dcbptr = ROM16(bios->data[0x36]);
5321 		uint8_t *tvdac_gpio = &bios->data[dcbptr - 5];
5322 
5323 		if (tvdac_gpio[0] & 1) {
5324 			struct dcb_gpio_entry *gpio = new_gpio_entry(bios);
5325 
5326 			gpio->tag = DCB_GPIO_TVDAC0;
5327 			gpio->line = tvdac_gpio[1] >> 4;
5328 			gpio->invert = tvdac_gpio[0] & 2;
5329 		}
5330 	}
5331 
5332 	if (!gpio_table_ptr)
5333 		return;
5334 
5335 	if (entries > DCB_MAX_NUM_GPIO_ENTRIES) {
5336 		NV_WARN(dev, "Too many entries in the DCB GPIO table.\n");
5337 		entries = DCB_MAX_NUM_GPIO_ENTRIES;
5338 	}
5339 
5340 	for (i = 0; i < entries; i++)
5341 		parse_entry(bios, gpio_table_ptr + header_len + entry_len * i);
5342 }
5343 
5344 struct dcb_connector_table_entry *
5345 nouveau_bios_connector_entry(struct drm_device *dev, int index)
5346 {
5347 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5348 	struct nvbios *bios = &dev_priv->vbios;
5349 	struct dcb_connector_table_entry *cte;
5350 
5351 	if (index >= bios->dcb.connector.entries)
5352 		return NULL;
5353 
5354 	cte = &bios->dcb.connector.entry[index];
5355 	if (cte->type == 0xff)
5356 		return NULL;
5357 
5358 	return cte;
5359 }
5360 
5361 static enum dcb_connector_type
5362 divine_connector_type(struct nvbios *bios, int index)
5363 {
5364 	struct dcb_table *dcb = &bios->dcb;
5365 	unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
5366 	int i;
5367 
5368 	for (i = 0; i < dcb->entries; i++) {
5369 		if (dcb->entry[i].connector == index)
5370 			encoders |= (1 << dcb->entry[i].type);
5371 	}
5372 
5373 	if (encoders & (1 << OUTPUT_DP)) {
5374 		if (encoders & (1 << OUTPUT_TMDS))
5375 			type = DCB_CONNECTOR_DP;
5376 		else
5377 			type = DCB_CONNECTOR_eDP;
5378 	} else
5379 	if (encoders & (1 << OUTPUT_TMDS)) {
5380 		if (encoders & (1 << OUTPUT_ANALOG))
5381 			type = DCB_CONNECTOR_DVI_I;
5382 		else
5383 			type = DCB_CONNECTOR_DVI_D;
5384 	} else
5385 	if (encoders & (1 << OUTPUT_ANALOG)) {
5386 		type = DCB_CONNECTOR_VGA;
5387 	} else
5388 	if (encoders & (1 << OUTPUT_LVDS)) {
5389 		type = DCB_CONNECTOR_LVDS;
5390 	} else
5391 	if (encoders & (1 << OUTPUT_TV)) {
5392 		type = DCB_CONNECTOR_TV_0;
5393 	}
5394 
5395 	return type;
5396 }
5397 
5398 static void
5399 apply_dcb_connector_quirks(struct nvbios *bios, int idx)
5400 {
5401 	struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
5402 	struct drm_device *dev = bios->dev;
5403 
5404 	/* Gigabyte NX85T */
5405 	if ((dev->pdev->device == 0x0421) &&
5406 	    (dev->pdev->subsystem_vendor == 0x1458) &&
5407 	    (dev->pdev->subsystem_device == 0x344c)) {
5408 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5409 			cte->type = DCB_CONNECTOR_DVI_I;
5410 	}
5411 }
5412 
5413 static void
5414 parse_dcb_connector_table(struct nvbios *bios)
5415 {
5416 	struct drm_device *dev = bios->dev;
5417 	struct dcb_connector_table *ct = &bios->dcb.connector;
5418 	struct dcb_connector_table_entry *cte;
5419 	uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
5420 	uint8_t *entry;
5421 	int i;
5422 
5423 	if (!bios->dcb.connector_table_ptr) {
5424 		NV_DEBUG_KMS(dev, "No DCB connector table present\n");
5425 		return;
5426 	}
5427 
5428 	NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
5429 		conntab[0], conntab[1], conntab[2], conntab[3]);
5430 	if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
5431 	    (conntab[3] != 2 && conntab[3] != 4)) {
5432 		NV_ERROR(dev, "  Unknown!  Please report.\n");
5433 		return;
5434 	}
5435 
5436 	ct->entries = conntab[2];
5437 
5438 	entry = conntab + conntab[1];
5439 	cte = &ct->entry[0];
5440 	for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
5441 		cte->index = i;
5442 		if (conntab[3] == 2)
5443 			cte->entry = ROM16(entry[0]);
5444 		else
5445 			cte->entry = ROM32(entry[0]);
5446 
5447 		cte->type  = (cte->entry & 0x000000ff) >> 0;
5448 		cte->index2 = (cte->entry & 0x00000f00) >> 8;
5449 		switch (cte->entry & 0x00033000) {
5450 		case 0x00001000:
5451 			cte->gpio_tag = 0x07;
5452 			break;
5453 		case 0x00002000:
5454 			cte->gpio_tag = 0x08;
5455 			break;
5456 		case 0x00010000:
5457 			cte->gpio_tag = 0x51;
5458 			break;
5459 		case 0x00020000:
5460 			cte->gpio_tag = 0x52;
5461 			break;
5462 		default:
5463 			cte->gpio_tag = 0xff;
5464 			break;
5465 		}
5466 
5467 		if (cte->type == 0xff)
5468 			continue;
5469 
5470 		apply_dcb_connector_quirks(bios, i);
5471 
5472 		NV_INFO(dev, "  %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
5473 			i, cte->entry, cte->type, cte->index, cte->gpio_tag);
5474 
5475 		/* check for known types, fallback to guessing the type
5476 		 * from attached encoders if we hit an unknown.
5477 		 */
5478 		switch (cte->type) {
5479 		case DCB_CONNECTOR_VGA:
5480 		case DCB_CONNECTOR_TV_0:
5481 		case DCB_CONNECTOR_TV_1:
5482 		case DCB_CONNECTOR_TV_3:
5483 		case DCB_CONNECTOR_DVI_I:
5484 		case DCB_CONNECTOR_DVI_D:
5485 		case DCB_CONNECTOR_LVDS:
5486 		case DCB_CONNECTOR_DP:
5487 		case DCB_CONNECTOR_eDP:
5488 		case DCB_CONNECTOR_HDMI_0:
5489 		case DCB_CONNECTOR_HDMI_1:
5490 			break;
5491 		default:
5492 			cte->type = divine_connector_type(bios, cte->index);
5493 			NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
5494 			break;
5495 		}
5496 
5497 		if (nouveau_override_conntype) {
5498 			int type = divine_connector_type(bios, cte->index);
5499 			if (type != cte->type)
5500 				NV_WARN(dev, " -> type 0x%02x\n", cte->type);
5501 		}
5502 
5503 	}
5504 }
5505 
5506 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
5507 {
5508 	struct dcb_entry *entry = &dcb->entry[dcb->entries];
5509 
5510 	memset(entry, 0, sizeof(struct dcb_entry));
5511 	entry->index = dcb->entries++;
5512 
5513 	return entry;
5514 }
5515 
5516 static void fabricate_vga_output(struct dcb_table *dcb, int i2c, int heads)
5517 {
5518 	struct dcb_entry *entry = new_dcb_entry(dcb);
5519 
5520 	entry->type = 0;
5521 	entry->i2c_index = i2c;
5522 	entry->heads = heads;
5523 	entry->location = DCB_LOC_ON_CHIP;
5524 	/* "or" mostly unused in early gen crt modesetting, 0 is fine */
5525 }
5526 
5527 static void fabricate_dvi_i_output(struct dcb_table *dcb, bool twoHeads)
5528 {
5529 	struct dcb_entry *entry = new_dcb_entry(dcb);
5530 
5531 	entry->type = 2;
5532 	entry->i2c_index = LEGACY_I2C_PANEL;
5533 	entry->heads = twoHeads ? 3 : 1;
5534 	entry->location = !DCB_LOC_ON_CHIP;	/* ie OFF CHIP */
5535 	entry->or = 1;	/* means |0x10 gets set on CRE_LCD__INDEX */
5536 	entry->duallink_possible = false; /* SiI164 and co. are single link */
5537 
5538 #if 0
5539 	/*
5540 	 * For dvi-a either crtc probably works, but my card appears to only
5541 	 * support dvi-d.  "nvidia" still attempts to program it for dvi-a,
5542 	 * doing the full fp output setup (program 0x6808.. fp dimension regs,
5543 	 * setting 0x680848 to 0x10000111 to enable, maybe setting 0x680880);
5544 	 * the monitor picks up the mode res ok and lights up, but no pixel
5545 	 * data appears, so the board manufacturer probably connected up the
5546 	 * sync lines, but missed the video traces / components
5547 	 *
5548 	 * with this introduction, dvi-a left as an exercise for the reader.
5549 	 */
5550 	fabricate_vga_output(dcb, LEGACY_I2C_PANEL, entry->heads);
5551 #endif
5552 }
5553 
5554 static void fabricate_tv_output(struct dcb_table *dcb, bool twoHeads)
5555 {
5556 	struct dcb_entry *entry = new_dcb_entry(dcb);
5557 
5558 	entry->type = 1;
5559 	entry->i2c_index = LEGACY_I2C_TV;
5560 	entry->heads = twoHeads ? 3 : 1;
5561 	entry->location = !DCB_LOC_ON_CHIP;	/* ie OFF CHIP */
5562 }
5563 
5564 static bool
5565 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
5566 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5567 {
5568 	entry->type = conn & 0xf;
5569 	entry->i2c_index = (conn >> 4) & 0xf;
5570 	entry->heads = (conn >> 8) & 0xf;
5571 	if (dcb->version >= 0x40)
5572 		entry->connector = (conn >> 12) & 0xf;
5573 	entry->bus = (conn >> 16) & 0xf;
5574 	entry->location = (conn >> 20) & 0x3;
5575 	entry->or = (conn >> 24) & 0xf;
5576 
5577 	switch (entry->type) {
5578 	case OUTPUT_ANALOG:
5579 		/*
5580 		 * Although the rest of a CRT conf dword is usually
5581 		 * zeros, mac biosen have stuff there so we must mask
5582 		 */
5583 		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
5584 					 (conf & 0xffff) * 10 :
5585 					 (conf & 0xff) * 10000;
5586 		break;
5587 	case OUTPUT_LVDS:
5588 		{
5589 		uint32_t mask;
5590 		if (conf & 0x1)
5591 			entry->lvdsconf.use_straps_for_mode = true;
5592 		if (dcb->version < 0x22) {
5593 			mask = ~0xd;
5594 			/*
5595 			 * The laptop in bug 14567 lies and claims to not use
5596 			 * straps when it does, so assume all DCB 2.0 laptops
5597 			 * use straps, until a broken EDID using one is produced
5598 			 */
5599 			entry->lvdsconf.use_straps_for_mode = true;
5600 			/*
5601 			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
5602 			 * mean the same thing (probably wrong, but might work)
5603 			 */
5604 			if (conf & 0x4 || conf & 0x8)
5605 				entry->lvdsconf.use_power_scripts = true;
5606 		} else {
5607 			mask = ~0x5;
5608 			if (conf & 0x4)
5609 				entry->lvdsconf.use_power_scripts = true;
5610 		}
5611 		if (conf & mask) {
5612 			/*
5613 			 * Until we even try to use these on G8x, it's
5614 			 * useless reporting unknown bits.  They all are.
5615 			 */
5616 			if (dcb->version >= 0x40)
5617 				break;
5618 
5619 			NV_ERROR(dev, "Unknown LVDS configuration bits, "
5620 				      "please report\n");
5621 		}
5622 		break;
5623 		}
5624 	case OUTPUT_TV:
5625 	{
5626 		if (dcb->version >= 0x30)
5627 			entry->tvconf.has_component_output = conf & (0x8 << 4);
5628 		else
5629 			entry->tvconf.has_component_output = false;
5630 
5631 		break;
5632 	}
5633 	case OUTPUT_DP:
5634 		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
5635 		entry->dpconf.link_bw = (conf & 0x00e00000) >> 21;
5636 		switch ((conf & 0x0f000000) >> 24) {
5637 		case 0xf:
5638 			entry->dpconf.link_nr = 4;
5639 			break;
5640 		case 0x3:
5641 			entry->dpconf.link_nr = 2;
5642 			break;
5643 		default:
5644 			entry->dpconf.link_nr = 1;
5645 			break;
5646 		}
5647 		break;
5648 	case OUTPUT_TMDS:
5649 		entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
5650 		break;
5651 	case 0xe:
5652 		/* weird g80 mobile type that "nv" treats as a terminator */
5653 		dcb->entries--;
5654 		return false;
5655 	default:
5656 		break;
5657 	}
5658 
5659 	if (dcb->version < 0x40) {
5660 		/* Normal entries consist of a single bit, but dual link has
5661 		 * the next most significant bit set too
5662 		 */
5663 		entry->duallink_possible =
5664 			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
5665 	} else {
5666 		entry->duallink_possible = (entry->sorconf.link == 3);
5667 	}
5668 
5669 	/* unsure what DCB version introduces this, 3.0? */
5670 	if (conf & 0x100000)
5671 		entry->i2c_upper_default = true;
5672 
5673 	return true;
5674 }
5675 
5676 static bool
5677 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
5678 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5679 {
5680 	switch (conn & 0x0000000f) {
5681 	case 0:
5682 		entry->type = OUTPUT_ANALOG;
5683 		break;
5684 	case 1:
5685 		entry->type = OUTPUT_TV;
5686 		break;
5687 	case 2:
5688 	case 3:
5689 		entry->type = OUTPUT_LVDS;
5690 		break;
5691 	case 4:
5692 		switch ((conn & 0x000000f0) >> 4) {
5693 		case 0:
5694 			entry->type = OUTPUT_TMDS;
5695 			break;
5696 		case 1:
5697 			entry->type = OUTPUT_LVDS;
5698 			break;
5699 		default:
5700 			NV_ERROR(dev, "Unknown DCB subtype 4/%d\n",
5701 				 (conn & 0x000000f0) >> 4);
5702 			return false;
5703 		}
5704 		break;
5705 	default:
5706 		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
5707 		return false;
5708 	}
5709 
5710 	entry->i2c_index = (conn & 0x0003c000) >> 14;
5711 	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
5712 	entry->or = entry->heads; /* same as heads, hopefully safe enough */
5713 	entry->location = (conn & 0x01e00000) >> 21;
5714 	entry->bus = (conn & 0x0e000000) >> 25;
5715 	entry->duallink_possible = false;
5716 
5717 	switch (entry->type) {
5718 	case OUTPUT_ANALOG:
5719 		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
5720 		break;
5721 	case OUTPUT_TV:
5722 		entry->tvconf.has_component_output = false;
5723 		break;
5724 	case OUTPUT_TMDS:
5725 		/*
5726 		 * Invent a DVI-A output, by copying the fields of the DVI-D
5727 		 * output; reported to work by math_b on an NV20(!).
5728 		 */
5729 		fabricate_vga_output(dcb, entry->i2c_index, entry->heads);
5730 		break;
5731 	case OUTPUT_LVDS:
5732 		if ((conn & 0x00003f00) != 0x10)
5733 			entry->lvdsconf.use_straps_for_mode = true;
5734 		entry->lvdsconf.use_power_scripts = true;
5735 		break;
5736 	default:
5737 		break;
5738 	}
5739 
5740 	return true;
5741 }
5742 
5743 static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
5744 			    uint32_t conn, uint32_t conf)
5745 {
5746 	struct dcb_entry *entry = new_dcb_entry(dcb);
5747 	bool ret;
5748 
5749 	if (dcb->version >= 0x20)
5750 		ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
5751 	else
5752 		ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
5753 	if (!ret)
5754 		return ret;
5755 
5756 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
5757 			   entry->i2c_index, &dcb->i2c[entry->i2c_index]);
5758 
5759 	return true;
5760 }
5761 
5762 static
5763 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
5764 {
5765 	/*
5766 	 * DCB v2.0 lists each output combination separately.
5767 	 * Here we merge compatible entries to have fewer outputs, with
5768 	 * more options
5769 	 */
5770 
5771 	int i, newentries = 0;
5772 
5773 	for (i = 0; i < dcb->entries; i++) {
5774 		struct dcb_entry *ient = &dcb->entry[i];
5775 		int j;
5776 
5777 		for (j = i + 1; j < dcb->entries; j++) {
5778 			struct dcb_entry *jent = &dcb->entry[j];
5779 
5780 			if (jent->type == 100) /* already merged entry */
5781 				continue;
5782 
5783 			/* merge heads field when all other fields the same */
5784 			if (jent->i2c_index == ient->i2c_index &&
5785 			    jent->type == ient->type &&
5786 			    jent->location == ient->location &&
5787 			    jent->or == ient->or) {
5788 				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
5789 					 i, j);
5790 				ient->heads |= jent->heads;
5791 				jent->type = 100; /* dummy value */
5792 			}
5793 		}
5794 	}
5795 
5796 	/* Compact entries merged into others out of dcb */
5797 	for (i = 0; i < dcb->entries; i++) {
5798 		if (dcb->entry[i].type == 100)
5799 			continue;
5800 
5801 		if (newentries != i) {
5802 			dcb->entry[newentries] = dcb->entry[i];
5803 			dcb->entry[newentries].index = newentries;
5804 		}
5805 		newentries++;
5806 	}
5807 
5808 	dcb->entries = newentries;
5809 }
5810 
5811 static int
5812 parse_dcb_table(struct drm_device *dev, struct nvbios *bios, bool twoHeads)
5813 {
5814 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5815 	struct dcb_table *dcb = &bios->dcb;
5816 	uint16_t dcbptr = 0, i2ctabptr = 0;
5817 	uint8_t *dcbtable;
5818 	uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
5819 	bool configblock = true;
5820 	int recordlength = 8, confofs = 4;
5821 	int i;
5822 
5823 	/* get the offset from 0x36 */
5824 	if (dev_priv->card_type > NV_04) {
5825 		dcbptr = ROM16(bios->data[0x36]);
5826 		if (dcbptr == 0x0000)
5827 			NV_WARN(dev, "No output data (DCB) found in BIOS\n");
5828 	}
5829 
5830 	/* this situation likely means a really old card, pre DCB */
5831 	if (dcbptr == 0x0) {
5832 		NV_INFO(dev, "Assuming a CRT output exists\n");
5833 		fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1);
5834 
5835 		if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
5836 			fabricate_tv_output(dcb, twoHeads);
5837 
5838 		return 0;
5839 	}
5840 
5841 	dcbtable = &bios->data[dcbptr];
5842 
5843 	/* get DCB version */
5844 	dcb->version = dcbtable[0];
5845 	NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
5846 		 dcb->version >> 4, dcb->version & 0xf);
5847 
5848 	if (dcb->version >= 0x20) { /* NV17+ */
5849 		uint32_t sig;
5850 
5851 		if (dcb->version >= 0x30) { /* NV40+ */
5852 			headerlen = dcbtable[1];
5853 			entries = dcbtable[2];
5854 			recordlength = dcbtable[3];
5855 			i2ctabptr = ROM16(dcbtable[4]);
5856 			sig = ROM32(dcbtable[6]);
5857 			dcb->gpio_table_ptr = ROM16(dcbtable[10]);
5858 			dcb->connector_table_ptr = ROM16(dcbtable[20]);
5859 		} else {
5860 			i2ctabptr = ROM16(dcbtable[2]);
5861 			sig = ROM32(dcbtable[4]);
5862 			headerlen = 8;
5863 		}
5864 
5865 		if (sig != 0x4edcbdcb) {
5866 			NV_ERROR(dev, "Bad Display Configuration Block "
5867 					"signature (%08X)\n", sig);
5868 			return -EINVAL;
5869 		}
5870 	} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
5871 		char sig[8] = { 0 };
5872 
5873 		strncpy(sig, (char *)&dcbtable[-7], 7);
5874 		i2ctabptr = ROM16(dcbtable[2]);
5875 		recordlength = 10;
5876 		confofs = 6;
5877 
5878 		if (strcmp(sig, "DEV_REC")) {
5879 			NV_ERROR(dev, "Bad Display Configuration Block "
5880 					"signature (%s)\n", sig);
5881 			return -EINVAL;
5882 		}
5883 	} else {
5884 		/*
5885 		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
5886 		 * has the same single (crt) entry, even when tv-out present, so
5887 		 * the conclusion is this version cannot really be used.
5888 		 * v1.2 tables (some NV6/10, and NV15+) normally have the same
5889 		 * 5 entries, which are not specific to the card and so no use.
5890 		 * v1.2 does have an I2C table that read_dcb_i2c_table can
5891 		 * handle, but cards exist (nv11 in #14821) with a bad i2c table
5892 		 * pointer, so use the indices parsed in parse_bmp_structure.
5893 		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
5894 		 */
5895 		NV_TRACEWARN(dev, "No useful information in BIOS output table; "
5896 				  "adding all possible outputs\n");
5897 		fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1);
5898 
5899 		/*
5900 		 * Attempt to detect TV before DVI because the test
5901 		 * for the former is more accurate and it rules the
5902 		 * latter out.
5903 		 */
5904 		if (nv04_tv_identify(dev,
5905 				     bios->legacy.i2c_indices.tv) >= 0)
5906 			fabricate_tv_output(dcb, twoHeads);
5907 
5908 		else if (bios->tmds.output0_script_ptr ||
5909 			 bios->tmds.output1_script_ptr)
5910 			fabricate_dvi_i_output(dcb, twoHeads);
5911 
5912 		return 0;
5913 	}
5914 
5915 	if (!i2ctabptr)
5916 		NV_WARN(dev, "No pointer to DCB I2C port table\n");
5917 	else {
5918 		dcb->i2c_table = &bios->data[i2ctabptr];
5919 		if (dcb->version >= 0x30)
5920 			dcb->i2c_default_indices = dcb->i2c_table[4];
5921 	}
5922 
5923 	if (entries > DCB_MAX_NUM_ENTRIES)
5924 		entries = DCB_MAX_NUM_ENTRIES;
5925 
5926 	for (i = 0; i < entries; i++) {
5927 		uint32_t connection, config = 0;
5928 
5929 		connection = ROM32(dcbtable[headerlen + recordlength * i]);
5930 		if (configblock)
5931 			config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);
5932 
5933 		/* seen on an NV11 with DCB v1.5 */
5934 		if (connection == 0x00000000)
5935 			break;
5936 
5937 		/* seen on an NV17 with DCB v2.0 */
5938 		if (connection == 0xffffffff)
5939 			break;
5940 
5941 		if ((connection & 0x0000000f) == 0x0000000f)
5942 			continue;
5943 
5944 		NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
5945 			     dcb->entries, connection, config);
5946 
5947 		if (!parse_dcb_entry(dev, dcb, connection, config))
5948 			break;
5949 	}
5950 
5951 	/*
5952 	 * apart for v2.1+ not being known for requiring merging, this
5953 	 * guarantees dcbent->index is the index of the entry in the rom image
5954 	 */
5955 	if (dcb->version < 0x21)
5956 		merge_like_dcb_entries(dev, dcb);
5957 
5958 	if (!dcb->entries)
5959 		return -ENXIO;
5960 
5961 	parse_dcb_gpio_table(bios);
5962 	parse_dcb_connector_table(bios);
5963 	return 0;
5964 }
5965 
5966 static void
5967 fixup_legacy_connector(struct nvbios *bios)
5968 {
5969 	struct dcb_table *dcb = &bios->dcb;
5970 	int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
5971 
5972 	/*
5973 	 * DCB 3.0 also has the table in most cases, but there are some cards
5974 	 * where the table is filled with stub entries, and the DCB entriy
5975 	 * indices are all 0.  We don't need the connector indices on pre-G80
5976 	 * chips (yet?) so limit the use to DCB 4.0 and above.
5977 	 */
5978 	if (dcb->version >= 0x40)
5979 		return;
5980 
5981 	dcb->connector.entries = 0;
5982 
5983 	/*
5984 	 * No known connector info before v3.0, so make it up.  the rule here
5985 	 * is: anything on the same i2c bus is considered to be on the same
5986 	 * connector.  any output without an associated i2c bus is assigned
5987 	 * its own unique connector index.
5988 	 */
5989 	for (i = 0; i < dcb->entries; i++) {
5990 		/*
5991 		 * Ignore the I2C index for on-chip TV-out, as there
5992 		 * are cards with bogus values (nv31m in bug 23212),
5993 		 * and it's otherwise useless.
5994 		 */
5995 		if (dcb->entry[i].type == OUTPUT_TV &&
5996 		    dcb->entry[i].location == DCB_LOC_ON_CHIP)
5997 			dcb->entry[i].i2c_index = 0xf;
5998 		i2c = dcb->entry[i].i2c_index;
5999 
6000 		if (i2c_conn[i2c]) {
6001 			dcb->entry[i].connector = i2c_conn[i2c] - 1;
6002 			continue;
6003 		}
6004 
6005 		dcb->entry[i].connector = dcb->connector.entries++;
6006 		if (i2c != 0xf)
6007 			i2c_conn[i2c] = dcb->connector.entries;
6008 	}
6009 
6010 	/* Fake the connector table as well as just connector indices */
6011 	for (i = 0; i < dcb->connector.entries; i++) {
6012 		dcb->connector.entry[i].index = i;
6013 		dcb->connector.entry[i].type = divine_connector_type(bios, i);
6014 		dcb->connector.entry[i].gpio_tag = 0xff;
6015 	}
6016 }
6017 
6018 static void
6019 fixup_legacy_i2c(struct nvbios *bios)
6020 {
6021 	struct dcb_table *dcb = &bios->dcb;
6022 	int i;
6023 
6024 	for (i = 0; i < dcb->entries; i++) {
6025 		if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
6026 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
6027 		if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
6028 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
6029 		if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
6030 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
6031 	}
6032 }
6033 
6034 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6035 {
6036 	/*
6037 	 * The header following the "HWSQ" signature has the number of entries,
6038 	 * and the entry size
6039 	 *
6040 	 * An entry consists of a dword to write to the sequencer control reg
6041 	 * (0x00001304), followed by the ucode bytes, written sequentially,
6042 	 * starting at reg 0x00001400
6043 	 */
6044 
6045 	uint8_t bytes_to_write;
6046 	uint16_t hwsq_entry_offset;
6047 	int i;
6048 
6049 	if (bios->data[hwsq_offset] <= entry) {
6050 		NV_ERROR(dev, "Too few entries in HW sequencer table for "
6051 				"requested entry\n");
6052 		return -ENOENT;
6053 	}
6054 
6055 	bytes_to_write = bios->data[hwsq_offset + 1];
6056 
6057 	if (bytes_to_write != 36) {
6058 		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6059 		return -EINVAL;
6060 	}
6061 
6062 	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6063 
6064 	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6065 
6066 	/* set sequencer control */
6067 	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6068 	bytes_to_write -= 4;
6069 
6070 	/* write ucode */
6071 	for (i = 0; i < bytes_to_write; i += 4)
6072 		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6073 
6074 	/* twiddle NV_PBUS_DEBUG_4 */
6075 	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6076 
6077 	return 0;
6078 }
6079 
6080 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6081 					struct nvbios *bios)
6082 {
6083 	/*
6084 	 * BMP based cards, from NV17, need a microcode loading to correctly
6085 	 * control the GPIO etc for LVDS panels
6086 	 *
6087 	 * BIT based cards seem to do this directly in the init scripts
6088 	 *
6089 	 * The microcode entries are found by the "HWSQ" signature.
6090 	 */
6091 
6092 	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6093 	const int sz = sizeof(hwsq_signature);
6094 	int hwsq_offset;
6095 
6096 	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6097 	if (!hwsq_offset)
6098 		return 0;
6099 
6100 	/* always use entry 0? */
6101 	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6102 }
6103 
6104 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6105 {
6106 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6107 	struct nvbios *bios = &dev_priv->vbios;
6108 	const uint8_t edid_sig[] = {
6109 			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6110 	uint16_t offset = 0;
6111 	uint16_t newoffset;
6112 	int searchlen = NV_PROM_SIZE;
6113 
6114 	if (bios->fp.edid)
6115 		return bios->fp.edid;
6116 
6117 	while (searchlen) {
6118 		newoffset = findstr(&bios->data[offset], searchlen,
6119 								edid_sig, 8);
6120 		if (!newoffset)
6121 			return NULL;
6122 		offset += newoffset;
6123 		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6124 			break;
6125 
6126 		searchlen -= offset;
6127 		offset++;
6128 	}
6129 
6130 	NV_TRACE(dev, "Found EDID in BIOS\n");
6131 
6132 	return bios->fp.edid = &bios->data[offset];
6133 }
6134 
6135 void
6136 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6137 			    struct dcb_entry *dcbent)
6138 {
6139 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6140 	struct nvbios *bios = &dev_priv->vbios;
6141 	struct init_exec iexec = { true, false };
6142 
6143 	mutex_lock(&bios->lock);
6144 	bios->display.output = dcbent;
6145 	parse_init_table(bios, table, &iexec);
6146 	bios->display.output = NULL;
6147 	mutex_unlock(&bios->lock);
6148 }
6149 
6150 static bool NVInitVBIOS(struct drm_device *dev)
6151 {
6152 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6153 	struct nvbios *bios = &dev_priv->vbios;
6154 
6155 	memset(bios, 0, sizeof(struct nvbios));
6156 	mutex_init(&bios->lock);
6157 	bios->dev = dev;
6158 
6159 	if (!NVShadowVBIOS(dev, bios->data))
6160 		return false;
6161 
6162 	bios->length = NV_PROM_SIZE;
6163 	return true;
6164 }
6165 
6166 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6167 {
6168 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6169 	struct nvbios *bios = &dev_priv->vbios;
6170 	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6171 	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6172 	int offset;
6173 
6174 	offset = findstr(bios->data, bios->length,
6175 					bit_signature, sizeof(bit_signature));
6176 	if (offset) {
6177 		NV_TRACE(dev, "BIT BIOS found\n");
6178 		return parse_bit_structure(bios, offset + 6);
6179 	}
6180 
6181 	offset = findstr(bios->data, bios->length,
6182 					bmp_signature, sizeof(bmp_signature));
6183 	if (offset) {
6184 		NV_TRACE(dev, "BMP BIOS found\n");
6185 		return parse_bmp_structure(dev, bios, offset);
6186 	}
6187 
6188 	NV_ERROR(dev, "No known BIOS signature found\n");
6189 	return -ENODEV;
6190 }
6191 
6192 int
6193 nouveau_run_vbios_init(struct drm_device *dev)
6194 {
6195 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6196 	struct nvbios *bios = &dev_priv->vbios;
6197 	int i, ret = 0;
6198 
6199 	NVLockVgaCrtcs(dev, false);
6200 	if (nv_two_heads(dev))
6201 		NVSetOwner(dev, bios->state.crtchead);
6202 
6203 	if (bios->major_version < 5)	/* BMP only */
6204 		load_nv17_hw_sequencer_ucode(dev, bios);
6205 
6206 	if (bios->execute) {
6207 		bios->fp.last_script_invoc = 0;
6208 		bios->fp.lvds_init_run = false;
6209 	}
6210 
6211 	parse_init_tables(bios);
6212 
6213 	/*
6214 	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
6215 	 * parser will run this right after the init tables, the binary
6216 	 * driver appears to run it at some point later.
6217 	 */
6218 	if (bios->some_script_ptr) {
6219 		struct init_exec iexec = {true, false};
6220 
6221 		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6222 			bios->some_script_ptr);
6223 		parse_init_table(bios, bios->some_script_ptr, &iexec);
6224 	}
6225 
6226 	if (dev_priv->card_type >= NV_50) {
6227 		for (i = 0; i < bios->dcb.entries; i++) {
6228 			nouveau_bios_run_display_table(dev,
6229 						       &bios->dcb.entry[i],
6230 						       0, 0);
6231 		}
6232 	}
6233 
6234 	NVLockVgaCrtcs(dev, true);
6235 
6236 	return ret;
6237 }
6238 
6239 static void
6240 nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
6241 {
6242 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6243 	struct nvbios *bios = &dev_priv->vbios;
6244 	struct dcb_i2c_entry *entry;
6245 	int i;
6246 
6247 	entry = &bios->dcb.i2c[0];
6248 	for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
6249 		nouveau_i2c_fini(dev, entry);
6250 }
6251 
6252 static bool
6253 nouveau_bios_posted(struct drm_device *dev)
6254 {
6255 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6256 	bool was_locked;
6257 	unsigned htotal;
6258 
6259 	if (dev_priv->chipset >= NV_50) {
6260 		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6261 		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6262 			return false;
6263 		return true;
6264 	}
6265 
6266 	was_locked = NVLockVgaCrtcs(dev, false);
6267 	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
6268 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6269 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6270 	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6271 	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6272 	NVLockVgaCrtcs(dev, was_locked);
6273 	return (htotal != 0);
6274 }
6275 
6276 int
6277 nouveau_bios_init(struct drm_device *dev)
6278 {
6279 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6280 	struct nvbios *bios = &dev_priv->vbios;
6281 	uint32_t saved_nv_pextdev_boot_0;
6282 	bool was_locked;
6283 	int ret;
6284 
6285 	if (!NVInitVBIOS(dev))
6286 		return -ENODEV;
6287 
6288 	ret = nouveau_parse_vbios_struct(dev);
6289 	if (ret)
6290 		return ret;
6291 
6292 	ret = parse_dcb_table(dev, bios, nv_two_heads(dev));
6293 	if (ret)
6294 		return ret;
6295 
6296 	fixup_legacy_i2c(bios);
6297 	fixup_legacy_connector(bios);
6298 
6299 	if (!bios->major_version)	/* we don't run version 0 bios */
6300 		return 0;
6301 
6302 	/* these will need remembering across a suspend */
6303 	saved_nv_pextdev_boot_0 = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
6304 	bios->state.saved_nv_pfb_cfg0 = bios_rd32(bios, NV_PFB_CFG0);
6305 
6306 	/* init script execution disabled */
6307 	bios->execute = false;
6308 
6309 	/* ... unless card isn't POSTed already */
6310 	if (!nouveau_bios_posted(dev)) {
6311 		NV_INFO(dev, "Adaptor not initialised\n");
6312 		if (dev_priv->card_type < NV_40) {
6313 			NV_ERROR(dev, "Unable to POST this chipset\n");
6314 			return -ENODEV;
6315 		}
6316 
6317 		NV_INFO(dev, "Running VBIOS init tables\n");
6318 		bios->execute = true;
6319 	}
6320 
6321 	bios_wr32(bios, NV_PEXTDEV_BOOT_0, saved_nv_pextdev_boot_0);
6322 
6323 	ret = nouveau_run_vbios_init(dev);
6324 	if (ret)
6325 		return ret;
6326 
6327 	/* feature_byte on BMP is poor, but init always sets CR4B */
6328 	was_locked = NVLockVgaCrtcs(dev, false);
6329 	if (bios->major_version < 5)
6330 		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6331 
6332 	/* all BIT systems need p_f_m_t for digital_min_front_porch */
6333 	if (bios->is_mobile || bios->major_version >= 5)
6334 		ret = parse_fp_mode_table(dev, bios);
6335 	NVLockVgaCrtcs(dev, was_locked);
6336 
6337 	/* allow subsequent scripts to execute */
6338 	bios->execute = true;
6339 
6340 	return 0;
6341 }
6342 
6343 void
6344 nouveau_bios_takedown(struct drm_device *dev)
6345 {
6346 	nouveau_bios_i2c_devices_takedown(dev);
6347 }
6348