1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "head.h" 23 #include "base.h" 24 #include "core.h" 25 #include "curs.h" 26 #include "ovly.h" 27 #include "crc.h" 28 29 #include <nvif/class.h> 30 #include <nvif/event.h> 31 #include <nvif/cl0046.h> 32 33 #include <drm/drm_atomic.h> 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_vblank.h> 36 #include "nouveau_connector.h" 37 38 void 39 nv50_head_flush_clr(struct nv50_head *head, 40 struct nv50_head_atom *asyh, bool flush) 41 { 42 union nv50_head_atom_mask clr = { 43 .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), 44 }; 45 if (clr.crc) nv50_crc_atomic_clr(head); 46 if (clr.olut) head->func->olut_clr(head); 47 if (clr.core) head->func->core_clr(head); 48 if (clr.curs) head->func->curs_clr(head); 49 } 50 51 void 52 nv50_head_flush_set_wndw(struct nv50_head *head, struct nv50_head_atom *asyh) 53 { 54 if (asyh->set.curs ) head->func->curs_set(head, asyh); 55 if (asyh->set.olut ) { 56 asyh->olut.offset = nv50_lut_load(&head->olut, 57 asyh->olut.buffer, 58 asyh->state.gamma_lut, 59 asyh->olut.load); 60 head->func->olut_set(head, asyh); 61 } 62 } 63 64 void 65 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) 66 { 67 if (asyh->set.view ) head->func->view (head, asyh); 68 if (asyh->set.mode ) head->func->mode (head, asyh); 69 if (asyh->set.core ) head->func->core_set(head, asyh); 70 if (asyh->set.base ) head->func->base (head, asyh); 71 if (asyh->set.ovly ) head->func->ovly (head, asyh); 72 if (asyh->set.dither ) head->func->dither (head, asyh); 73 if (asyh->set.procamp) head->func->procamp (head, asyh); 74 if (asyh->set.crc ) nv50_crc_atomic_set (head, asyh); 75 if (asyh->set.or ) head->func->or (head, asyh); 76 } 77 78 static void 79 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, 80 struct nv50_head_atom *asyh, 81 struct nouveau_conn_atom *asyc) 82 { 83 const int vib = asyc->procamp.color_vibrance - 100; 84 const int hue = asyc->procamp.vibrant_hue - 90; 85 const int adj = (vib > 0) ? 50 : 0; 86 asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; 87 asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; 88 asyh->set.procamp = true; 89 } 90 91 static void 92 nv50_head_atomic_check_dither(struct nv50_head_atom *armh, 93 struct nv50_head_atom *asyh, 94 struct nouveau_conn_atom *asyc) 95 { 96 u32 mode = 0x00; 97 98 if (asyc->dither.mode) { 99 if (asyc->dither.mode == DITHERING_MODE_AUTO) { 100 if (asyh->base.depth > asyh->or.bpc * 3) 101 mode = DITHERING_MODE_DYNAMIC2X2; 102 } else { 103 mode = asyc->dither.mode; 104 } 105 106 if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { 107 if (asyh->or.bpc >= 8) 108 mode |= DITHERING_DEPTH_8BPC; 109 } else { 110 mode |= asyc->dither.depth; 111 } 112 } 113 114 asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE); 115 asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS); 116 asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE); 117 asyh->set.dither = true; 118 } 119 120 static void 121 nv50_head_atomic_check_view(struct nv50_head_atom *armh, 122 struct nv50_head_atom *asyh, 123 struct nouveau_conn_atom *asyc) 124 { 125 struct drm_connector *connector = asyc->state.connector; 126 struct drm_display_mode *omode = &asyh->state.adjusted_mode; 127 struct drm_display_mode *umode = &asyh->state.mode; 128 int mode = asyc->scaler.mode; 129 struct edid *edid; 130 int umode_vdisplay, omode_hdisplay, omode_vdisplay; 131 132 if (connector->edid_blob_ptr) 133 edid = (struct edid *)connector->edid_blob_ptr->data; 134 else 135 edid = NULL; 136 137 if (!asyc->scaler.full) { 138 if (mode == DRM_MODE_SCALE_NONE) 139 omode = umode; 140 } else { 141 /* Non-EDID LVDS/eDP mode. */ 142 mode = DRM_MODE_SCALE_FULLSCREEN; 143 } 144 145 /* For the user-specified mode, we must ignore doublescan and 146 * the like, but honor frame packing. 147 */ 148 umode_vdisplay = umode->vdisplay; 149 if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 150 umode_vdisplay += umode->vtotal; 151 asyh->view.iW = umode->hdisplay; 152 asyh->view.iH = umode_vdisplay; 153 /* For the output mode, we can just use the stock helper. */ 154 drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); 155 asyh->view.oW = omode_hdisplay; 156 asyh->view.oH = omode_vdisplay; 157 158 /* Add overscan compensation if necessary, will keep the aspect 159 * ratio the same as the backend mode unless overridden by the 160 * user setting both hborder and vborder properties. 161 */ 162 if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || 163 (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && 164 drm_detect_hdmi_monitor(edid)))) { 165 u32 bX = asyc->scaler.underscan.hborder; 166 u32 bY = asyc->scaler.underscan.vborder; 167 u32 r = (asyh->view.oH << 19) / asyh->view.oW; 168 169 if (bX) { 170 asyh->view.oW -= (bX * 2); 171 if (bY) asyh->view.oH -= (bY * 2); 172 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 173 } else { 174 asyh->view.oW -= (asyh->view.oW >> 4) + 32; 175 if (bY) asyh->view.oH -= (bY * 2); 176 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 177 } 178 } 179 180 /* Handle CENTER/ASPECT scaling, taking into account the areas 181 * removed already for overscan compensation. 182 */ 183 switch (mode) { 184 case DRM_MODE_SCALE_CENTER: 185 /* NOTE: This will cause scaling when the input is 186 * larger than the output. 187 */ 188 asyh->view.oW = min(asyh->view.iW, asyh->view.oW); 189 asyh->view.oH = min(asyh->view.iH, asyh->view.oH); 190 break; 191 case DRM_MODE_SCALE_ASPECT: 192 /* Determine whether the scaling should be on width or on 193 * height. This is done by comparing the aspect ratios of the 194 * sizes. If the output AR is larger than input AR, that means 195 * we want to change the width (letterboxed on the 196 * left/right), otherwise on the height (letterboxed on the 197 * top/bottom). 198 * 199 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR 200 * screen will have letterboxes on the left/right. However a 201 * 16:9 (1.777) AR image on that same screen will have 202 * letterboxes on the top/bottom. 203 * 204 * inputAR = iW / iH; outputAR = oW / oH 205 * outputAR > inputAR is equivalent to oW * iH > iW * oH 206 */ 207 if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) { 208 /* Recompute output width, i.e. left/right letterbox */ 209 u32 r = (asyh->view.iW << 19) / asyh->view.iH; 210 asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; 211 } else { 212 /* Recompute output height, i.e. top/bottom letterbox */ 213 u32 r = (asyh->view.iH << 19) / asyh->view.iW; 214 asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 215 } 216 break; 217 default: 218 break; 219 } 220 221 asyh->set.view = true; 222 } 223 224 static int 225 nv50_head_atomic_check_lut(struct nv50_head *head, 226 struct nv50_head_atom *asyh) 227 { 228 struct drm_device *dev = head->base.base.dev; 229 struct drm_crtc *crtc = &head->base.base; 230 struct nv50_disp *disp = nv50_disp(dev); 231 struct nouveau_drm *drm = nouveau_drm(dev); 232 struct drm_property_blob *olut = asyh->state.gamma_lut, 233 *ilut = asyh->state.degamma_lut; 234 int size; 235 236 /* Ensure that the ilut is valid */ 237 if (ilut) { 238 size = drm_color_lut_size(ilut); 239 if (!head->func->ilut_check(size)) { 240 NV_ATOMIC(drm, "Invalid size %d for degamma on [CRTC:%d:%s]\n", 241 size, crtc->base.id, crtc->name); 242 return -EINVAL; 243 } 244 } 245 246 /* Determine whether core output LUT should be enabled. */ 247 if (olut) { 248 /* Check if any window(s) have stolen the core output LUT 249 * to as an input LUT for legacy gamma + I8 colour format. 250 */ 251 if (asyh->wndw.olut) { 252 /* If any window has stolen the core output LUT, 253 * all of them must. 254 */ 255 if (asyh->wndw.olut != asyh->wndw.mask) 256 return -EINVAL; 257 olut = NULL; 258 } 259 } 260 261 if (!olut) { 262 if (!head->func->olut_identity) { 263 asyh->olut.handle = 0; 264 return 0; 265 } 266 size = 0; 267 } else { 268 size = drm_color_lut_size(olut); 269 } 270 271 if (!head->func->olut(head, asyh, size)) { 272 NV_ATOMIC(drm, "Invalid size %d for gamma on [CRTC:%d:%s]\n", 273 size, crtc->base.id, crtc->name); 274 return -EINVAL; 275 } 276 asyh->olut.handle = disp->core->chan.vram.handle; 277 asyh->olut.buffer = !asyh->olut.buffer; 278 279 return 0; 280 } 281 282 static void 283 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) 284 { 285 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 286 struct nv50_head_mode *m = &asyh->mode; 287 u32 blankus; 288 289 drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); 290 291 /* 292 * DRM modes are defined in terms of a repeating interval 293 * starting with the active display area. The hardware modes 294 * are defined in terms of a repeating interval starting one 295 * unit (pixel or line) into the sync pulse. So, add bias. 296 */ 297 298 m->h.active = mode->crtc_htotal; 299 m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; 300 m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; 301 m->h.blanks = m->h.blanke + mode->crtc_hdisplay; 302 303 m->v.active = mode->crtc_vtotal; 304 m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; 305 m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; 306 m->v.blanks = m->v.blanke + mode->crtc_vdisplay; 307 308 /*XXX: Safe underestimate, even "0" works */ 309 blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; 310 blankus *= 1000; 311 blankus /= mode->crtc_clock; 312 m->v.blankus = blankus; 313 314 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 315 m->v.blank2e = m->v.active + m->v.blanke; 316 m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; 317 m->v.active = (m->v.active * 2) + 1; 318 m->interlace = true; 319 } else { 320 m->v.blank2e = 0; 321 m->v.blank2s = 1; 322 m->interlace = false; 323 } 324 m->clock = mode->crtc_clock; 325 326 asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 327 asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 328 asyh->set.or = head->func->or != NULL; 329 asyh->set.mode = true; 330 } 331 332 static int 333 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) 334 { 335 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 336 crtc); 337 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 338 crtc); 339 struct nouveau_drm *drm = nouveau_drm(crtc->dev); 340 struct nv50_head *head = nv50_head(crtc); 341 struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); 342 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 343 struct nouveau_conn_atom *asyc = NULL; 344 struct drm_connector_state *conns; 345 struct drm_connector *conn; 346 int i, ret; 347 bool check_lut = asyh->state.color_mgmt_changed || 348 memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw)); 349 350 NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); 351 352 if (check_lut) { 353 ret = nv50_head_atomic_check_lut(head, asyh); 354 if (ret) 355 return ret; 356 } 357 358 if (asyh->state.active) { 359 for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { 360 if (conns->crtc == crtc) { 361 asyc = nouveau_conn_atom(conns); 362 break; 363 } 364 } 365 366 if (armh->state.active) { 367 if (asyc) { 368 if (asyh->state.mode_changed) 369 asyc->set.scaler = true; 370 if (armh->base.depth != asyh->base.depth) 371 asyc->set.dither = true; 372 } 373 } else { 374 if (asyc) 375 asyc->set.mask = ~0; 376 asyh->set.mask = ~0; 377 asyh->set.or = head->func->or != NULL; 378 } 379 380 if (asyh->state.mode_changed || asyh->state.connectors_changed) 381 nv50_head_atomic_check_mode(head, asyh); 382 383 if (check_lut) 384 asyh->olut.visible = asyh->olut.handle != 0; 385 386 if (asyc) { 387 if (asyc->set.scaler) 388 nv50_head_atomic_check_view(armh, asyh, asyc); 389 if (asyc->set.dither) 390 nv50_head_atomic_check_dither(armh, asyh, asyc); 391 if (asyc->set.procamp) 392 nv50_head_atomic_check_procamp(armh, asyh, asyc); 393 } 394 395 if (head->func->core_calc) { 396 head->func->core_calc(head, asyh); 397 if (!asyh->core.visible) 398 asyh->olut.visible = false; 399 } 400 401 asyh->set.base = armh->base.cpp != asyh->base.cpp; 402 asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; 403 } else { 404 asyh->olut.visible = false; 405 asyh->core.visible = false; 406 asyh->curs.visible = false; 407 asyh->base.cpp = 0; 408 asyh->ovly.cpp = 0; 409 } 410 411 if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { 412 if (asyh->core.visible) { 413 if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) 414 asyh->set.core = true; 415 } else 416 if (armh->core.visible) { 417 asyh->clr.core = true; 418 } 419 420 if (asyh->curs.visible) { 421 if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) 422 asyh->set.curs = true; 423 } else 424 if (armh->curs.visible) { 425 asyh->clr.curs = true; 426 } 427 428 if (asyh->olut.visible) { 429 if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) 430 asyh->set.olut = true; 431 } else 432 if (armh->olut.visible) { 433 asyh->clr.olut = true; 434 } 435 } else { 436 asyh->clr.olut = armh->olut.visible; 437 asyh->clr.core = armh->core.visible; 438 asyh->clr.curs = armh->curs.visible; 439 asyh->set.olut = asyh->olut.visible; 440 asyh->set.core = asyh->core.visible; 441 asyh->set.curs = asyh->curs.visible; 442 } 443 444 ret = nv50_crc_atomic_check_head(head, asyh, armh); 445 if (ret) 446 return ret; 447 448 if (asyh->clr.mask || asyh->set.mask) 449 nv50_atom(asyh->state.state)->lock_core = true; 450 return 0; 451 } 452 453 static const struct drm_crtc_helper_funcs 454 nv50_head_help = { 455 .atomic_check = nv50_head_atomic_check, 456 .get_scanout_position = nouveau_display_scanoutpos, 457 }; 458 459 static void 460 nv50_head_atomic_destroy_state(struct drm_crtc *crtc, 461 struct drm_crtc_state *state) 462 { 463 struct nv50_head_atom *asyh = nv50_head_atom(state); 464 __drm_atomic_helper_crtc_destroy_state(&asyh->state); 465 kfree(asyh); 466 } 467 468 static struct drm_crtc_state * 469 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) 470 { 471 struct nv50_head_atom *armh = nv50_head_atom(crtc->state); 472 struct nv50_head_atom *asyh; 473 if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) 474 return NULL; 475 __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); 476 asyh->wndw = armh->wndw; 477 asyh->view = armh->view; 478 asyh->mode = armh->mode; 479 asyh->olut = armh->olut; 480 asyh->core = armh->core; 481 asyh->curs = armh->curs; 482 asyh->base = armh->base; 483 asyh->ovly = armh->ovly; 484 asyh->dither = armh->dither; 485 asyh->procamp = armh->procamp; 486 asyh->crc = armh->crc; 487 asyh->or = armh->or; 488 asyh->dp = armh->dp; 489 asyh->clr.mask = 0; 490 asyh->set.mask = 0; 491 return &asyh->state; 492 } 493 494 static void 495 nv50_head_reset(struct drm_crtc *crtc) 496 { 497 struct nv50_head_atom *asyh; 498 499 if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) 500 return; 501 502 if (crtc->state) 503 nv50_head_atomic_destroy_state(crtc, crtc->state); 504 505 __drm_atomic_helper_crtc_reset(crtc, &asyh->state); 506 } 507 508 static int 509 nv50_head_late_register(struct drm_crtc *crtc) 510 { 511 return nv50_head_crc_late_register(nv50_head(crtc)); 512 } 513 514 static void 515 nv50_head_destroy(struct drm_crtc *crtc) 516 { 517 struct nv50_head *head = nv50_head(crtc); 518 519 nvif_event_dtor(&head->base.vblank); 520 nvif_head_dtor(&head->base.head); 521 nv50_lut_fini(&head->olut); 522 drm_crtc_cleanup(crtc); 523 kfree(head); 524 } 525 526 static const struct drm_crtc_funcs 527 nv50_head_func = { 528 .reset = nv50_head_reset, 529 .destroy = nv50_head_destroy, 530 .set_config = drm_atomic_helper_set_config, 531 .page_flip = drm_atomic_helper_page_flip, 532 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 533 .atomic_destroy_state = nv50_head_atomic_destroy_state, 534 .enable_vblank = nouveau_display_vblank_enable, 535 .disable_vblank = nouveau_display_vblank_disable, 536 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 537 .late_register = nv50_head_late_register, 538 }; 539 540 static const struct drm_crtc_funcs 541 nvd9_head_func = { 542 .reset = nv50_head_reset, 543 .destroy = nv50_head_destroy, 544 .set_config = drm_atomic_helper_set_config, 545 .page_flip = drm_atomic_helper_page_flip, 546 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 547 .atomic_destroy_state = nv50_head_atomic_destroy_state, 548 .enable_vblank = nouveau_display_vblank_enable, 549 .disable_vblank = nouveau_display_vblank_disable, 550 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 551 .verify_crc_source = nv50_crc_verify_source, 552 .get_crc_sources = nv50_crc_get_sources, 553 .set_crc_source = nv50_crc_set_source, 554 .late_register = nv50_head_late_register, 555 }; 556 557 static int 558 nv50_head_vblank_handler(struct nvif_event *event, void *repv, u32 repc) 559 { 560 struct nouveau_crtc *nv_crtc = container_of(event, struct nouveau_crtc, vblank); 561 562 if (drm_crtc_handle_vblank(&nv_crtc->base)) 563 nv50_crc_handle_vblank(nv50_head(&nv_crtc->base)); 564 565 return NVIF_EVENT_KEEP; 566 } 567 568 struct nv50_head * 569 nv50_head_create(struct drm_device *dev, int index) 570 { 571 struct nouveau_drm *drm = nouveau_drm(dev); 572 struct nv50_disp *disp = nv50_disp(dev); 573 struct nv50_head *head; 574 struct nv50_wndw *base, *ovly, *curs; 575 struct nouveau_crtc *nv_crtc; 576 struct drm_crtc *crtc; 577 const struct drm_crtc_funcs *funcs; 578 int ret; 579 580 head = kzalloc(sizeof(*head), GFP_KERNEL); 581 if (!head) 582 return ERR_PTR(-ENOMEM); 583 584 head->func = disp->core->func->head; 585 head->base.index = index; 586 587 if (disp->disp->object.oclass < GF110_DISP) 588 funcs = &nv50_head_func; 589 else 590 funcs = &nvd9_head_func; 591 592 if (disp->disp->object.oclass < GV100_DISP) { 593 ret = nv50_base_new(drm, head->base.index, &base); 594 ret = nv50_ovly_new(drm, head->base.index, &ovly); 595 } else { 596 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, 597 head->base.index * 2 + 0, &base); 598 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, 599 head->base.index * 2 + 1, &ovly); 600 } 601 if (ret == 0) 602 ret = nv50_curs_new(drm, head->base.index, &curs); 603 if (ret) { 604 kfree(head); 605 return ERR_PTR(ret); 606 } 607 608 nv_crtc = &head->base; 609 crtc = &nv_crtc->base; 610 drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane, 611 funcs, "head-%d", head->base.index); 612 drm_crtc_helper_add(crtc, &nv50_head_help); 613 /* Keep the legacy gamma size at 256 to avoid compatibility issues */ 614 drm_mode_crtc_set_gamma_size(crtc, 256); 615 drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size, 616 disp->disp->object.oclass >= GF110_DISP, 617 head->func->olut_size); 618 619 if (head->func->olut_set) { 620 ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); 621 if (ret) { 622 nv50_head_destroy(crtc); 623 return ERR_PTR(ret); 624 } 625 } 626 627 ret = nvif_head_ctor(disp->disp, head->base.base.name, head->base.index, &head->base.head); 628 if (ret) 629 return ERR_PTR(ret); 630 631 ret = nvif_head_vblank_event_ctor(&head->base.head, "kmsVbl", nv50_head_vblank_handler, 632 false, &nv_crtc->vblank); 633 if (ret) 634 return ERR_PTR(ret); 635 636 return head; 637 } 638