1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "head.h"
23 #include "base.h"
24 #include "core.h"
25 #include "curs.h"
26 #include "ovly.h"
27 #include "crc.h"
28 
29 #include <nvif/class.h>
30 #include <nvif/event.h>
31 #include <nvif/cl0046.h>
32 
33 #include <drm/drm_atomic.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_vblank.h>
37 #include "nouveau_connector.h"
38 
39 void
40 nv50_head_flush_clr(struct nv50_head *head,
41 		    struct nv50_head_atom *asyh, bool flush)
42 {
43 	union nv50_head_atom_mask clr = {
44 		.mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask),
45 	};
46 	if (clr.crc)  nv50_crc_atomic_clr(head);
47 	if (clr.olut) head->func->olut_clr(head);
48 	if (clr.core) head->func->core_clr(head);
49 	if (clr.curs) head->func->curs_clr(head);
50 }
51 
52 void
53 nv50_head_flush_set_wndw(struct nv50_head *head, struct nv50_head_atom *asyh)
54 {
55 	if (asyh->set.olut   ) {
56 		asyh->olut.offset = nv50_lut_load(&head->olut,
57 						  asyh->olut.buffer,
58 						  asyh->state.gamma_lut,
59 						  asyh->olut.load);
60 		head->func->olut_set(head, asyh);
61 	}
62 }
63 
64 void
65 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
66 {
67 	if (asyh->set.view   ) head->func->view    (head, asyh);
68 	if (asyh->set.mode   ) head->func->mode    (head, asyh);
69 	if (asyh->set.core   ) head->func->core_set(head, asyh);
70 	if (asyh->set.curs   ) head->func->curs_set(head, asyh);
71 	if (asyh->set.base   ) head->func->base    (head, asyh);
72 	if (asyh->set.ovly   ) head->func->ovly    (head, asyh);
73 	if (asyh->set.dither ) head->func->dither  (head, asyh);
74 	if (asyh->set.procamp) head->func->procamp (head, asyh);
75 	if (asyh->set.crc    ) nv50_crc_atomic_set (head, asyh);
76 	if (asyh->set.or     ) head->func->or      (head, asyh);
77 }
78 
79 static void
80 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
81 			       struct nv50_head_atom *asyh,
82 			       struct nouveau_conn_atom *asyc)
83 {
84 	const int vib = asyc->procamp.color_vibrance - 100;
85 	const int hue = asyc->procamp.vibrant_hue - 90;
86 	const int adj = (vib > 0) ? 50 : 0;
87 	asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
88 	asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
89 	asyh->set.procamp = true;
90 }
91 
92 static void
93 nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
94 			      struct nv50_head_atom *asyh,
95 			      struct nouveau_conn_atom *asyc)
96 {
97 	u32 mode = 0x00;
98 
99 	if (asyc->dither.mode) {
100 		if (asyc->dither.mode == DITHERING_MODE_AUTO) {
101 			if (asyh->base.depth > asyh->or.bpc * 3)
102 				mode = DITHERING_MODE_DYNAMIC2X2;
103 		} else {
104 			mode = asyc->dither.mode;
105 		}
106 
107 		if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
108 			if (asyh->or.bpc >= 8)
109 				mode |= DITHERING_DEPTH_8BPC;
110 		} else {
111 			mode |= asyc->dither.depth;
112 		}
113 	}
114 
115 	asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE);
116 	asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS);
117 	asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE);
118 	asyh->set.dither = true;
119 }
120 
121 static void
122 nv50_head_atomic_check_view(struct nv50_head_atom *armh,
123 			    struct nv50_head_atom *asyh,
124 			    struct nouveau_conn_atom *asyc)
125 {
126 	struct drm_connector *connector = asyc->state.connector;
127 	struct drm_display_mode *omode = &asyh->state.adjusted_mode;
128 	struct drm_display_mode *umode = &asyh->state.mode;
129 	int mode = asyc->scaler.mode;
130 	struct edid *edid;
131 	int umode_vdisplay, omode_hdisplay, omode_vdisplay;
132 
133 	if (connector->edid_blob_ptr)
134 		edid = (struct edid *)connector->edid_blob_ptr->data;
135 	else
136 		edid = NULL;
137 
138 	if (!asyc->scaler.full) {
139 		if (mode == DRM_MODE_SCALE_NONE)
140 			omode = umode;
141 	} else {
142 		/* Non-EDID LVDS/eDP mode. */
143 		mode = DRM_MODE_SCALE_FULLSCREEN;
144 	}
145 
146 	/* For the user-specified mode, we must ignore doublescan and
147 	 * the like, but honor frame packing.
148 	 */
149 	umode_vdisplay = umode->vdisplay;
150 	if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
151 		umode_vdisplay += umode->vtotal;
152 	asyh->view.iW = umode->hdisplay;
153 	asyh->view.iH = umode_vdisplay;
154 	/* For the output mode, we can just use the stock helper. */
155 	drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay);
156 	asyh->view.oW = omode_hdisplay;
157 	asyh->view.oH = omode_vdisplay;
158 
159 	/* Add overscan compensation if necessary, will keep the aspect
160 	 * ratio the same as the backend mode unless overridden by the
161 	 * user setting both hborder and vborder properties.
162 	 */
163 	if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
164 	    (asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
165 	     drm_detect_hdmi_monitor(edid)))) {
166 		u32 bX = asyc->scaler.underscan.hborder;
167 		u32 bY = asyc->scaler.underscan.vborder;
168 		u32 r = (asyh->view.oH << 19) / asyh->view.oW;
169 
170 		if (bX) {
171 			asyh->view.oW -= (bX * 2);
172 			if (bY) asyh->view.oH -= (bY * 2);
173 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
174 		} else {
175 			asyh->view.oW -= (asyh->view.oW >> 4) + 32;
176 			if (bY) asyh->view.oH -= (bY * 2);
177 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
178 		}
179 	}
180 
181 	/* Handle CENTER/ASPECT scaling, taking into account the areas
182 	 * removed already for overscan compensation.
183 	 */
184 	switch (mode) {
185 	case DRM_MODE_SCALE_CENTER:
186 		/* NOTE: This will cause scaling when the input is
187 		 * larger than the output.
188 		 */
189 		asyh->view.oW = min(asyh->view.iW, asyh->view.oW);
190 		asyh->view.oH = min(asyh->view.iH, asyh->view.oH);
191 		break;
192 	case DRM_MODE_SCALE_ASPECT:
193 		/* Determine whether the scaling should be on width or on
194 		 * height. This is done by comparing the aspect ratios of the
195 		 * sizes. If the output AR is larger than input AR, that means
196 		 * we want to change the width (letterboxed on the
197 		 * left/right), otherwise on the height (letterboxed on the
198 		 * top/bottom).
199 		 *
200 		 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR
201 		 * screen will have letterboxes on the left/right. However a
202 		 * 16:9 (1.777) AR image on that same screen will have
203 		 * letterboxes on the top/bottom.
204 		 *
205 		 * inputAR = iW / iH; outputAR = oW / oH
206 		 * outputAR > inputAR is equivalent to oW * iH > iW * oH
207 		 */
208 		if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) {
209 			/* Recompute output width, i.e. left/right letterbox */
210 			u32 r = (asyh->view.iW << 19) / asyh->view.iH;
211 			asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
212 		} else {
213 			/* Recompute output height, i.e. top/bottom letterbox */
214 			u32 r = (asyh->view.iH << 19) / asyh->view.iW;
215 			asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
216 		}
217 		break;
218 	default:
219 		break;
220 	}
221 
222 	asyh->set.view = true;
223 }
224 
225 static int
226 nv50_head_atomic_check_lut(struct nv50_head *head,
227 			   struct nv50_head_atom *asyh)
228 {
229 	struct nv50_disp *disp = nv50_disp(head->base.base.dev);
230 	struct drm_property_blob *olut = asyh->state.gamma_lut;
231 	int size;
232 
233 	/* Determine whether core output LUT should be enabled. */
234 	if (olut) {
235 		/* Check if any window(s) have stolen the core output LUT
236 		 * to as an input LUT for legacy gamma + I8 colour format.
237 		 */
238 		if (asyh->wndw.olut) {
239 			/* If any window has stolen the core output LUT,
240 			 * all of them must.
241 			 */
242 			if (asyh->wndw.olut != asyh->wndw.mask)
243 				return -EINVAL;
244 			olut = NULL;
245 		}
246 	}
247 
248 	if (!olut) {
249 		if (!head->func->olut_identity) {
250 			asyh->olut.handle = 0;
251 			return 0;
252 		}
253 		size = 0;
254 	} else {
255 		size = drm_color_lut_size(olut);
256 	}
257 
258 	if (!head->func->olut(head, asyh, size)) {
259 		DRM_DEBUG_KMS("Invalid olut\n");
260 		return -EINVAL;
261 	}
262 	asyh->olut.handle = disp->core->chan.vram.handle;
263 	asyh->olut.buffer = !asyh->olut.buffer;
264 
265 	return 0;
266 }
267 
268 static void
269 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
270 {
271 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
272 	struct nv50_head_mode *m = &asyh->mode;
273 	u32 blankus;
274 
275 	drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE);
276 
277 	/*
278 	 * DRM modes are defined in terms of a repeating interval
279 	 * starting with the active display area.  The hardware modes
280 	 * are defined in terms of a repeating interval starting one
281 	 * unit (pixel or line) into the sync pulse.  So, add bias.
282 	 */
283 
284 	m->h.active = mode->crtc_htotal;
285 	m->h.synce  = mode->crtc_hsync_end - mode->crtc_hsync_start - 1;
286 	m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1;
287 	m->h.blanks = m->h.blanke + mode->crtc_hdisplay;
288 
289 	m->v.active = mode->crtc_vtotal;
290 	m->v.synce  = mode->crtc_vsync_end - mode->crtc_vsync_start - 1;
291 	m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1;
292 	m->v.blanks = m->v.blanke + mode->crtc_vdisplay;
293 
294 	/*XXX: Safe underestimate, even "0" works */
295 	blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active;
296 	blankus *= 1000;
297 	blankus /= mode->crtc_clock;
298 	m->v.blankus = blankus;
299 
300 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
301 		m->v.blank2e =  m->v.active + m->v.blanke;
302 		m->v.blank2s =  m->v.blank2e + mode->crtc_vdisplay;
303 		m->v.active  = (m->v.active * 2) + 1;
304 		m->interlace = true;
305 	} else {
306 		m->v.blank2e = 0;
307 		m->v.blank2s = 1;
308 		m->interlace = false;
309 	}
310 	m->clock = mode->crtc_clock;
311 
312 	asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
313 	asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
314 	asyh->set.or = head->func->or != NULL;
315 	asyh->set.mode = true;
316 }
317 
318 static int
319 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
320 {
321 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
322 									      crtc);
323 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
324 									  crtc);
325 	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
326 	struct nv50_head *head = nv50_head(crtc);
327 	struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state);
328 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
329 	struct nouveau_conn_atom *asyc = NULL;
330 	struct drm_connector_state *conns;
331 	struct drm_connector *conn;
332 	int i, ret;
333 
334 	NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
335 	if (asyh->state.active) {
336 		for_each_new_connector_in_state(asyh->state.state, conn, conns, i) {
337 			if (conns->crtc == crtc) {
338 				asyc = nouveau_conn_atom(conns);
339 				break;
340 			}
341 		}
342 
343 		if (armh->state.active) {
344 			if (asyc) {
345 				if (asyh->state.mode_changed)
346 					asyc->set.scaler = true;
347 				if (armh->base.depth != asyh->base.depth)
348 					asyc->set.dither = true;
349 			}
350 		} else {
351 			if (asyc)
352 				asyc->set.mask = ~0;
353 			asyh->set.mask = ~0;
354 			asyh->set.or = head->func->or != NULL;
355 		}
356 
357 		if (asyh->state.mode_changed || asyh->state.connectors_changed)
358 			nv50_head_atomic_check_mode(head, asyh);
359 
360 		if (asyh->state.color_mgmt_changed ||
361 		    memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) {
362 			int ret = nv50_head_atomic_check_lut(head, asyh);
363 			if (ret)
364 				return ret;
365 
366 			asyh->olut.visible = asyh->olut.handle != 0;
367 		}
368 
369 		if (asyc) {
370 			if (asyc->set.scaler)
371 				nv50_head_atomic_check_view(armh, asyh, asyc);
372 			if (asyc->set.dither)
373 				nv50_head_atomic_check_dither(armh, asyh, asyc);
374 			if (asyc->set.procamp)
375 				nv50_head_atomic_check_procamp(armh, asyh, asyc);
376 		}
377 
378 		if (head->func->core_calc) {
379 			head->func->core_calc(head, asyh);
380 			if (!asyh->core.visible)
381 				asyh->olut.visible = false;
382 		}
383 
384 		asyh->set.base = armh->base.cpp != asyh->base.cpp;
385 		asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
386 	} else {
387 		asyh->olut.visible = false;
388 		asyh->core.visible = false;
389 		asyh->curs.visible = false;
390 		asyh->base.cpp = 0;
391 		asyh->ovly.cpp = 0;
392 	}
393 
394 	if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
395 		if (asyh->core.visible) {
396 			if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
397 				asyh->set.core = true;
398 		} else
399 		if (armh->core.visible) {
400 			asyh->clr.core = true;
401 		}
402 
403 		if (asyh->curs.visible) {
404 			if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
405 				asyh->set.curs = true;
406 		} else
407 		if (armh->curs.visible) {
408 			asyh->clr.curs = true;
409 		}
410 
411 		if (asyh->olut.visible) {
412 			if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut)))
413 				asyh->set.olut = true;
414 		} else
415 		if (armh->olut.visible) {
416 			asyh->clr.olut = true;
417 		}
418 	} else {
419 		asyh->clr.olut = armh->olut.visible;
420 		asyh->clr.core = armh->core.visible;
421 		asyh->clr.curs = armh->curs.visible;
422 		asyh->set.olut = asyh->olut.visible;
423 		asyh->set.core = asyh->core.visible;
424 		asyh->set.curs = asyh->curs.visible;
425 	}
426 
427 	ret = nv50_crc_atomic_check_head(head, asyh, armh);
428 	if (ret)
429 		return ret;
430 
431 	if (asyh->clr.mask || asyh->set.mask)
432 		nv50_atom(asyh->state.state)->lock_core = true;
433 	return 0;
434 }
435 
436 static const struct drm_crtc_helper_funcs
437 nv50_head_help = {
438 	.atomic_check = nv50_head_atomic_check,
439 	.get_scanout_position = nouveau_display_scanoutpos,
440 };
441 
442 static void
443 nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
444 			       struct drm_crtc_state *state)
445 {
446 	struct nv50_head_atom *asyh = nv50_head_atom(state);
447 	__drm_atomic_helper_crtc_destroy_state(&asyh->state);
448 	kfree(asyh);
449 }
450 
451 static struct drm_crtc_state *
452 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
453 {
454 	struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
455 	struct nv50_head_atom *asyh;
456 	if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
457 		return NULL;
458 	__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
459 	asyh->wndw = armh->wndw;
460 	asyh->view = armh->view;
461 	asyh->mode = armh->mode;
462 	asyh->olut = armh->olut;
463 	asyh->core = armh->core;
464 	asyh->curs = armh->curs;
465 	asyh->base = armh->base;
466 	asyh->ovly = armh->ovly;
467 	asyh->dither = armh->dither;
468 	asyh->procamp = armh->procamp;
469 	asyh->crc = armh->crc;
470 	asyh->or = armh->or;
471 	asyh->dp = armh->dp;
472 	asyh->clr.mask = 0;
473 	asyh->set.mask = 0;
474 	return &asyh->state;
475 }
476 
477 static void
478 nv50_head_reset(struct drm_crtc *crtc)
479 {
480 	struct nv50_head_atom *asyh;
481 
482 	if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
483 		return;
484 
485 	if (crtc->state)
486 		nv50_head_atomic_destroy_state(crtc, crtc->state);
487 
488 	__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
489 }
490 
491 static int
492 nv50_head_late_register(struct drm_crtc *crtc)
493 {
494 	return nv50_head_crc_late_register(nv50_head(crtc));
495 }
496 
497 static void
498 nv50_head_destroy(struct drm_crtc *crtc)
499 {
500 	struct nv50_head *head = nv50_head(crtc);
501 
502 	nvif_notify_dtor(&head->base.vblank);
503 	nv50_lut_fini(&head->olut);
504 	drm_crtc_cleanup(crtc);
505 	kfree(head);
506 }
507 
508 static const struct drm_crtc_funcs
509 nv50_head_func = {
510 	.reset = nv50_head_reset,
511 	.destroy = nv50_head_destroy,
512 	.set_config = drm_atomic_helper_set_config,
513 	.page_flip = drm_atomic_helper_page_flip,
514 	.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
515 	.atomic_destroy_state = nv50_head_atomic_destroy_state,
516 	.enable_vblank = nouveau_display_vblank_enable,
517 	.disable_vblank = nouveau_display_vblank_disable,
518 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
519 	.late_register = nv50_head_late_register,
520 };
521 
522 static const struct drm_crtc_funcs
523 nvd9_head_func = {
524 	.reset = nv50_head_reset,
525 	.destroy = nv50_head_destroy,
526 	.set_config = drm_atomic_helper_set_config,
527 	.page_flip = drm_atomic_helper_page_flip,
528 	.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
529 	.atomic_destroy_state = nv50_head_atomic_destroy_state,
530 	.enable_vblank = nouveau_display_vblank_enable,
531 	.disable_vblank = nouveau_display_vblank_disable,
532 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
533 	.verify_crc_source = nv50_crc_verify_source,
534 	.get_crc_sources = nv50_crc_get_sources,
535 	.set_crc_source = nv50_crc_set_source,
536 	.late_register = nv50_head_late_register,
537 };
538 
539 static int nv50_head_vblank_handler(struct nvif_notify *notify)
540 {
541 	struct nouveau_crtc *nv_crtc =
542 		container_of(notify, struct nouveau_crtc, vblank);
543 
544 	if (drm_crtc_handle_vblank(&nv_crtc->base))
545 		nv50_crc_handle_vblank(nv50_head(&nv_crtc->base));
546 
547 	return NVIF_NOTIFY_KEEP;
548 }
549 
550 struct nv50_head *
551 nv50_head_create(struct drm_device *dev, int index)
552 {
553 	struct nouveau_drm *drm = nouveau_drm(dev);
554 	struct nv50_disp *disp = nv50_disp(dev);
555 	struct nv50_head *head;
556 	struct nv50_wndw *base, *ovly, *curs;
557 	struct nouveau_crtc *nv_crtc;
558 	struct drm_crtc *crtc;
559 	const struct drm_crtc_funcs *funcs;
560 	int ret;
561 
562 	head = kzalloc(sizeof(*head), GFP_KERNEL);
563 	if (!head)
564 		return ERR_PTR(-ENOMEM);
565 
566 	head->func = disp->core->func->head;
567 	head->base.index = index;
568 
569 	if (disp->disp->object.oclass < GF110_DISP)
570 		funcs = &nv50_head_func;
571 	else
572 		funcs = &nvd9_head_func;
573 
574 	if (disp->disp->object.oclass < GV100_DISP) {
575 		ret = nv50_base_new(drm, head->base.index, &base);
576 		ret = nv50_ovly_new(drm, head->base.index, &ovly);
577 	} else {
578 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY,
579 				    head->base.index * 2 + 0, &base);
580 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY,
581 				    head->base.index * 2 + 1, &ovly);
582 	}
583 	if (ret == 0)
584 		ret = nv50_curs_new(drm, head->base.index, &curs);
585 	if (ret) {
586 		kfree(head);
587 		return ERR_PTR(ret);
588 	}
589 
590 	nv_crtc = &head->base;
591 	crtc = &nv_crtc->base;
592 	drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane,
593 				  funcs, "head-%d", head->base.index);
594 	drm_crtc_helper_add(crtc, &nv50_head_help);
595 	/* Keep the legacy gamma size at 256 to avoid compatibility issues */
596 	drm_mode_crtc_set_gamma_size(crtc, 256);
597 	drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size,
598 				   disp->disp->object.oclass >= GF110_DISP,
599 				   head->func->olut_size);
600 
601 	if (head->func->olut_set) {
602 		ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut);
603 		if (ret) {
604 			nv50_head_destroy(crtc);
605 			return ERR_PTR(ret);
606 		}
607 	}
608 
609 	ret = nvif_notify_ctor(&disp->disp->object, "kmsVbl", nv50_head_vblank_handler,
610 			       false, NV04_DISP_NTFY_VBLANK,
611 			       &(struct nvif_notify_head_req_v0) {
612 				    .head = nv_crtc->index,
613 			       },
614 			       sizeof(struct nvif_notify_head_req_v0),
615 			       sizeof(struct nvif_notify_head_rep_v0),
616 			       &nv_crtc->vblank);
617 	if (ret)
618 		return ERR_PTR(ret);
619 
620 	return head;
621 }
622