1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "head.h" 23 #include "base.h" 24 #include "core.h" 25 #include "curs.h" 26 #include "ovly.h" 27 #include "crc.h" 28 29 #include <nvif/class.h> 30 #include <nvif/event.h> 31 #include <nvif/cl0046.h> 32 33 #include <drm/drm_atomic.h> 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_crtc_helper.h> 36 #include <drm/drm_vblank.h> 37 #include "nouveau_connector.h" 38 39 void 40 nv50_head_flush_clr(struct nv50_head *head, 41 struct nv50_head_atom *asyh, bool flush) 42 { 43 union nv50_head_atom_mask clr = { 44 .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), 45 }; 46 if (clr.crc) nv50_crc_atomic_clr(head); 47 if (clr.olut) head->func->olut_clr(head); 48 if (clr.core) head->func->core_clr(head); 49 if (clr.curs) head->func->curs_clr(head); 50 } 51 52 void 53 nv50_head_flush_set_wndw(struct nv50_head *head, struct nv50_head_atom *asyh) 54 { 55 if (asyh->set.curs ) head->func->curs_set(head, asyh); 56 if (asyh->set.olut ) { 57 asyh->olut.offset = nv50_lut_load(&head->olut, 58 asyh->olut.buffer, 59 asyh->state.gamma_lut, 60 asyh->olut.load); 61 head->func->olut_set(head, asyh); 62 } 63 } 64 65 void 66 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) 67 { 68 if (asyh->set.view ) head->func->view (head, asyh); 69 if (asyh->set.mode ) head->func->mode (head, asyh); 70 if (asyh->set.core ) head->func->core_set(head, asyh); 71 if (asyh->set.base ) head->func->base (head, asyh); 72 if (asyh->set.ovly ) head->func->ovly (head, asyh); 73 if (asyh->set.dither ) head->func->dither (head, asyh); 74 if (asyh->set.procamp) head->func->procamp (head, asyh); 75 if (asyh->set.crc ) nv50_crc_atomic_set (head, asyh); 76 if (asyh->set.or ) head->func->or (head, asyh); 77 } 78 79 static void 80 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, 81 struct nv50_head_atom *asyh, 82 struct nouveau_conn_atom *asyc) 83 { 84 const int vib = asyc->procamp.color_vibrance - 100; 85 const int hue = asyc->procamp.vibrant_hue - 90; 86 const int adj = (vib > 0) ? 50 : 0; 87 asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; 88 asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; 89 asyh->set.procamp = true; 90 } 91 92 static void 93 nv50_head_atomic_check_dither(struct nv50_head_atom *armh, 94 struct nv50_head_atom *asyh, 95 struct nouveau_conn_atom *asyc) 96 { 97 u32 mode = 0x00; 98 99 if (asyc->dither.mode) { 100 if (asyc->dither.mode == DITHERING_MODE_AUTO) { 101 if (asyh->base.depth > asyh->or.bpc * 3) 102 mode = DITHERING_MODE_DYNAMIC2X2; 103 } else { 104 mode = asyc->dither.mode; 105 } 106 107 if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { 108 if (asyh->or.bpc >= 8) 109 mode |= DITHERING_DEPTH_8BPC; 110 } else { 111 mode |= asyc->dither.depth; 112 } 113 } 114 115 asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE); 116 asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS); 117 asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE); 118 asyh->set.dither = true; 119 } 120 121 static void 122 nv50_head_atomic_check_view(struct nv50_head_atom *armh, 123 struct nv50_head_atom *asyh, 124 struct nouveau_conn_atom *asyc) 125 { 126 struct drm_connector *connector = asyc->state.connector; 127 struct drm_display_mode *omode = &asyh->state.adjusted_mode; 128 struct drm_display_mode *umode = &asyh->state.mode; 129 int mode = asyc->scaler.mode; 130 struct edid *edid; 131 int umode_vdisplay, omode_hdisplay, omode_vdisplay; 132 133 if (connector->edid_blob_ptr) 134 edid = (struct edid *)connector->edid_blob_ptr->data; 135 else 136 edid = NULL; 137 138 if (!asyc->scaler.full) { 139 if (mode == DRM_MODE_SCALE_NONE) 140 omode = umode; 141 } else { 142 /* Non-EDID LVDS/eDP mode. */ 143 mode = DRM_MODE_SCALE_FULLSCREEN; 144 } 145 146 /* For the user-specified mode, we must ignore doublescan and 147 * the like, but honor frame packing. 148 */ 149 umode_vdisplay = umode->vdisplay; 150 if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 151 umode_vdisplay += umode->vtotal; 152 asyh->view.iW = umode->hdisplay; 153 asyh->view.iH = umode_vdisplay; 154 /* For the output mode, we can just use the stock helper. */ 155 drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); 156 asyh->view.oW = omode_hdisplay; 157 asyh->view.oH = omode_vdisplay; 158 159 /* Add overscan compensation if necessary, will keep the aspect 160 * ratio the same as the backend mode unless overridden by the 161 * user setting both hborder and vborder properties. 162 */ 163 if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || 164 (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && 165 drm_detect_hdmi_monitor(edid)))) { 166 u32 bX = asyc->scaler.underscan.hborder; 167 u32 bY = asyc->scaler.underscan.vborder; 168 u32 r = (asyh->view.oH << 19) / asyh->view.oW; 169 170 if (bX) { 171 asyh->view.oW -= (bX * 2); 172 if (bY) asyh->view.oH -= (bY * 2); 173 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 174 } else { 175 asyh->view.oW -= (asyh->view.oW >> 4) + 32; 176 if (bY) asyh->view.oH -= (bY * 2); 177 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 178 } 179 } 180 181 /* Handle CENTER/ASPECT scaling, taking into account the areas 182 * removed already for overscan compensation. 183 */ 184 switch (mode) { 185 case DRM_MODE_SCALE_CENTER: 186 /* NOTE: This will cause scaling when the input is 187 * larger than the output. 188 */ 189 asyh->view.oW = min(asyh->view.iW, asyh->view.oW); 190 asyh->view.oH = min(asyh->view.iH, asyh->view.oH); 191 break; 192 case DRM_MODE_SCALE_ASPECT: 193 /* Determine whether the scaling should be on width or on 194 * height. This is done by comparing the aspect ratios of the 195 * sizes. If the output AR is larger than input AR, that means 196 * we want to change the width (letterboxed on the 197 * left/right), otherwise on the height (letterboxed on the 198 * top/bottom). 199 * 200 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR 201 * screen will have letterboxes on the left/right. However a 202 * 16:9 (1.777) AR image on that same screen will have 203 * letterboxes on the top/bottom. 204 * 205 * inputAR = iW / iH; outputAR = oW / oH 206 * outputAR > inputAR is equivalent to oW * iH > iW * oH 207 */ 208 if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) { 209 /* Recompute output width, i.e. left/right letterbox */ 210 u32 r = (asyh->view.iW << 19) / asyh->view.iH; 211 asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; 212 } else { 213 /* Recompute output height, i.e. top/bottom letterbox */ 214 u32 r = (asyh->view.iH << 19) / asyh->view.iW; 215 asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 216 } 217 break; 218 default: 219 break; 220 } 221 222 asyh->set.view = true; 223 } 224 225 static int 226 nv50_head_atomic_check_lut(struct nv50_head *head, 227 struct nv50_head_atom *asyh) 228 { 229 struct nv50_disp *disp = nv50_disp(head->base.base.dev); 230 struct drm_property_blob *olut = asyh->state.gamma_lut; 231 int size; 232 233 /* Determine whether core output LUT should be enabled. */ 234 if (olut) { 235 /* Check if any window(s) have stolen the core output LUT 236 * to as an input LUT for legacy gamma + I8 colour format. 237 */ 238 if (asyh->wndw.olut) { 239 /* If any window has stolen the core output LUT, 240 * all of them must. 241 */ 242 if (asyh->wndw.olut != asyh->wndw.mask) 243 return -EINVAL; 244 olut = NULL; 245 } 246 } 247 248 if (!olut) { 249 if (!head->func->olut_identity) { 250 asyh->olut.handle = 0; 251 return 0; 252 } 253 size = 0; 254 } else { 255 size = drm_color_lut_size(olut); 256 } 257 258 if (!head->func->olut(head, asyh, size)) { 259 DRM_DEBUG_KMS("Invalid olut\n"); 260 return -EINVAL; 261 } 262 asyh->olut.handle = disp->core->chan.vram.handle; 263 asyh->olut.buffer = !asyh->olut.buffer; 264 265 return 0; 266 } 267 268 static void 269 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) 270 { 271 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 272 struct nv50_head_mode *m = &asyh->mode; 273 u32 blankus; 274 275 drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); 276 277 /* 278 * DRM modes are defined in terms of a repeating interval 279 * starting with the active display area. The hardware modes 280 * are defined in terms of a repeating interval starting one 281 * unit (pixel or line) into the sync pulse. So, add bias. 282 */ 283 284 m->h.active = mode->crtc_htotal; 285 m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; 286 m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; 287 m->h.blanks = m->h.blanke + mode->crtc_hdisplay; 288 289 m->v.active = mode->crtc_vtotal; 290 m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; 291 m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; 292 m->v.blanks = m->v.blanke + mode->crtc_vdisplay; 293 294 /*XXX: Safe underestimate, even "0" works */ 295 blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; 296 blankus *= 1000; 297 blankus /= mode->crtc_clock; 298 m->v.blankus = blankus; 299 300 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 301 m->v.blank2e = m->v.active + m->v.blanke; 302 m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; 303 m->v.active = (m->v.active * 2) + 1; 304 m->interlace = true; 305 } else { 306 m->v.blank2e = 0; 307 m->v.blank2s = 1; 308 m->interlace = false; 309 } 310 m->clock = mode->crtc_clock; 311 312 asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 313 asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 314 asyh->set.or = head->func->or != NULL; 315 asyh->set.mode = true; 316 } 317 318 static int 319 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) 320 { 321 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 322 crtc); 323 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 324 crtc); 325 struct nouveau_drm *drm = nouveau_drm(crtc->dev); 326 struct nv50_head *head = nv50_head(crtc); 327 struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); 328 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 329 struct nouveau_conn_atom *asyc = NULL; 330 struct drm_connector_state *conns; 331 struct drm_connector *conn; 332 int i, ret; 333 334 NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); 335 if (asyh->state.active) { 336 for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { 337 if (conns->crtc == crtc) { 338 asyc = nouveau_conn_atom(conns); 339 break; 340 } 341 } 342 343 if (armh->state.active) { 344 if (asyc) { 345 if (asyh->state.mode_changed) 346 asyc->set.scaler = true; 347 if (armh->base.depth != asyh->base.depth) 348 asyc->set.dither = true; 349 } 350 } else { 351 if (asyc) 352 asyc->set.mask = ~0; 353 asyh->set.mask = ~0; 354 asyh->set.or = head->func->or != NULL; 355 } 356 357 if (asyh->state.mode_changed || asyh->state.connectors_changed) 358 nv50_head_atomic_check_mode(head, asyh); 359 360 if (asyh->state.color_mgmt_changed || 361 memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) { 362 int ret = nv50_head_atomic_check_lut(head, asyh); 363 if (ret) 364 return ret; 365 366 asyh->olut.visible = asyh->olut.handle != 0; 367 } 368 369 if (asyc) { 370 if (asyc->set.scaler) 371 nv50_head_atomic_check_view(armh, asyh, asyc); 372 if (asyc->set.dither) 373 nv50_head_atomic_check_dither(armh, asyh, asyc); 374 if (asyc->set.procamp) 375 nv50_head_atomic_check_procamp(armh, asyh, asyc); 376 } 377 378 if (head->func->core_calc) { 379 head->func->core_calc(head, asyh); 380 if (!asyh->core.visible) 381 asyh->olut.visible = false; 382 } 383 384 asyh->set.base = armh->base.cpp != asyh->base.cpp; 385 asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; 386 } else { 387 asyh->olut.visible = false; 388 asyh->core.visible = false; 389 asyh->curs.visible = false; 390 asyh->base.cpp = 0; 391 asyh->ovly.cpp = 0; 392 } 393 394 if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { 395 if (asyh->core.visible) { 396 if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) 397 asyh->set.core = true; 398 } else 399 if (armh->core.visible) { 400 asyh->clr.core = true; 401 } 402 403 if (asyh->curs.visible) { 404 if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) 405 asyh->set.curs = true; 406 } else 407 if (armh->curs.visible) { 408 asyh->clr.curs = true; 409 } 410 411 if (asyh->olut.visible) { 412 if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) 413 asyh->set.olut = true; 414 } else 415 if (armh->olut.visible) { 416 asyh->clr.olut = true; 417 } 418 } else { 419 asyh->clr.olut = armh->olut.visible; 420 asyh->clr.core = armh->core.visible; 421 asyh->clr.curs = armh->curs.visible; 422 asyh->set.olut = asyh->olut.visible; 423 asyh->set.core = asyh->core.visible; 424 asyh->set.curs = asyh->curs.visible; 425 } 426 427 ret = nv50_crc_atomic_check_head(head, asyh, armh); 428 if (ret) 429 return ret; 430 431 if (asyh->clr.mask || asyh->set.mask) 432 nv50_atom(asyh->state.state)->lock_core = true; 433 return 0; 434 } 435 436 static const struct drm_crtc_helper_funcs 437 nv50_head_help = { 438 .atomic_check = nv50_head_atomic_check, 439 .get_scanout_position = nouveau_display_scanoutpos, 440 }; 441 442 static void 443 nv50_head_atomic_destroy_state(struct drm_crtc *crtc, 444 struct drm_crtc_state *state) 445 { 446 struct nv50_head_atom *asyh = nv50_head_atom(state); 447 __drm_atomic_helper_crtc_destroy_state(&asyh->state); 448 kfree(asyh); 449 } 450 451 static struct drm_crtc_state * 452 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) 453 { 454 struct nv50_head_atom *armh = nv50_head_atom(crtc->state); 455 struct nv50_head_atom *asyh; 456 if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) 457 return NULL; 458 __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); 459 asyh->wndw = armh->wndw; 460 asyh->view = armh->view; 461 asyh->mode = armh->mode; 462 asyh->olut = armh->olut; 463 asyh->core = armh->core; 464 asyh->curs = armh->curs; 465 asyh->base = armh->base; 466 asyh->ovly = armh->ovly; 467 asyh->dither = armh->dither; 468 asyh->procamp = armh->procamp; 469 asyh->crc = armh->crc; 470 asyh->or = armh->or; 471 asyh->dp = armh->dp; 472 asyh->clr.mask = 0; 473 asyh->set.mask = 0; 474 return &asyh->state; 475 } 476 477 static void 478 nv50_head_reset(struct drm_crtc *crtc) 479 { 480 struct nv50_head_atom *asyh; 481 482 if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) 483 return; 484 485 if (crtc->state) 486 nv50_head_atomic_destroy_state(crtc, crtc->state); 487 488 __drm_atomic_helper_crtc_reset(crtc, &asyh->state); 489 } 490 491 static int 492 nv50_head_late_register(struct drm_crtc *crtc) 493 { 494 return nv50_head_crc_late_register(nv50_head(crtc)); 495 } 496 497 static void 498 nv50_head_destroy(struct drm_crtc *crtc) 499 { 500 struct nv50_head *head = nv50_head(crtc); 501 502 nvif_notify_dtor(&head->base.vblank); 503 nv50_lut_fini(&head->olut); 504 drm_crtc_cleanup(crtc); 505 kfree(head); 506 } 507 508 static const struct drm_crtc_funcs 509 nv50_head_func = { 510 .reset = nv50_head_reset, 511 .destroy = nv50_head_destroy, 512 .set_config = drm_atomic_helper_set_config, 513 .page_flip = drm_atomic_helper_page_flip, 514 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 515 .atomic_destroy_state = nv50_head_atomic_destroy_state, 516 .enable_vblank = nouveau_display_vblank_enable, 517 .disable_vblank = nouveau_display_vblank_disable, 518 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 519 .late_register = nv50_head_late_register, 520 }; 521 522 static const struct drm_crtc_funcs 523 nvd9_head_func = { 524 .reset = nv50_head_reset, 525 .destroy = nv50_head_destroy, 526 .set_config = drm_atomic_helper_set_config, 527 .page_flip = drm_atomic_helper_page_flip, 528 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 529 .atomic_destroy_state = nv50_head_atomic_destroy_state, 530 .enable_vblank = nouveau_display_vblank_enable, 531 .disable_vblank = nouveau_display_vblank_disable, 532 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 533 .verify_crc_source = nv50_crc_verify_source, 534 .get_crc_sources = nv50_crc_get_sources, 535 .set_crc_source = nv50_crc_set_source, 536 .late_register = nv50_head_late_register, 537 }; 538 539 static int nv50_head_vblank_handler(struct nvif_notify *notify) 540 { 541 struct nouveau_crtc *nv_crtc = 542 container_of(notify, struct nouveau_crtc, vblank); 543 544 if (drm_crtc_handle_vblank(&nv_crtc->base)) 545 nv50_crc_handle_vblank(nv50_head(&nv_crtc->base)); 546 547 return NVIF_NOTIFY_KEEP; 548 } 549 550 struct nv50_head * 551 nv50_head_create(struct drm_device *dev, int index) 552 { 553 struct nouveau_drm *drm = nouveau_drm(dev); 554 struct nv50_disp *disp = nv50_disp(dev); 555 struct nv50_head *head; 556 struct nv50_wndw *base, *ovly, *curs; 557 struct nouveau_crtc *nv_crtc; 558 struct drm_crtc *crtc; 559 const struct drm_crtc_funcs *funcs; 560 int ret; 561 562 head = kzalloc(sizeof(*head), GFP_KERNEL); 563 if (!head) 564 return ERR_PTR(-ENOMEM); 565 566 head->func = disp->core->func->head; 567 head->base.index = index; 568 569 if (disp->disp->object.oclass < GF110_DISP) 570 funcs = &nv50_head_func; 571 else 572 funcs = &nvd9_head_func; 573 574 if (disp->disp->object.oclass < GV100_DISP) { 575 ret = nv50_base_new(drm, head->base.index, &base); 576 ret = nv50_ovly_new(drm, head->base.index, &ovly); 577 } else { 578 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, 579 head->base.index * 2 + 0, &base); 580 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, 581 head->base.index * 2 + 1, &ovly); 582 } 583 if (ret == 0) 584 ret = nv50_curs_new(drm, head->base.index, &curs); 585 if (ret) { 586 kfree(head); 587 return ERR_PTR(ret); 588 } 589 590 nv_crtc = &head->base; 591 crtc = &nv_crtc->base; 592 drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane, 593 funcs, "head-%d", head->base.index); 594 drm_crtc_helper_add(crtc, &nv50_head_help); 595 /* Keep the legacy gamma size at 256 to avoid compatibility issues */ 596 drm_mode_crtc_set_gamma_size(crtc, 256); 597 drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size, 598 disp->disp->object.oclass >= GF110_DISP, 599 head->func->olut_size); 600 601 if (head->func->olut_set) { 602 ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); 603 if (ret) { 604 nv50_head_destroy(crtc); 605 return ERR_PTR(ret); 606 } 607 } 608 609 ret = nvif_notify_ctor(&disp->disp->object, "kmsVbl", nv50_head_vblank_handler, 610 false, NV04_DISP_NTFY_VBLANK, 611 &(struct nvif_notify_head_req_v0) { 612 .head = nv_crtc->index, 613 }, 614 sizeof(struct nvif_notify_head_req_v0), 615 sizeof(struct nvif_notify_head_rep_v0), 616 &nv_crtc->vblank); 617 if (ret) 618 return ERR_PTR(ret); 619 620 return head; 621 } 622