1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "head.h" 23 #include "base.h" 24 #include "core.h" 25 #include "curs.h" 26 #include "ovly.h" 27 28 #include <nvif/class.h> 29 30 #include <drm/drm_atomic_helper.h> 31 #include <drm/drm_crtc_helper.h> 32 #include "nouveau_connector.h" 33 void 34 nv50_head_flush_clr(struct nv50_head *head, 35 struct nv50_head_atom *asyh, bool flush) 36 { 37 union nv50_head_atom_mask clr = { 38 .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), 39 }; 40 if (clr.olut) head->func->olut_clr(head); 41 if (clr.core) head->func->core_clr(head); 42 if (clr.curs) head->func->curs_clr(head); 43 } 44 45 void 46 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) 47 { 48 if (asyh->set.view ) head->func->view (head, asyh); 49 if (asyh->set.mode ) head->func->mode (head, asyh); 50 if (asyh->set.core ) head->func->core_set(head, asyh); 51 if (asyh->set.olut ) { 52 asyh->olut.offset = nv50_lut_load(&head->olut, 53 asyh->olut.mode <= 1, 54 asyh->olut.buffer, 55 asyh->state.gamma_lut); 56 head->func->olut_set(head, asyh); 57 } 58 if (asyh->set.curs ) head->func->curs_set(head, asyh); 59 if (asyh->set.base ) head->func->base (head, asyh); 60 if (asyh->set.ovly ) head->func->ovly (head, asyh); 61 if (asyh->set.dither ) head->func->dither (head, asyh); 62 if (asyh->set.procamp) head->func->procamp (head, asyh); 63 if (asyh->set.or ) head->func->or (head, asyh); 64 } 65 66 static void 67 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, 68 struct nv50_head_atom *asyh, 69 struct nouveau_conn_atom *asyc) 70 { 71 const int vib = asyc->procamp.color_vibrance - 100; 72 const int hue = asyc->procamp.vibrant_hue - 90; 73 const int adj = (vib > 0) ? 50 : 0; 74 asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; 75 asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; 76 asyh->set.procamp = true; 77 } 78 79 static void 80 nv50_head_atomic_check_dither(struct nv50_head_atom *armh, 81 struct nv50_head_atom *asyh, 82 struct nouveau_conn_atom *asyc) 83 { 84 struct drm_connector *connector = asyc->state.connector; 85 u32 mode = 0x00; 86 87 if (asyc->dither.mode == DITHERING_MODE_AUTO) { 88 if (asyh->base.depth > connector->display_info.bpc * 3) 89 mode = DITHERING_MODE_DYNAMIC2X2; 90 } else { 91 mode = asyc->dither.mode; 92 } 93 94 if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { 95 if (connector->display_info.bpc >= 8) 96 mode |= DITHERING_DEPTH_8BPC; 97 } else { 98 mode |= asyc->dither.depth; 99 } 100 101 asyh->dither.enable = mode; 102 asyh->dither.bits = mode >> 1; 103 asyh->dither.mode = mode >> 3; 104 asyh->set.dither = true; 105 } 106 107 static void 108 nv50_head_atomic_check_view(struct nv50_head_atom *armh, 109 struct nv50_head_atom *asyh, 110 struct nouveau_conn_atom *asyc) 111 { 112 struct drm_connector *connector = asyc->state.connector; 113 struct drm_display_mode *omode = &asyh->state.adjusted_mode; 114 struct drm_display_mode *umode = &asyh->state.mode; 115 int mode = asyc->scaler.mode; 116 struct edid *edid; 117 int umode_vdisplay, omode_hdisplay, omode_vdisplay; 118 119 if (connector->edid_blob_ptr) 120 edid = (struct edid *)connector->edid_blob_ptr->data; 121 else 122 edid = NULL; 123 124 if (!asyc->scaler.full) { 125 if (mode == DRM_MODE_SCALE_NONE) 126 omode = umode; 127 } else { 128 /* Non-EDID LVDS/eDP mode. */ 129 mode = DRM_MODE_SCALE_FULLSCREEN; 130 } 131 132 /* For the user-specified mode, we must ignore doublescan and 133 * the like, but honor frame packing. 134 */ 135 umode_vdisplay = umode->vdisplay; 136 if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 137 umode_vdisplay += umode->vtotal; 138 asyh->view.iW = umode->hdisplay; 139 asyh->view.iH = umode_vdisplay; 140 /* For the output mode, we can just use the stock helper. */ 141 drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); 142 asyh->view.oW = omode_hdisplay; 143 asyh->view.oH = omode_vdisplay; 144 145 /* Add overscan compensation if necessary, will keep the aspect 146 * ratio the same as the backend mode unless overridden by the 147 * user setting both hborder and vborder properties. 148 */ 149 if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || 150 (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && 151 drm_detect_hdmi_monitor(edid)))) { 152 u32 bX = asyc->scaler.underscan.hborder; 153 u32 bY = asyc->scaler.underscan.vborder; 154 u32 r = (asyh->view.oH << 19) / asyh->view.oW; 155 156 if (bX) { 157 asyh->view.oW -= (bX * 2); 158 if (bY) asyh->view.oH -= (bY * 2); 159 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 160 } else { 161 asyh->view.oW -= (asyh->view.oW >> 4) + 32; 162 if (bY) asyh->view.oH -= (bY * 2); 163 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 164 } 165 } 166 167 /* Handle CENTER/ASPECT scaling, taking into account the areas 168 * removed already for overscan compensation. 169 */ 170 switch (mode) { 171 case DRM_MODE_SCALE_CENTER: 172 asyh->view.oW = min((u16)umode->hdisplay, asyh->view.oW); 173 asyh->view.oH = min((u16)umode_vdisplay, asyh->view.oH); 174 /* fall-through */ 175 case DRM_MODE_SCALE_ASPECT: 176 if (asyh->view.oH < asyh->view.oW) { 177 u32 r = (asyh->view.iW << 19) / asyh->view.iH; 178 asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; 179 } else { 180 u32 r = (asyh->view.iH << 19) / asyh->view.iW; 181 asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 182 } 183 break; 184 default: 185 break; 186 } 187 188 asyh->set.view = true; 189 } 190 191 static int 192 nv50_head_atomic_check_lut(struct nv50_head *head, 193 struct nv50_head_atom *asyh) 194 { 195 struct nv50_disp *disp = nv50_disp(head->base.base.dev); 196 struct drm_property_blob *olut = asyh->state.gamma_lut; 197 198 /* Determine whether core output LUT should be enabled. */ 199 if (olut) { 200 /* Check if any window(s) have stolen the core output LUT 201 * to as an input LUT for legacy gamma + I8 colour format. 202 */ 203 if (asyh->wndw.olut) { 204 /* If any window has stolen the core output LUT, 205 * all of them must. 206 */ 207 if (asyh->wndw.olut != asyh->wndw.mask) 208 return -EINVAL; 209 olut = NULL; 210 } 211 } 212 213 if (!olut) { 214 asyh->olut.handle = 0; 215 return 0; 216 } 217 218 asyh->olut.handle = disp->core->chan.vram.handle; 219 asyh->olut.buffer = !asyh->olut.buffer; 220 head->func->olut(head, asyh); 221 return 0; 222 } 223 224 static void 225 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) 226 { 227 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 228 struct nv50_head_mode *m = &asyh->mode; 229 u32 blankus; 230 231 drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); 232 233 /* 234 * DRM modes are defined in terms of a repeating interval 235 * starting with the active display area. The hardware modes 236 * are defined in terms of a repeating interval starting one 237 * unit (pixel or line) into the sync pulse. So, add bias. 238 */ 239 240 m->h.active = mode->crtc_htotal; 241 m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; 242 m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; 243 m->h.blanks = m->h.blanke + mode->crtc_hdisplay; 244 245 m->v.active = mode->crtc_vtotal; 246 m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; 247 m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; 248 m->v.blanks = m->v.blanke + mode->crtc_vdisplay; 249 250 /*XXX: Safe underestimate, even "0" works */ 251 blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; 252 blankus *= 1000; 253 blankus /= mode->crtc_clock; 254 m->v.blankus = blankus; 255 256 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 257 m->v.blank2e = m->v.active + m->v.blanke; 258 m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; 259 m->v.active = (m->v.active * 2) + 1; 260 m->interlace = true; 261 } else { 262 m->v.blank2e = 0; 263 m->v.blank2s = 1; 264 m->interlace = false; 265 } 266 m->clock = mode->crtc_clock; 267 268 asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 269 asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 270 asyh->set.or = head->func->or != NULL; 271 asyh->set.mode = true; 272 } 273 274 static int 275 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) 276 { 277 struct nouveau_drm *drm = nouveau_drm(crtc->dev); 278 struct nv50_head *head = nv50_head(crtc); 279 struct nv50_head_atom *armh = nv50_head_atom(crtc->state); 280 struct nv50_head_atom *asyh = nv50_head_atom(state); 281 struct nouveau_conn_atom *asyc = NULL; 282 struct drm_connector_state *conns; 283 struct drm_connector *conn; 284 int i; 285 286 NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); 287 if (asyh->state.active) { 288 for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { 289 if (conns->crtc == crtc) { 290 asyc = nouveau_conn_atom(conns); 291 break; 292 } 293 } 294 295 if (armh->state.active) { 296 if (asyc) { 297 if (asyh->state.mode_changed) 298 asyc->set.scaler = true; 299 if (armh->base.depth != asyh->base.depth) 300 asyc->set.dither = true; 301 } 302 } else { 303 if (asyc) 304 asyc->set.mask = ~0; 305 asyh->set.mask = ~0; 306 asyh->set.or = head->func->or != NULL; 307 } 308 309 if (asyh->state.mode_changed) 310 nv50_head_atomic_check_mode(head, asyh); 311 312 if (asyh->state.color_mgmt_changed || 313 memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) { 314 int ret = nv50_head_atomic_check_lut(head, asyh); 315 if (ret) 316 return ret; 317 318 asyh->olut.visible = asyh->olut.handle != 0; 319 } 320 321 if (asyc) { 322 if (asyc->set.scaler) 323 nv50_head_atomic_check_view(armh, asyh, asyc); 324 if (asyc->set.dither) 325 nv50_head_atomic_check_dither(armh, asyh, asyc); 326 if (asyc->set.procamp) 327 nv50_head_atomic_check_procamp(armh, asyh, asyc); 328 } 329 330 if (head->func->core_calc) { 331 head->func->core_calc(head, asyh); 332 if (!asyh->core.visible) 333 asyh->olut.visible = false; 334 } 335 336 asyh->set.base = armh->base.cpp != asyh->base.cpp; 337 asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; 338 } else { 339 asyh->olut.visible = false; 340 asyh->core.visible = false; 341 asyh->curs.visible = false; 342 asyh->base.cpp = 0; 343 asyh->ovly.cpp = 0; 344 } 345 346 if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { 347 if (asyh->core.visible) { 348 if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) 349 asyh->set.core = true; 350 } else 351 if (armh->core.visible) { 352 asyh->clr.core = true; 353 } 354 355 if (asyh->curs.visible) { 356 if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) 357 asyh->set.curs = true; 358 } else 359 if (armh->curs.visible) { 360 asyh->clr.curs = true; 361 } 362 363 if (asyh->olut.visible) { 364 if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) 365 asyh->set.olut = true; 366 } else 367 if (armh->olut.visible) { 368 asyh->clr.olut = true; 369 } 370 } else { 371 asyh->clr.olut = armh->olut.visible; 372 asyh->clr.core = armh->core.visible; 373 asyh->clr.curs = armh->curs.visible; 374 asyh->set.olut = asyh->olut.visible; 375 asyh->set.core = asyh->core.visible; 376 asyh->set.curs = asyh->curs.visible; 377 } 378 379 if (asyh->clr.mask || asyh->set.mask) 380 nv50_atom(asyh->state.state)->lock_core = true; 381 return 0; 382 } 383 384 static const struct drm_crtc_helper_funcs 385 nv50_head_help = { 386 .atomic_check = nv50_head_atomic_check, 387 }; 388 389 static void 390 nv50_head_atomic_destroy_state(struct drm_crtc *crtc, 391 struct drm_crtc_state *state) 392 { 393 struct nv50_head_atom *asyh = nv50_head_atom(state); 394 __drm_atomic_helper_crtc_destroy_state(&asyh->state); 395 kfree(asyh); 396 } 397 398 static struct drm_crtc_state * 399 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) 400 { 401 struct nv50_head_atom *armh = nv50_head_atom(crtc->state); 402 struct nv50_head_atom *asyh; 403 if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) 404 return NULL; 405 __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); 406 asyh->wndw = armh->wndw; 407 asyh->view = armh->view; 408 asyh->mode = armh->mode; 409 asyh->olut = armh->olut; 410 asyh->core = armh->core; 411 asyh->curs = armh->curs; 412 asyh->base = armh->base; 413 asyh->ovly = armh->ovly; 414 asyh->dither = armh->dither; 415 asyh->procamp = armh->procamp; 416 asyh->clr.mask = 0; 417 asyh->set.mask = 0; 418 return &asyh->state; 419 } 420 421 static void 422 __drm_atomic_helper_crtc_reset(struct drm_crtc *crtc, 423 struct drm_crtc_state *state) 424 { 425 if (crtc->state) 426 crtc->funcs->atomic_destroy_state(crtc, crtc->state); 427 crtc->state = state; 428 crtc->state->crtc = crtc; 429 } 430 431 static void 432 nv50_head_reset(struct drm_crtc *crtc) 433 { 434 struct nv50_head_atom *asyh; 435 436 if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) 437 return; 438 439 __drm_atomic_helper_crtc_reset(crtc, &asyh->state); 440 } 441 442 static void 443 nv50_head_destroy(struct drm_crtc *crtc) 444 { 445 struct nv50_head *head = nv50_head(crtc); 446 nv50_lut_fini(&head->olut); 447 drm_crtc_cleanup(crtc); 448 kfree(head); 449 } 450 451 static const struct drm_crtc_funcs 452 nv50_head_func = { 453 .reset = nv50_head_reset, 454 .gamma_set = drm_atomic_helper_legacy_gamma_set, 455 .destroy = nv50_head_destroy, 456 .set_config = drm_atomic_helper_set_config, 457 .page_flip = drm_atomic_helper_page_flip, 458 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 459 .atomic_destroy_state = nv50_head_atomic_destroy_state, 460 }; 461 462 int 463 nv50_head_create(struct drm_device *dev, int index) 464 { 465 struct nouveau_drm *drm = nouveau_drm(dev); 466 struct nv50_disp *disp = nv50_disp(dev); 467 struct nv50_head *head; 468 struct nv50_wndw *curs, *wndw; 469 struct drm_crtc *crtc; 470 int ret; 471 472 head = kzalloc(sizeof(*head), GFP_KERNEL); 473 if (!head) 474 return -ENOMEM; 475 476 head->func = disp->core->func->head; 477 head->base.index = index; 478 479 if (disp->disp->object.oclass < GV100_DISP) { 480 ret = nv50_ovly_new(drm, head->base.index, &wndw); 481 ret = nv50_base_new(drm, head->base.index, &wndw); 482 } else { 483 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, 484 head->base.index * 2 + 1, &wndw); 485 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, 486 head->base.index * 2 + 0, &wndw); 487 } 488 if (ret == 0) 489 ret = nv50_curs_new(drm, head->base.index, &curs); 490 if (ret) { 491 kfree(head); 492 return ret; 493 } 494 495 crtc = &head->base.base; 496 drm_crtc_init_with_planes(dev, crtc, &wndw->plane, &curs->plane, 497 &nv50_head_func, "head-%d", head->base.index); 498 drm_crtc_helper_add(crtc, &nv50_head_help); 499 drm_mode_crtc_set_gamma_size(crtc, 256); 500 501 if (head->func->olut_set) { 502 ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); 503 if (ret) 504 goto out; 505 } 506 507 out: 508 if (ret) 509 nv50_head_destroy(crtc); 510 return ret; 511 } 512