xref: /openbmc/linux/drivers/gpu/drm/nouveau/dispnv50/disp.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 
68 #include <subdev/bios/dp.h>
69 
70 /******************************************************************************
71  * EVO channel
72  *****************************************************************************/
73 
74 static int
75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
76 		 const s32 *oclass, u8 head, void *data, u32 size,
77 		 struct nv50_chan *chan)
78 {
79 	struct nvif_sclass *sclass;
80 	int ret, i, n;
81 
82 	chan->device = device;
83 
84 	ret = n = nvif_object_sclass_get(disp, &sclass);
85 	if (ret < 0)
86 		return ret;
87 
88 	while (oclass[0]) {
89 		for (i = 0; i < n; i++) {
90 			if (sclass[i].oclass == oclass[0]) {
91 				ret = nvif_object_ctor(disp, "kmsChan", 0,
92 						       oclass[0], data, size,
93 						       &chan->user);
94 				if (ret == 0)
95 					nvif_object_map(&chan->user, NULL, 0);
96 				nvif_object_sclass_put(&sclass);
97 				return ret;
98 			}
99 		}
100 		oclass++;
101 	}
102 
103 	nvif_object_sclass_put(&sclass);
104 	return -ENOSYS;
105 }
106 
107 static void
108 nv50_chan_destroy(struct nv50_chan *chan)
109 {
110 	nvif_object_dtor(&chan->user);
111 }
112 
113 /******************************************************************************
114  * DMA EVO channel
115  *****************************************************************************/
116 
117 void
118 nv50_dmac_destroy(struct nv50_dmac *dmac)
119 {
120 	nvif_object_dtor(&dmac->vram);
121 	nvif_object_dtor(&dmac->sync);
122 
123 	nv50_chan_destroy(&dmac->base);
124 
125 	nvif_mem_dtor(&dmac->_push.mem);
126 }
127 
128 static void
129 nv50_dmac_kick(struct nvif_push *push)
130 {
131 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
132 
133 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
134 	if (dmac->put != dmac->cur) {
135 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
136 		 * writes have been flushed right through to VRAM before writing PUT.
137 		 */
138 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
139 			struct nvif_device *device = dmac->base.device;
140 			nvif_wr32(&device->object, 0x070000, 0x00000001);
141 			nvif_msec(device, 2000,
142 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
143 					break;
144 			);
145 		}
146 
147 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
148 		dmac->put = dmac->cur;
149 	}
150 
151 	push->bgn = push->cur;
152 }
153 
154 static int
155 nv50_dmac_free(struct nv50_dmac *dmac)
156 {
157 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
158 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
159 		return get - dmac->cur - 5;
160 	return dmac->max - dmac->cur;
161 }
162 
163 static int
164 nv50_dmac_wind(struct nv50_dmac *dmac)
165 {
166 	/* Wait for GET to depart from the beginning of the push buffer to
167 	 * prevent writing PUT == GET, which would be ignored by HW.
168 	 */
169 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
170 	if (get == 0) {
171 		/* Corner-case, HW idle, but non-committed work pending. */
172 		if (dmac->put == 0)
173 			nv50_dmac_kick(dmac->push);
174 
175 		if (nvif_msec(dmac->base.device, 2000,
176 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
177 				break;
178 		) < 0)
179 			return -ETIMEDOUT;
180 	}
181 
182 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
183 	dmac->cur = 0;
184 	return 0;
185 }
186 
187 static int
188 nv50_dmac_wait(struct nvif_push *push, u32 size)
189 {
190 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
191 	int free;
192 
193 	if (WARN_ON(size > dmac->max))
194 		return -EINVAL;
195 
196 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
197 	if (dmac->cur + size >= dmac->max) {
198 		int ret = nv50_dmac_wind(dmac);
199 		if (ret)
200 			return ret;
201 
202 		push->cur = dmac->_push.mem.object.map.ptr;
203 		push->cur = push->cur + dmac->cur;
204 		nv50_dmac_kick(push);
205 	}
206 
207 	if (nvif_msec(dmac->base.device, 2000,
208 		if ((free = nv50_dmac_free(dmac)) >= size)
209 			break;
210 	) < 0) {
211 		WARN_ON(1);
212 		return -ETIMEDOUT;
213 	}
214 
215 	push->bgn = dmac->_push.mem.object.map.ptr;
216 	push->bgn = push->bgn + dmac->cur;
217 	push->cur = push->bgn;
218 	push->end = push->cur + free;
219 	return 0;
220 }
221 
222 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
223 static int nv50_dmac_vram_pushbuf = -1;
224 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
225 
226 int
227 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
228 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
229 		 struct nv50_dmac *dmac)
230 {
231 	struct nouveau_cli *cli = (void *)device->object.client;
232 	struct nvif_disp_chan_v0 *args = data;
233 	u8 type = NVIF_MEM_COHERENT;
234 	int ret;
235 
236 	mutex_init(&dmac->lock);
237 
238 	/* Pascal added support for 47-bit physical addresses, but some
239 	 * parts of EVO still only accept 40-bit PAs.
240 	 *
241 	 * To avoid issues on systems with large amounts of RAM, and on
242 	 * systems where an IOMMU maps pages at a high address, we need
243 	 * to allocate push buffers in VRAM instead.
244 	 *
245 	 * This appears to match NVIDIA's behaviour on Pascal.
246 	 */
247 	if ((nv50_dmac_vram_pushbuf > 0) ||
248 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
249 		type |= NVIF_MEM_VRAM;
250 
251 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
252 				&dmac->_push.mem);
253 	if (ret)
254 		return ret;
255 
256 	dmac->ptr = dmac->_push.mem.object.map.ptr;
257 	dmac->_push.wait = nv50_dmac_wait;
258 	dmac->_push.kick = nv50_dmac_kick;
259 	dmac->push = &dmac->_push;
260 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
261 	dmac->push->cur = dmac->push->bgn;
262 	dmac->push->end = dmac->push->bgn;
263 	dmac->max = 0x1000/4 - 1;
264 
265 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
266 	 * of the push buffer aren't able to be used safely.
267 	 */
268 	if (disp->oclass < GV100_DISP)
269 		dmac->max -= 12;
270 
271 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
272 
273 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
274 			       &dmac->base);
275 	if (ret)
276 		return ret;
277 
278 	if (syncbuf < 0)
279 		return 0;
280 
281 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
282 			       NV_DMA_IN_MEMORY,
283 			       &(struct nv_dma_v0) {
284 					.target = NV_DMA_V0_TARGET_VRAM,
285 					.access = NV_DMA_V0_ACCESS_RDWR,
286 					.start = syncbuf + 0x0000,
287 					.limit = syncbuf + 0x0fff,
288 			       }, sizeof(struct nv_dma_v0),
289 			       &dmac->sync);
290 	if (ret)
291 		return ret;
292 
293 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
294 			       NV_DMA_IN_MEMORY,
295 			       &(struct nv_dma_v0) {
296 					.target = NV_DMA_V0_TARGET_VRAM,
297 					.access = NV_DMA_V0_ACCESS_RDWR,
298 					.start = 0,
299 					.limit = device->info.ram_user - 1,
300 			       }, sizeof(struct nv_dma_v0),
301 			       &dmac->vram);
302 	if (ret)
303 		return ret;
304 
305 	return ret;
306 }
307 
308 /******************************************************************************
309  * Output path helpers
310  *****************************************************************************/
311 static void
312 nv50_outp_dump_caps(struct nouveau_drm *drm,
313 		    struct nouveau_encoder *outp)
314 {
315 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
316 		 outp->base.base.name, outp->caps.dp_interlace);
317 }
318 
319 static int
320 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
321 			    struct drm_crtc_state *crtc_state,
322 			    struct drm_connector_state *conn_state,
323 			    struct drm_display_mode *native_mode)
324 {
325 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
326 	struct drm_display_mode *mode = &crtc_state->mode;
327 	struct drm_connector *connector = conn_state->connector;
328 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
329 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
330 
331 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
332 	asyc->scaler.full = false;
333 	if (!native_mode)
334 		return 0;
335 
336 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
337 		switch (connector->connector_type) {
338 		case DRM_MODE_CONNECTOR_LVDS:
339 		case DRM_MODE_CONNECTOR_eDP:
340 			/* Don't force scaler for EDID modes with
341 			 * same size as the native one (e.g. different
342 			 * refresh rate)
343 			 */
344 			if (mode->hdisplay == native_mode->hdisplay &&
345 			    mode->vdisplay == native_mode->vdisplay &&
346 			    mode->type & DRM_MODE_TYPE_DRIVER)
347 				break;
348 			mode = native_mode;
349 			asyc->scaler.full = true;
350 			break;
351 		default:
352 			break;
353 		}
354 	} else {
355 		mode = native_mode;
356 	}
357 
358 	if (!drm_mode_equal(adjusted_mode, mode)) {
359 		drm_mode_copy(adjusted_mode, mode);
360 		crtc_state->mode_changed = true;
361 	}
362 
363 	return 0;
364 }
365 
366 static void
367 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
368 {
369 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
370 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
371 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
372 	unsigned int max_rate, mode_rate;
373 
374 	switch (nv_encoder->dcb->type) {
375 	case DCB_OUTPUT_DP:
376 		max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
377 
378 		/* we don't support more than 10 anyway */
379 		asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
380 
381 		/* reduce the bpc until it works out */
382 		while (asyh->or.bpc > 6) {
383 			mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
384 			if (mode_rate <= max_rate)
385 				break;
386 
387 			asyh->or.bpc -= 2;
388 		}
389 		break;
390 	default:
391 		break;
392 	}
393 }
394 
395 static int
396 nv50_outp_atomic_check(struct drm_encoder *encoder,
397 		       struct drm_crtc_state *crtc_state,
398 		       struct drm_connector_state *conn_state)
399 {
400 	struct drm_connector *connector = conn_state->connector;
401 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
402 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
403 	int ret;
404 
405 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
406 					  nv_connector->native_mode);
407 	if (ret)
408 		return ret;
409 
410 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
411 		asyh->or.bpc = connector->display_info.bpc;
412 
413 	/* We might have to reduce the bpc */
414 	nv50_outp_atomic_fix_depth(encoder, crtc_state);
415 
416 	return 0;
417 }
418 
419 struct nouveau_connector *
420 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
421 {
422 	struct drm_connector *connector;
423 	struct drm_connector_state *connector_state;
424 	struct drm_encoder *encoder = to_drm_encoder(outp);
425 	int i;
426 
427 	for_each_new_connector_in_state(state, connector, connector_state, i) {
428 		if (connector_state->best_encoder == encoder)
429 			return nouveau_connector(connector);
430 	}
431 
432 	return NULL;
433 }
434 
435 struct nouveau_connector *
436 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
437 {
438 	struct drm_connector *connector;
439 	struct drm_connector_state *connector_state;
440 	struct drm_encoder *encoder = to_drm_encoder(outp);
441 	int i;
442 
443 	for_each_old_connector_in_state(state, connector, connector_state, i) {
444 		if (connector_state->best_encoder == encoder)
445 			return nouveau_connector(connector);
446 	}
447 
448 	return NULL;
449 }
450 
451 static struct nouveau_crtc *
452 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
453 {
454 	struct drm_crtc *crtc;
455 	struct drm_crtc_state *crtc_state;
456 	const u32 mask = drm_encoder_mask(&outp->base.base);
457 	int i;
458 
459 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
460 		if (crtc_state->encoder_mask & mask)
461 			return nouveau_crtc(crtc);
462 	}
463 
464 	return NULL;
465 }
466 
467 /******************************************************************************
468  * DAC
469  *****************************************************************************/
470 static void
471 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
472 {
473 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
474 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
475 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
476 
477 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
478 	nv_encoder->crtc = NULL;
479 	nvif_outp_release(&nv_encoder->outp);
480 }
481 
482 static void
483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
484 {
485 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
486 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
487 	struct nv50_head_atom *asyh =
488 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
489 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
490 	u32 ctrl = 0;
491 
492 	switch (nv_crtc->index) {
493 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
494 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
495 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
496 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
497 	default:
498 		WARN_ON(1);
499 		break;
500 	}
501 
502 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
503 
504 	nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
505 
506 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
507 	asyh->or.depth = 0;
508 
509 	nv_encoder->crtc = &nv_crtc->base;
510 }
511 
512 static enum drm_connector_status
513 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
514 {
515 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
516 	u32 loadval;
517 	int ret;
518 
519 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
520 	if (loadval == 0)
521 		loadval = 340;
522 
523 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
524 	if (ret <= 0)
525 		return connector_status_disconnected;
526 
527 	return connector_status_connected;
528 }
529 
530 static const struct drm_encoder_helper_funcs
531 nv50_dac_help = {
532 	.atomic_check = nv50_outp_atomic_check,
533 	.atomic_enable = nv50_dac_atomic_enable,
534 	.atomic_disable = nv50_dac_atomic_disable,
535 	.detect = nv50_dac_detect
536 };
537 
538 static void
539 nv50_dac_destroy(struct drm_encoder *encoder)
540 {
541 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
542 
543 	nvif_outp_dtor(&nv_encoder->outp);
544 
545 	drm_encoder_cleanup(encoder);
546 	kfree(encoder);
547 }
548 
549 static const struct drm_encoder_funcs
550 nv50_dac_func = {
551 	.destroy = nv50_dac_destroy,
552 };
553 
554 static int
555 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
556 {
557 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
558 	struct nv50_disp *disp = nv50_disp(connector->dev);
559 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
560 	struct nvkm_i2c_bus *bus;
561 	struct nouveau_encoder *nv_encoder;
562 	struct drm_encoder *encoder;
563 	int type = DRM_MODE_ENCODER_DAC;
564 
565 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
566 	if (!nv_encoder)
567 		return -ENOMEM;
568 	nv_encoder->dcb = dcbe;
569 
570 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
571 	if (bus)
572 		nv_encoder->i2c = &bus->i2c;
573 
574 	encoder = to_drm_encoder(nv_encoder);
575 	encoder->possible_crtcs = dcbe->heads;
576 	encoder->possible_clones = 0;
577 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
578 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
579 	drm_encoder_helper_add(encoder, &nv50_dac_help);
580 
581 	drm_connector_attach_encoder(connector, encoder);
582 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
583 }
584 
585 /*
586  * audio component binding for ELD notification
587  */
588 static void
589 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
590 				int dev_id)
591 {
592 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
593 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
594 						 port, dev_id);
595 }
596 
597 static int
598 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
599 			     bool *enabled, unsigned char *buf, int max_bytes)
600 {
601 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
602 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
603 	struct drm_encoder *encoder;
604 	struct nouveau_encoder *nv_encoder;
605 	struct nouveau_crtc *nv_crtc;
606 	int ret = 0;
607 
608 	*enabled = false;
609 
610 	mutex_lock(&drm->audio.lock);
611 
612 	drm_for_each_encoder(encoder, drm->dev) {
613 		struct nouveau_connector *nv_connector = NULL;
614 
615 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
616 			continue; /* TODO */
617 
618 		nv_encoder = nouveau_encoder(encoder);
619 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
620 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
621 
622 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
623 			continue;
624 
625 		*enabled = nv_encoder->audio.enabled;
626 		if (*enabled) {
627 			ret = drm_eld_size(nv_connector->base.eld);
628 			memcpy(buf, nv_connector->base.eld,
629 			       min(max_bytes, ret));
630 		}
631 		break;
632 	}
633 
634 	mutex_unlock(&drm->audio.lock);
635 
636 	return ret;
637 }
638 
639 static const struct drm_audio_component_ops nv50_audio_component_ops = {
640 	.get_eld = nv50_audio_component_get_eld,
641 };
642 
643 static int
644 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
645 			  void *data)
646 {
647 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
648 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
649 	struct drm_audio_component *acomp = data;
650 
651 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
652 		return -ENOMEM;
653 
654 	drm_modeset_lock_all(drm_dev);
655 	acomp->ops = &nv50_audio_component_ops;
656 	acomp->dev = kdev;
657 	drm->audio.component = acomp;
658 	drm_modeset_unlock_all(drm_dev);
659 	return 0;
660 }
661 
662 static void
663 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
664 			    void *data)
665 {
666 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
667 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
668 	struct drm_audio_component *acomp = data;
669 
670 	drm_modeset_lock_all(drm_dev);
671 	drm->audio.component = NULL;
672 	acomp->ops = NULL;
673 	acomp->dev = NULL;
674 	drm_modeset_unlock_all(drm_dev);
675 }
676 
677 static const struct component_ops nv50_audio_component_bind_ops = {
678 	.bind   = nv50_audio_component_bind,
679 	.unbind = nv50_audio_component_unbind,
680 };
681 
682 static void
683 nv50_audio_component_init(struct nouveau_drm *drm)
684 {
685 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
686 		return;
687 
688 	drm->audio.component_registered = true;
689 	mutex_init(&drm->audio.lock);
690 }
691 
692 static void
693 nv50_audio_component_fini(struct nouveau_drm *drm)
694 {
695 	if (!drm->audio.component_registered)
696 		return;
697 
698 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
699 	drm->audio.component_registered = false;
700 	mutex_destroy(&drm->audio.lock);
701 }
702 
703 /******************************************************************************
704  * Audio
705  *****************************************************************************/
706 static bool
707 nv50_audio_supported(struct drm_encoder *encoder)
708 {
709 	struct nv50_disp *disp = nv50_disp(encoder->dev);
710 
711 	if (disp->disp->object.oclass <= GT200_DISP ||
712 	    disp->disp->object.oclass == GT206_DISP)
713 		return false;
714 
715 	return true;
716 }
717 
718 static void
719 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
720 {
721 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
722 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
723 	struct nvif_outp *outp = &nv_encoder->outp;
724 
725 	if (!nv50_audio_supported(encoder))
726 		return;
727 
728 	mutex_lock(&drm->audio.lock);
729 	if (nv_encoder->audio.enabled) {
730 		nv_encoder->audio.enabled = false;
731 		nv_encoder->audio.connector = NULL;
732 		nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
733 	}
734 	mutex_unlock(&drm->audio.lock);
735 
736 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
737 }
738 
739 static void
740 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
741 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
742 		  struct drm_display_mode *mode)
743 {
744 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
745 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
746 	struct nvif_outp *outp = &nv_encoder->outp;
747 
748 	if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
749 		return;
750 
751 	mutex_lock(&drm->audio.lock);
752 
753 	nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
754 			  drm_eld_size(nv_connector->base.eld));
755 	nv_encoder->audio.enabled = true;
756 	nv_encoder->audio.connector = &nv_connector->base;
757 
758 	mutex_unlock(&drm->audio.lock);
759 
760 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
761 }
762 
763 /******************************************************************************
764  * HDMI
765  *****************************************************************************/
766 static void
767 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
768 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
769 		 struct drm_display_mode *mode, bool hda)
770 {
771 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
772 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
773 	struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
774 	union hdmi_infoframe infoframe = { 0 };
775 	const u8 rekey = 56; /* binary driver, and tegra, constant */
776 	u8 scdc = 0;
777 	u32 max_ac_packet;
778 	struct {
779 		struct nvif_outp_infoframe_v0 infoframe;
780 		u8 data[17];
781 	} args = { 0 };
782 	int ret, size;
783 
784 	max_ac_packet  = mode->htotal - mode->hdisplay;
785 	max_ac_packet -= rekey;
786 	max_ac_packet -= 18; /* constant from tegra */
787 	max_ac_packet /= 32;
788 
789 	if (hdmi->scdc.scrambling.supported) {
790 		const bool high_tmds_clock_ratio = mode->clock > 340000;
791 
792 		ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
793 		if (ret < 0) {
794 			NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
795 			return;
796 		}
797 
798 		scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
799 		if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
800 			scdc |= SCDC_SCRAMBLING_ENABLE;
801 		if (high_tmds_clock_ratio)
802 			scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
803 
804 		ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
805 		if (ret < 0)
806 			NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
807 				 scdc, ret);
808 	}
809 
810 	ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true,
811 				     max_ac_packet, rekey, scdc, hda);
812 	if (ret)
813 		return;
814 
815 	/* AVI InfoFrame. */
816 	args.infoframe.version = 0;
817 	args.infoframe.head = nv_crtc->index;
818 
819 	if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
820 		drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
821 						   HDMI_QUANTIZATION_RANGE_FULL);
822 
823 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
824 	} else {
825 		size = 0;
826 	}
827 
828 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
829 
830 	/* Vendor InfoFrame. */
831 	memset(&args.data, 0, sizeof(args.data));
832 	if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
833 							 &nv_connector->base, mode))
834 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
835 	else
836 		size = 0;
837 
838 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
839 
840 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
841 }
842 
843 /******************************************************************************
844  * MST
845  *****************************************************************************/
846 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
847 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
848 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
849 
850 struct nv50_mstc {
851 	struct nv50_mstm *mstm;
852 	struct drm_dp_mst_port *port;
853 	struct drm_connector connector;
854 
855 	struct drm_display_mode *native;
856 	struct edid *edid;
857 };
858 
859 struct nv50_msto {
860 	struct drm_encoder encoder;
861 
862 	/* head is statically assigned on msto creation */
863 	struct nv50_head *head;
864 	struct nv50_mstc *mstc;
865 	bool disabled;
866 	bool enabled;
867 };
868 
869 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
870 {
871 	struct nv50_msto *msto;
872 
873 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
874 		return nouveau_encoder(encoder);
875 
876 	msto = nv50_msto(encoder);
877 	if (!msto->mstc)
878 		return NULL;
879 	return msto->mstc->mstm->outp;
880 }
881 
882 static void
883 nv50_msto_cleanup(struct drm_atomic_state *state,
884 		  struct drm_dp_mst_topology_state *mst_state,
885 		  struct drm_dp_mst_topology_mgr *mgr,
886 		  struct nv50_msto *msto)
887 {
888 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
889 	struct drm_dp_mst_atomic_payload *payload =
890 		drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
891 
892 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
893 
894 	if (msto->disabled) {
895 		msto->mstc = NULL;
896 		msto->disabled = false;
897 	} else if (msto->enabled) {
898 		drm_dp_add_payload_part2(mgr, state, payload);
899 		msto->enabled = false;
900 	}
901 }
902 
903 static void
904 nv50_msto_prepare(struct drm_atomic_state *state,
905 		  struct drm_dp_mst_topology_state *mst_state,
906 		  struct drm_dp_mst_topology_mgr *mgr,
907 		  struct nv50_msto *msto)
908 {
909 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
910 	struct nv50_mstc *mstc = msto->mstc;
911 	struct nv50_mstm *mstm = mstc->mstm;
912 	struct drm_dp_mst_atomic_payload *payload;
913 
914 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
915 
916 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
917 
918 	// TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
919 	if (msto->disabled) {
920 		drm_dp_remove_payload(mgr, mst_state, payload, payload);
921 
922 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
923 	} else {
924 		if (msto->enabled)
925 			drm_dp_add_payload_part1(mgr, mst_state, payload);
926 
927 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
928 				      payload->vc_start_slot, payload->time_slots,
929 				      payload->pbn, payload->time_slots * mst_state->pbn_div);
930 	}
931 }
932 
933 static int
934 nv50_msto_atomic_check(struct drm_encoder *encoder,
935 		       struct drm_crtc_state *crtc_state,
936 		       struct drm_connector_state *conn_state)
937 {
938 	struct drm_atomic_state *state = crtc_state->state;
939 	struct drm_connector *connector = conn_state->connector;
940 	struct drm_dp_mst_topology_state *mst_state;
941 	struct nv50_mstc *mstc = nv50_mstc(connector);
942 	struct nv50_mstm *mstm = mstc->mstm;
943 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
944 	int slots;
945 	int ret;
946 
947 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
948 					  mstc->native);
949 	if (ret)
950 		return ret;
951 
952 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
953 		return 0;
954 
955 	/*
956 	 * When restoring duplicated states, we need to make sure that the bw
957 	 * remains the same and avoid recalculating it, as the connector's bpc
958 	 * may have changed after the state was duplicated
959 	 */
960 	if (!state->duplicated) {
961 		const int clock = crtc_state->adjusted_mode.clock;
962 
963 		asyh->or.bpc = connector->display_info.bpc;
964 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
965 						    false);
966 	}
967 
968 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
969 	if (IS_ERR(mst_state))
970 		return PTR_ERR(mst_state);
971 
972 	if (!mst_state->pbn_div) {
973 		struct nouveau_encoder *outp = mstc->mstm->outp;
974 
975 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
976 							      outp->dp.link_bw, outp->dp.link_nr);
977 	}
978 
979 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
980 	if (slots < 0)
981 		return slots;
982 
983 	asyh->dp.tu = slots;
984 
985 	return 0;
986 }
987 
988 static u8
989 nv50_dp_bpc_to_depth(unsigned int bpc)
990 {
991 	switch (bpc) {
992 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
993 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
994 	case 10:
995 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
996 	}
997 }
998 
999 static void
1000 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1001 {
1002 	struct nv50_msto *msto = nv50_msto(encoder);
1003 	struct nv50_head *head = msto->head;
1004 	struct nv50_head_atom *asyh =
1005 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1006 	struct nv50_mstc *mstc = NULL;
1007 	struct nv50_mstm *mstm = NULL;
1008 	struct drm_connector *connector;
1009 	struct drm_connector_list_iter conn_iter;
1010 	u8 proto;
1011 
1012 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1013 	drm_for_each_connector_iter(connector, &conn_iter) {
1014 		if (connector->state->best_encoder == &msto->encoder) {
1015 			mstc = nv50_mstc(connector);
1016 			mstm = mstc->mstm;
1017 			break;
1018 		}
1019 	}
1020 	drm_connector_list_iter_end(&conn_iter);
1021 
1022 	if (WARN_ON(!mstc))
1023 		return;
1024 
1025 	if (!mstm->links++) {
1026 		/*XXX: MST audio. */
1027 		nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true);
1028 	}
1029 
1030 	if (mstm->outp->outp.or.link & 1)
1031 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1032 	else
1033 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1034 
1035 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1036 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1037 
1038 	msto->mstc = mstc;
1039 	msto->enabled = true;
1040 	mstm->modified = true;
1041 }
1042 
1043 static void
1044 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1045 {
1046 	struct nv50_msto *msto = nv50_msto(encoder);
1047 	struct nv50_mstc *mstc = msto->mstc;
1048 	struct nv50_mstm *mstm = mstc->mstm;
1049 
1050 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1051 	mstm->modified = true;
1052 	if (!--mstm->links)
1053 		mstm->disabled = true;
1054 	msto->disabled = true;
1055 }
1056 
1057 static const struct drm_encoder_helper_funcs
1058 nv50_msto_help = {
1059 	.atomic_disable = nv50_msto_atomic_disable,
1060 	.atomic_enable = nv50_msto_atomic_enable,
1061 	.atomic_check = nv50_msto_atomic_check,
1062 };
1063 
1064 static void
1065 nv50_msto_destroy(struct drm_encoder *encoder)
1066 {
1067 	struct nv50_msto *msto = nv50_msto(encoder);
1068 	drm_encoder_cleanup(&msto->encoder);
1069 	kfree(msto);
1070 }
1071 
1072 static const struct drm_encoder_funcs
1073 nv50_msto = {
1074 	.destroy = nv50_msto_destroy,
1075 };
1076 
1077 static struct nv50_msto *
1078 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1079 {
1080 	struct nv50_msto *msto;
1081 	int ret;
1082 
1083 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1084 	if (!msto)
1085 		return ERR_PTR(-ENOMEM);
1086 
1087 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1088 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1089 	if (ret) {
1090 		kfree(msto);
1091 		return ERR_PTR(ret);
1092 	}
1093 
1094 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1095 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1096 	msto->head = head;
1097 	return msto;
1098 }
1099 
1100 static struct drm_encoder *
1101 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1102 			      struct drm_atomic_state *state)
1103 {
1104 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1105 											 connector);
1106 	struct nv50_mstc *mstc = nv50_mstc(connector);
1107 	struct drm_crtc *crtc = connector_state->crtc;
1108 
1109 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1110 		return NULL;
1111 
1112 	return &nv50_head(crtc)->msto->encoder;
1113 }
1114 
1115 static enum drm_mode_status
1116 nv50_mstc_mode_valid(struct drm_connector *connector,
1117 		     struct drm_display_mode *mode)
1118 {
1119 	struct nv50_mstc *mstc = nv50_mstc(connector);
1120 	struct nouveau_encoder *outp = mstc->mstm->outp;
1121 
1122 	/* TODO: calculate the PBN from the dotclock and validate against the
1123 	 * MSTB's max possible PBN
1124 	 */
1125 
1126 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1127 }
1128 
1129 static int
1130 nv50_mstc_get_modes(struct drm_connector *connector)
1131 {
1132 	struct nv50_mstc *mstc = nv50_mstc(connector);
1133 	int ret = 0;
1134 
1135 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1136 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1137 	if (mstc->edid)
1138 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1139 
1140 	/*
1141 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1142 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1143 	 * to properly fix this by dynamically selecting the highest possible
1144 	 * bpc that would fit in the topology
1145 	 */
1146 	if (connector->display_info.bpc)
1147 		connector->display_info.bpc =
1148 			clamp(connector->display_info.bpc, 6U, 8U);
1149 	else
1150 		connector->display_info.bpc = 8;
1151 
1152 	if (mstc->native)
1153 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1154 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1155 	return ret;
1156 }
1157 
1158 static int
1159 nv50_mstc_atomic_check(struct drm_connector *connector,
1160 		       struct drm_atomic_state *state)
1161 {
1162 	struct nv50_mstc *mstc = nv50_mstc(connector);
1163 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1164 
1165 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1166 }
1167 
1168 static int
1169 nv50_mstc_detect(struct drm_connector *connector,
1170 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1171 {
1172 	struct nv50_mstc *mstc = nv50_mstc(connector);
1173 	int ret;
1174 
1175 	if (drm_connector_is_unregistered(connector))
1176 		return connector_status_disconnected;
1177 
1178 	ret = pm_runtime_get_sync(connector->dev->dev);
1179 	if (ret < 0 && ret != -EACCES) {
1180 		pm_runtime_put_autosuspend(connector->dev->dev);
1181 		return connector_status_disconnected;
1182 	}
1183 
1184 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1185 				     mstc->port);
1186 	if (ret != connector_status_connected)
1187 		goto out;
1188 
1189 out:
1190 	pm_runtime_mark_last_busy(connector->dev->dev);
1191 	pm_runtime_put_autosuspend(connector->dev->dev);
1192 	return ret;
1193 }
1194 
1195 static const struct drm_connector_helper_funcs
1196 nv50_mstc_help = {
1197 	.get_modes = nv50_mstc_get_modes,
1198 	.mode_valid = nv50_mstc_mode_valid,
1199 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1200 	.atomic_check = nv50_mstc_atomic_check,
1201 	.detect_ctx = nv50_mstc_detect,
1202 };
1203 
1204 static void
1205 nv50_mstc_destroy(struct drm_connector *connector)
1206 {
1207 	struct nv50_mstc *mstc = nv50_mstc(connector);
1208 
1209 	drm_connector_cleanup(&mstc->connector);
1210 	drm_dp_mst_put_port_malloc(mstc->port);
1211 
1212 	kfree(mstc);
1213 }
1214 
1215 static const struct drm_connector_funcs
1216 nv50_mstc = {
1217 	.reset = nouveau_conn_reset,
1218 	.fill_modes = drm_helper_probe_single_connector_modes,
1219 	.destroy = nv50_mstc_destroy,
1220 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1221 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1222 	.atomic_set_property = nouveau_conn_atomic_set_property,
1223 	.atomic_get_property = nouveau_conn_atomic_get_property,
1224 };
1225 
1226 static int
1227 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1228 	      const char *path, struct nv50_mstc **pmstc)
1229 {
1230 	struct drm_device *dev = mstm->outp->base.base.dev;
1231 	struct drm_crtc *crtc;
1232 	struct nv50_mstc *mstc;
1233 	int ret;
1234 
1235 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1236 		return -ENOMEM;
1237 	mstc->mstm = mstm;
1238 	mstc->port = port;
1239 
1240 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1241 				 DRM_MODE_CONNECTOR_DisplayPort);
1242 	if (ret) {
1243 		kfree(*pmstc);
1244 		*pmstc = NULL;
1245 		return ret;
1246 	}
1247 
1248 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1249 
1250 	mstc->connector.funcs->reset(&mstc->connector);
1251 	nouveau_conn_attach_properties(&mstc->connector);
1252 
1253 	drm_for_each_crtc(crtc, dev) {
1254 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1255 			continue;
1256 
1257 		drm_connector_attach_encoder(&mstc->connector,
1258 					     &nv50_head(crtc)->msto->encoder);
1259 	}
1260 
1261 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1262 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1263 	drm_connector_set_path_property(&mstc->connector, path);
1264 	drm_dp_mst_get_port_malloc(port);
1265 	return 0;
1266 }
1267 
1268 static void
1269 nv50_mstm_cleanup(struct drm_atomic_state *state,
1270 		  struct drm_dp_mst_topology_state *mst_state,
1271 		  struct nv50_mstm *mstm)
1272 {
1273 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1274 	struct drm_encoder *encoder;
1275 
1276 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1277 	drm_dp_check_act_status(&mstm->mgr);
1278 
1279 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1280 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1281 			struct nv50_msto *msto = nv50_msto(encoder);
1282 			struct nv50_mstc *mstc = msto->mstc;
1283 			if (mstc && mstc->mstm == mstm)
1284 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1285 		}
1286 	}
1287 
1288 	mstm->modified = false;
1289 }
1290 
1291 static void
1292 nv50_mstm_prepare(struct drm_atomic_state *state,
1293 		  struct drm_dp_mst_topology_state *mst_state,
1294 		  struct nv50_mstm *mstm)
1295 {
1296 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1297 	struct drm_encoder *encoder;
1298 
1299 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1300 
1301 	/* Disable payloads first */
1302 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1303 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1304 			struct nv50_msto *msto = nv50_msto(encoder);
1305 			struct nv50_mstc *mstc = msto->mstc;
1306 			if (mstc && mstc->mstm == mstm && msto->disabled)
1307 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1308 		}
1309 	}
1310 
1311 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1312 	 * active) heads that may have had their VC slots shifted left after the previous step
1313 	 */
1314 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1315 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1316 			struct nv50_msto *msto = nv50_msto(encoder);
1317 			struct nv50_mstc *mstc = msto->mstc;
1318 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1319 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1320 		}
1321 	}
1322 
1323 	if (mstm->disabled) {
1324 		if (!mstm->links)
1325 			nvif_outp_release(&mstm->outp->outp);
1326 		mstm->disabled = false;
1327 	}
1328 }
1329 
1330 static struct drm_connector *
1331 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1332 			struct drm_dp_mst_port *port, const char *path)
1333 {
1334 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1335 	struct nv50_mstc *mstc;
1336 	int ret;
1337 
1338 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1339 	if (ret)
1340 		return NULL;
1341 
1342 	return &mstc->connector;
1343 }
1344 
1345 static const struct drm_dp_mst_topology_cbs
1346 nv50_mstm = {
1347 	.add_connector = nv50_mstm_add_connector,
1348 };
1349 
1350 bool
1351 nv50_mstm_service(struct nouveau_drm *drm,
1352 		  struct nouveau_connector *nv_connector,
1353 		  struct nv50_mstm *mstm)
1354 {
1355 	struct drm_dp_aux *aux = &nv_connector->aux;
1356 	bool handled = true, ret = true;
1357 	int rc;
1358 	u8 esi[8] = {};
1359 
1360 	while (handled) {
1361 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1362 		if (rc != 8) {
1363 			ret = false;
1364 			break;
1365 		}
1366 
1367 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1368 		if (!handled)
1369 			break;
1370 
1371 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1372 				       3);
1373 		if (rc != 3) {
1374 			ret = false;
1375 			break;
1376 		}
1377 	}
1378 
1379 	if (!ret)
1380 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1381 			 nv_connector->base.name, rc);
1382 
1383 	return ret;
1384 }
1385 
1386 void
1387 nv50_mstm_remove(struct nv50_mstm *mstm)
1388 {
1389 	mstm->is_mst = false;
1390 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1391 }
1392 
1393 int
1394 nv50_mstm_detect(struct nouveau_encoder *outp)
1395 {
1396 	struct nv50_mstm *mstm = outp->dp.mstm;
1397 	struct drm_dp_aux *aux;
1398 	int ret;
1399 
1400 	if (!mstm || !mstm->can_mst)
1401 		return 0;
1402 
1403 	aux = mstm->mgr.aux;
1404 
1405 	/* Clear any leftover MST state we didn't set ourselves by first
1406 	 * disabling MST if it was already enabled
1407 	 */
1408 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1409 	if (ret < 0)
1410 		return ret;
1411 
1412 	/* And start enabling */
1413 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1414 	if (ret)
1415 		return ret;
1416 
1417 	mstm->is_mst = true;
1418 	return 1;
1419 }
1420 
1421 static void
1422 nv50_mstm_fini(struct nouveau_encoder *outp)
1423 {
1424 	struct nv50_mstm *mstm = outp->dp.mstm;
1425 
1426 	if (!mstm)
1427 		return;
1428 
1429 	/* Don't change the MST state of this connector until we've finished
1430 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1431 	 * path to protect mstm->is_mst without potentially deadlocking
1432 	 */
1433 	mutex_lock(&outp->dp.hpd_irq_lock);
1434 	mstm->suspended = true;
1435 	mutex_unlock(&outp->dp.hpd_irq_lock);
1436 
1437 	if (mstm->is_mst)
1438 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1439 }
1440 
1441 static void
1442 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1443 {
1444 	struct nv50_mstm *mstm = outp->dp.mstm;
1445 	int ret = 0;
1446 
1447 	if (!mstm)
1448 		return;
1449 
1450 	if (mstm->is_mst) {
1451 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1452 		if (ret == -1)
1453 			nv50_mstm_remove(mstm);
1454 	}
1455 
1456 	mutex_lock(&outp->dp.hpd_irq_lock);
1457 	mstm->suspended = false;
1458 	mutex_unlock(&outp->dp.hpd_irq_lock);
1459 
1460 	if (ret == -1)
1461 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1462 }
1463 
1464 static void
1465 nv50_mstm_del(struct nv50_mstm **pmstm)
1466 {
1467 	struct nv50_mstm *mstm = *pmstm;
1468 	if (mstm) {
1469 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1470 		kfree(*pmstm);
1471 		*pmstm = NULL;
1472 	}
1473 }
1474 
1475 static int
1476 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1477 	      int conn_base_id, struct nv50_mstm **pmstm)
1478 {
1479 	const int max_payloads = hweight8(outp->dcb->heads);
1480 	struct drm_device *dev = outp->base.base.dev;
1481 	struct nv50_mstm *mstm;
1482 	int ret;
1483 
1484 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1485 		return -ENOMEM;
1486 	mstm->outp = outp;
1487 	mstm->mgr.cbs = &nv50_mstm;
1488 
1489 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1490 					   max_payloads, conn_base_id);
1491 	if (ret)
1492 		return ret;
1493 
1494 	return 0;
1495 }
1496 
1497 /******************************************************************************
1498  * SOR
1499  *****************************************************************************/
1500 static void
1501 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1502 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1503 {
1504 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1505 	struct nv50_core *core = disp->core;
1506 
1507 	if (!asyh) {
1508 		nv_encoder->ctrl &= ~BIT(head);
1509 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1510 			nv_encoder->ctrl = 0;
1511 	} else {
1512 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1513 		nv_encoder->ctrl |= BIT(head);
1514 		asyh->or.depth = depth;
1515 	}
1516 
1517 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1518 }
1519 
1520 /* TODO: Should we extend this to PWM-only backlights?
1521  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1522  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1523  * fixed time delay from the vbios…
1524  */
1525 static void
1526 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1527 {
1528 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1529 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1530 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1531 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1532 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1533 	struct nouveau_backlight *backlight = nv_connector->backlight;
1534 #endif
1535 	struct drm_dp_aux *aux = &nv_connector->aux;
1536 	int ret;
1537 	u8 pwr;
1538 
1539 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1540 	if (backlight && backlight->uses_dpcd) {
1541 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1542 		if (ret < 0)
1543 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1544 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1545 	}
1546 #endif
1547 
1548 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1549 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1550 
1551 		if (ret == 0) {
1552 			pwr &= ~DP_SET_POWER_MASK;
1553 			pwr |=  DP_SET_POWER_D3;
1554 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1555 		}
1556 	}
1557 
1558 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1559 	nv50_audio_disable(encoder, nv_crtc);
1560 	nvif_outp_release(&nv_encoder->outp);
1561 	nv_encoder->crtc = NULL;
1562 }
1563 
1564 static void
1565 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1566 {
1567 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1568 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1569 	struct nv50_head_atom *asyh =
1570 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1571 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1572 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1573 	struct nvif_outp *outp = &nv_encoder->outp;
1574 	struct drm_device *dev = encoder->dev;
1575 	struct nouveau_drm *drm = nouveau_drm(dev);
1576 	struct nouveau_connector *nv_connector;
1577 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1578 	struct nouveau_backlight *backlight;
1579 #endif
1580 	struct nvbios *bios = &drm->vbios;
1581 	bool lvds_dual = false, lvds_8bpc = false, hda = false;
1582 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1583 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1584 
1585 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1586 	nv_encoder->crtc = &nv_crtc->base;
1587 
1588 	if ((disp->disp->object.oclass == GT214_DISP ||
1589 	     disp->disp->object.oclass >= GF110_DISP) &&
1590 	    drm_detect_monitor_audio(nv_connector->edid))
1591 		hda = true;
1592 
1593 	switch (nv_encoder->dcb->type) {
1594 	case DCB_OUTPUT_TMDS:
1595 		if (disp->disp->object.oclass == NV50_DISP ||
1596 		    !drm_detect_hdmi_monitor(nv_connector->edid))
1597 			nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false);
1598 		else
1599 			nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1600 
1601 		if (nv_encoder->outp.or.link & 1) {
1602 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1603 			/* Only enable dual-link if:
1604 			 *  - Need to (i.e. rate > 165MHz)
1605 			 *  - DCB says we can
1606 			 *  - Not an HDMI monitor, since there's no dual-link
1607 			 *    on HDMI.
1608 			 */
1609 			if (mode->clock >= 165000 &&
1610 			    nv_encoder->dcb->duallink_possible &&
1611 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1612 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1613 		} else {
1614 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1615 		}
1616 		break;
1617 	case DCB_OUTPUT_LVDS:
1618 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1619 
1620 		if (bios->fp_no_ddc) {
1621 			lvds_dual = bios->fp.dual_link;
1622 			lvds_8bpc = bios->fp.if_is_24bit;
1623 		} else {
1624 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1625 				if (((u8 *)nv_connector->edid)[121] == 2)
1626 					lvds_dual = true;
1627 			} else
1628 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1629 				lvds_dual = true;
1630 			}
1631 
1632 			if (lvds_dual) {
1633 				if (bios->fp.strapless_is_24bit & 2)
1634 					lvds_8bpc = true;
1635 			} else {
1636 				if (bios->fp.strapless_is_24bit & 1)
1637 					lvds_8bpc = true;
1638 			}
1639 
1640 			if (asyh->or.bpc == 8)
1641 				lvds_8bpc = true;
1642 		}
1643 
1644 		nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1645 		break;
1646 	case DCB_OUTPUT_DP:
1647 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false);
1648 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1649 
1650 		if (nv_encoder->outp.or.link & 1)
1651 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1652 		else
1653 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1654 
1655 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1656 
1657 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1658 		backlight = nv_connector->backlight;
1659 		if (backlight && backlight->uses_dpcd)
1660 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1661 						 (u16)backlight->dev->props.brightness);
1662 #endif
1663 
1664 		break;
1665 	default:
1666 		BUG();
1667 		break;
1668 	}
1669 
1670 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1671 }
1672 
1673 static const struct drm_encoder_helper_funcs
1674 nv50_sor_help = {
1675 	.atomic_check = nv50_outp_atomic_check,
1676 	.atomic_enable = nv50_sor_atomic_enable,
1677 	.atomic_disable = nv50_sor_atomic_disable,
1678 };
1679 
1680 static void
1681 nv50_sor_destroy(struct drm_encoder *encoder)
1682 {
1683 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1684 
1685 	nvif_outp_dtor(&nv_encoder->outp);
1686 
1687 	nv50_mstm_del(&nv_encoder->dp.mstm);
1688 	drm_encoder_cleanup(encoder);
1689 
1690 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1691 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1692 
1693 	kfree(encoder);
1694 }
1695 
1696 static const struct drm_encoder_funcs
1697 nv50_sor_func = {
1698 	.destroy = nv50_sor_destroy,
1699 };
1700 
1701 bool nv50_has_mst(struct nouveau_drm *drm)
1702 {
1703 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1704 	u32 data;
1705 	u8 ver, hdr, cnt, len;
1706 
1707 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1708 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1709 }
1710 
1711 static int
1712 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1713 {
1714 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1715 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1716 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1717 	struct nouveau_encoder *nv_encoder;
1718 	struct drm_encoder *encoder;
1719 	struct nv50_disp *disp = nv50_disp(connector->dev);
1720 	int type, ret;
1721 
1722 	switch (dcbe->type) {
1723 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1724 	case DCB_OUTPUT_TMDS:
1725 	case DCB_OUTPUT_DP:
1726 	default:
1727 		type = DRM_MODE_ENCODER_TMDS;
1728 		break;
1729 	}
1730 
1731 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1732 	if (!nv_encoder)
1733 		return -ENOMEM;
1734 	nv_encoder->dcb = dcbe;
1735 	nv_encoder->update = nv50_sor_update;
1736 
1737 	encoder = to_drm_encoder(nv_encoder);
1738 	encoder->possible_crtcs = dcbe->heads;
1739 	encoder->possible_clones = 0;
1740 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1741 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1742 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1743 
1744 	drm_connector_attach_encoder(connector, encoder);
1745 
1746 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1747 	nv50_outp_dump_caps(drm, nv_encoder);
1748 
1749 	if (dcbe->type == DCB_OUTPUT_DP) {
1750 		struct nvkm_i2c_aux *aux =
1751 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1752 
1753 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1754 
1755 		if (aux) {
1756 			if (disp->disp->object.oclass < GF110_DISP) {
1757 				/* HW has no support for address-only
1758 				 * transactions, so we're required to
1759 				 * use custom I2C-over-AUX code.
1760 				 */
1761 				nv_encoder->i2c = &aux->i2c;
1762 			} else {
1763 				nv_encoder->i2c = &nv_connector->aux.ddc;
1764 			}
1765 			nv_encoder->aux = aux;
1766 		}
1767 
1768 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1769 		    nv50_has_mst(drm)) {
1770 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1771 					    16, nv_connector->base.base.id,
1772 					    &nv_encoder->dp.mstm);
1773 			if (ret)
1774 				return ret;
1775 		}
1776 	} else {
1777 		struct nvkm_i2c_bus *bus =
1778 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1779 		if (bus)
1780 			nv_encoder->i2c = &bus->i2c;
1781 	}
1782 
1783 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1784 }
1785 
1786 /******************************************************************************
1787  * PIOR
1788  *****************************************************************************/
1789 static int
1790 nv50_pior_atomic_check(struct drm_encoder *encoder,
1791 		       struct drm_crtc_state *crtc_state,
1792 		       struct drm_connector_state *conn_state)
1793 {
1794 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1795 	if (ret)
1796 		return ret;
1797 	crtc_state->adjusted_mode.clock *= 2;
1798 	return 0;
1799 }
1800 
1801 static void
1802 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1803 {
1804 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1805 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1806 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1807 
1808 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1809 	nv_encoder->crtc = NULL;
1810 	nvif_outp_release(&nv_encoder->outp);
1811 }
1812 
1813 static void
1814 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1815 {
1816 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1817 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1818 	struct nv50_head_atom *asyh =
1819 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1820 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1821 	u32 ctrl = 0;
1822 
1823 	switch (nv_crtc->index) {
1824 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1825 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1826 	default:
1827 		WARN_ON(1);
1828 		break;
1829 	}
1830 
1831 	switch (asyh->or.bpc) {
1832 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1833 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1834 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1835 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1836 	}
1837 
1838 	switch (nv_encoder->dcb->type) {
1839 	case DCB_OUTPUT_TMDS:
1840 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1841 		nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false);
1842 		break;
1843 	case DCB_OUTPUT_DP:
1844 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1845 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false);
1846 		break;
1847 	default:
1848 		BUG();
1849 		break;
1850 	}
1851 
1852 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1853 	nv_encoder->crtc = &nv_crtc->base;
1854 }
1855 
1856 static const struct drm_encoder_helper_funcs
1857 nv50_pior_help = {
1858 	.atomic_check = nv50_pior_atomic_check,
1859 	.atomic_enable = nv50_pior_atomic_enable,
1860 	.atomic_disable = nv50_pior_atomic_disable,
1861 };
1862 
1863 static void
1864 nv50_pior_destroy(struct drm_encoder *encoder)
1865 {
1866 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1867 
1868 	nvif_outp_dtor(&nv_encoder->outp);
1869 
1870 	drm_encoder_cleanup(encoder);
1871 	kfree(encoder);
1872 }
1873 
1874 static const struct drm_encoder_funcs
1875 nv50_pior_func = {
1876 	.destroy = nv50_pior_destroy,
1877 };
1878 
1879 static int
1880 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1881 {
1882 	struct drm_device *dev = connector->dev;
1883 	struct nouveau_drm *drm = nouveau_drm(dev);
1884 	struct nv50_disp *disp = nv50_disp(dev);
1885 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1886 	struct nvkm_i2c_bus *bus = NULL;
1887 	struct nvkm_i2c_aux *aux = NULL;
1888 	struct i2c_adapter *ddc;
1889 	struct nouveau_encoder *nv_encoder;
1890 	struct drm_encoder *encoder;
1891 	int type;
1892 
1893 	switch (dcbe->type) {
1894 	case DCB_OUTPUT_TMDS:
1895 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1896 		ddc  = bus ? &bus->i2c : NULL;
1897 		type = DRM_MODE_ENCODER_TMDS;
1898 		break;
1899 	case DCB_OUTPUT_DP:
1900 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1901 		ddc  = aux ? &aux->i2c : NULL;
1902 		type = DRM_MODE_ENCODER_TMDS;
1903 		break;
1904 	default:
1905 		return -ENODEV;
1906 	}
1907 
1908 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1909 	if (!nv_encoder)
1910 		return -ENOMEM;
1911 	nv_encoder->dcb = dcbe;
1912 	nv_encoder->i2c = ddc;
1913 	nv_encoder->aux = aux;
1914 
1915 	encoder = to_drm_encoder(nv_encoder);
1916 	encoder->possible_crtcs = dcbe->heads;
1917 	encoder->possible_clones = 0;
1918 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1919 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1920 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1921 
1922 	drm_connector_attach_encoder(connector, encoder);
1923 
1924 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1925 	nv50_outp_dump_caps(drm, nv_encoder);
1926 
1927 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1928 }
1929 
1930 /******************************************************************************
1931  * Atomic
1932  *****************************************************************************/
1933 
1934 static void
1935 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1936 {
1937 	struct drm_dp_mst_topology_mgr *mgr;
1938 	struct drm_dp_mst_topology_state *mst_state;
1939 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1940 	struct nv50_disp *disp = nv50_disp(drm->dev);
1941 	struct nv50_core *core = disp->core;
1942 	struct nv50_mstm *mstm;
1943 	int i;
1944 
1945 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1946 
1947 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1948 		mstm = nv50_mstm(mgr);
1949 		if (mstm->modified)
1950 			nv50_mstm_prepare(state, mst_state, mstm);
1951 	}
1952 
1953 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1954 	core->func->update(core, interlock, true);
1955 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1956 				       disp->core->chan.base.device))
1957 		NV_ERROR(drm, "core notifier timeout\n");
1958 
1959 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1960 		mstm = nv50_mstm(mgr);
1961 		if (mstm->modified)
1962 			nv50_mstm_cleanup(state, mst_state, mstm);
1963 	}
1964 }
1965 
1966 static void
1967 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1968 {
1969 	struct drm_plane_state *new_plane_state;
1970 	struct drm_plane *plane;
1971 	int i;
1972 
1973 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1974 		struct nv50_wndw *wndw = nv50_wndw(plane);
1975 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1976 			if (wndw->func->update)
1977 				wndw->func->update(wndw, interlock);
1978 		}
1979 	}
1980 }
1981 
1982 static void
1983 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1984 {
1985 	struct drm_device *dev = state->dev;
1986 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1987 	struct drm_crtc *crtc;
1988 	struct drm_plane_state *new_plane_state;
1989 	struct drm_plane *plane;
1990 	struct nouveau_drm *drm = nouveau_drm(dev);
1991 	struct nv50_disp *disp = nv50_disp(dev);
1992 	struct nv50_atom *atom = nv50_atom(state);
1993 	struct nv50_core *core = disp->core;
1994 	struct nv50_outp_atom *outp, *outt;
1995 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1996 	int i;
1997 	bool flushed = false;
1998 
1999 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2000 	nv50_crc_atomic_stop_reporting(state);
2001 	drm_atomic_helper_wait_for_fences(dev, state, false);
2002 	drm_atomic_helper_wait_for_dependencies(state);
2003 	drm_dp_mst_atomic_wait_for_dependencies(state);
2004 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2005 	drm_atomic_helper_calc_timestamping_constants(state);
2006 
2007 	if (atom->lock_core)
2008 		mutex_lock(&disp->mutex);
2009 
2010 	/* Disable head(s). */
2011 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2012 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2013 		struct nv50_head *head = nv50_head(crtc);
2014 
2015 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2016 			  asyh->clr.mask, asyh->set.mask);
2017 
2018 		if (old_crtc_state->active && !new_crtc_state->active) {
2019 			pm_runtime_put_noidle(dev->dev);
2020 			drm_crtc_vblank_off(crtc);
2021 		}
2022 
2023 		if (asyh->clr.mask) {
2024 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2025 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2026 		}
2027 	}
2028 
2029 	/* Disable plane(s). */
2030 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2031 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2032 		struct nv50_wndw *wndw = nv50_wndw(plane);
2033 
2034 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2035 			  asyw->clr.mask, asyw->set.mask);
2036 		if (!asyw->clr.mask)
2037 			continue;
2038 
2039 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2040 	}
2041 
2042 	/* Disable output path(s). */
2043 	list_for_each_entry(outp, &atom->outp, head) {
2044 		const struct drm_encoder_helper_funcs *help;
2045 		struct drm_encoder *encoder;
2046 
2047 		encoder = outp->encoder;
2048 		help = encoder->helper_private;
2049 
2050 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2051 			  outp->clr.mask, outp->set.mask);
2052 
2053 		if (outp->clr.mask) {
2054 			help->atomic_disable(encoder, state);
2055 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2056 			if (outp->flush_disable) {
2057 				nv50_disp_atomic_commit_wndw(state, interlock);
2058 				nv50_disp_atomic_commit_core(state, interlock);
2059 				memset(interlock, 0x00, sizeof(interlock));
2060 
2061 				flushed = true;
2062 			}
2063 		}
2064 	}
2065 
2066 	/* Flush disable. */
2067 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2068 		if (atom->flush_disable) {
2069 			nv50_disp_atomic_commit_wndw(state, interlock);
2070 			nv50_disp_atomic_commit_core(state, interlock);
2071 			memset(interlock, 0x00, sizeof(interlock));
2072 
2073 			flushed = true;
2074 		}
2075 	}
2076 
2077 	if (flushed)
2078 		nv50_crc_atomic_release_notifier_contexts(state);
2079 	nv50_crc_atomic_init_notifier_contexts(state);
2080 
2081 	/* Update output path(s). */
2082 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2083 		const struct drm_encoder_helper_funcs *help;
2084 		struct drm_encoder *encoder;
2085 
2086 		encoder = outp->encoder;
2087 		help = encoder->helper_private;
2088 
2089 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2090 			  outp->set.mask, outp->clr.mask);
2091 
2092 		if (outp->set.mask) {
2093 			help->atomic_enable(encoder, state);
2094 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2095 		}
2096 
2097 		list_del(&outp->head);
2098 		kfree(outp);
2099 	}
2100 
2101 	/* Update head(s). */
2102 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2103 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2104 		struct nv50_head *head = nv50_head(crtc);
2105 
2106 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2107 			  asyh->set.mask, asyh->clr.mask);
2108 
2109 		if (asyh->set.mask) {
2110 			nv50_head_flush_set(head, asyh);
2111 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2112 		}
2113 
2114 		if (new_crtc_state->active) {
2115 			if (!old_crtc_state->active) {
2116 				drm_crtc_vblank_on(crtc);
2117 				pm_runtime_get_noresume(dev->dev);
2118 			}
2119 			if (new_crtc_state->event)
2120 				drm_crtc_vblank_get(crtc);
2121 		}
2122 	}
2123 
2124 	/* Update window->head assignment.
2125 	 *
2126 	 * This has to happen in an update that's not interlocked with
2127 	 * any window channels to avoid hitting HW error checks.
2128 	 *
2129 	 *TODO: Proper handling of window ownership (Turing apparently
2130 	 *      supports non-fixed mappings).
2131 	 */
2132 	if (core->assign_windows) {
2133 		core->func->wndw.owner(core);
2134 		nv50_disp_atomic_commit_core(state, interlock);
2135 		core->assign_windows = false;
2136 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2137 	}
2138 
2139 	/* Finish updating head(s)...
2140 	 *
2141 	 * NVD is rather picky about both where window assignments can change,
2142 	 * *and* about certain core and window channel states matching.
2143 	 *
2144 	 * The EFI GOP driver on newer GPUs configures window channels with a
2145 	 * different output format to what we do, and the core channel update
2146 	 * in the assign_windows case above would result in a state mismatch.
2147 	 *
2148 	 * Delay some of the head update until after that point to workaround
2149 	 * the issue.  This only affects the initial modeset.
2150 	 *
2151 	 * TODO: handle this better when adding flexible window mapping
2152 	 */
2153 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2154 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2155 		struct nv50_head *head = nv50_head(crtc);
2156 
2157 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2158 			  asyh->set.mask, asyh->clr.mask);
2159 
2160 		if (asyh->set.mask) {
2161 			nv50_head_flush_set_wndw(head, asyh);
2162 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2163 		}
2164 	}
2165 
2166 	/* Update plane(s). */
2167 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2168 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2169 		struct nv50_wndw *wndw = nv50_wndw(plane);
2170 
2171 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2172 			  asyw->set.mask, asyw->clr.mask);
2173 		if ( !asyw->set.mask &&
2174 		    (!asyw->clr.mask || atom->flush_disable))
2175 			continue;
2176 
2177 		nv50_wndw_flush_set(wndw, interlock, asyw);
2178 	}
2179 
2180 	/* Flush update. */
2181 	nv50_disp_atomic_commit_wndw(state, interlock);
2182 
2183 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2184 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2185 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2186 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2187 		    !atom->state.legacy_cursor_update)
2188 			nv50_disp_atomic_commit_core(state, interlock);
2189 		else
2190 			disp->core->func->update(disp->core, interlock, false);
2191 	}
2192 
2193 	if (atom->lock_core)
2194 		mutex_unlock(&disp->mutex);
2195 
2196 	/* Wait for HW to signal completion. */
2197 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2198 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2199 		struct nv50_wndw *wndw = nv50_wndw(plane);
2200 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2201 		if (ret)
2202 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2203 	}
2204 
2205 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2206 		if (new_crtc_state->event) {
2207 			unsigned long flags;
2208 			/* Get correct count/ts if racing with vblank irq */
2209 			if (new_crtc_state->active)
2210 				drm_crtc_accurate_vblank_count(crtc);
2211 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2212 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2213 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2214 
2215 			new_crtc_state->event = NULL;
2216 			if (new_crtc_state->active)
2217 				drm_crtc_vblank_put(crtc);
2218 		}
2219 	}
2220 
2221 	nv50_crc_atomic_start_reporting(state);
2222 	if (!flushed)
2223 		nv50_crc_atomic_release_notifier_contexts(state);
2224 
2225 	drm_atomic_helper_commit_hw_done(state);
2226 	drm_atomic_helper_cleanup_planes(dev, state);
2227 	drm_atomic_helper_commit_cleanup_done(state);
2228 	drm_atomic_state_put(state);
2229 
2230 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2231 	pm_runtime_mark_last_busy(dev->dev);
2232 	pm_runtime_put_autosuspend(dev->dev);
2233 }
2234 
2235 static void
2236 nv50_disp_atomic_commit_work(struct work_struct *work)
2237 {
2238 	struct drm_atomic_state *state =
2239 		container_of(work, typeof(*state), commit_work);
2240 	nv50_disp_atomic_commit_tail(state);
2241 }
2242 
2243 static int
2244 nv50_disp_atomic_commit(struct drm_device *dev,
2245 			struct drm_atomic_state *state, bool nonblock)
2246 {
2247 	struct drm_plane_state *new_plane_state;
2248 	struct drm_plane *plane;
2249 	int ret, i;
2250 
2251 	ret = pm_runtime_get_sync(dev->dev);
2252 	if (ret < 0 && ret != -EACCES) {
2253 		pm_runtime_put_autosuspend(dev->dev);
2254 		return ret;
2255 	}
2256 
2257 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2258 	if (ret)
2259 		goto done;
2260 
2261 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2262 
2263 	ret = drm_atomic_helper_prepare_planes(dev, state);
2264 	if (ret)
2265 		goto done;
2266 
2267 	if (!nonblock) {
2268 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2269 		if (ret)
2270 			goto err_cleanup;
2271 	}
2272 
2273 	ret = drm_atomic_helper_swap_state(state, true);
2274 	if (ret)
2275 		goto err_cleanup;
2276 
2277 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2278 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2279 		struct nv50_wndw *wndw = nv50_wndw(plane);
2280 
2281 		if (asyw->set.image)
2282 			nv50_wndw_ntfy_enable(wndw, asyw);
2283 	}
2284 
2285 	drm_atomic_state_get(state);
2286 
2287 	/*
2288 	 * Grab another RPM ref for the commit tail, which will release the
2289 	 * ref when it's finished
2290 	 */
2291 	pm_runtime_get_noresume(dev->dev);
2292 
2293 	if (nonblock)
2294 		queue_work(system_unbound_wq, &state->commit_work);
2295 	else
2296 		nv50_disp_atomic_commit_tail(state);
2297 
2298 err_cleanup:
2299 	if (ret)
2300 		drm_atomic_helper_cleanup_planes(dev, state);
2301 done:
2302 	pm_runtime_put_autosuspend(dev->dev);
2303 	return ret;
2304 }
2305 
2306 static struct nv50_outp_atom *
2307 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2308 {
2309 	struct nv50_outp_atom *outp;
2310 
2311 	list_for_each_entry(outp, &atom->outp, head) {
2312 		if (outp->encoder == encoder)
2313 			return outp;
2314 	}
2315 
2316 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2317 	if (!outp)
2318 		return ERR_PTR(-ENOMEM);
2319 
2320 	list_add(&outp->head, &atom->outp);
2321 	outp->encoder = encoder;
2322 	return outp;
2323 }
2324 
2325 static int
2326 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2327 				struct drm_connector_state *old_connector_state)
2328 {
2329 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2330 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2331 	struct drm_crtc *crtc;
2332 	struct nv50_outp_atom *outp;
2333 
2334 	if (!(crtc = old_connector_state->crtc))
2335 		return 0;
2336 
2337 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2338 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2339 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2340 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2341 		if (IS_ERR(outp))
2342 			return PTR_ERR(outp);
2343 
2344 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2345 			outp->flush_disable = true;
2346 			atom->flush_disable = true;
2347 		}
2348 		outp->clr.ctrl = true;
2349 		atom->lock_core = true;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static int
2356 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2357 				struct drm_connector_state *connector_state)
2358 {
2359 	struct drm_encoder *encoder = connector_state->best_encoder;
2360 	struct drm_crtc_state *new_crtc_state;
2361 	struct drm_crtc *crtc;
2362 	struct nv50_outp_atom *outp;
2363 
2364 	if (!(crtc = connector_state->crtc))
2365 		return 0;
2366 
2367 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2368 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2369 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2370 		if (IS_ERR(outp))
2371 			return PTR_ERR(outp);
2372 
2373 		outp->set.ctrl = true;
2374 		atom->lock_core = true;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int
2381 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2382 {
2383 	struct nv50_atom *atom = nv50_atom(state);
2384 	struct nv50_core *core = nv50_disp(dev)->core;
2385 	struct drm_connector_state *old_connector_state, *new_connector_state;
2386 	struct drm_connector *connector;
2387 	struct drm_crtc_state *new_crtc_state;
2388 	struct drm_crtc *crtc;
2389 	struct nv50_head *head;
2390 	struct nv50_head_atom *asyh;
2391 	int ret, i;
2392 
2393 	if (core->assign_windows && core->func->head->static_wndw_map) {
2394 		drm_for_each_crtc(crtc, dev) {
2395 			new_crtc_state = drm_atomic_get_crtc_state(state,
2396 								   crtc);
2397 			if (IS_ERR(new_crtc_state))
2398 				return PTR_ERR(new_crtc_state);
2399 
2400 			head = nv50_head(crtc);
2401 			asyh = nv50_head_atom(new_crtc_state);
2402 			core->func->head->static_wndw_map(head, asyh);
2403 		}
2404 	}
2405 
2406 	/* We need to handle colour management on a per-plane basis. */
2407 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2408 		if (new_crtc_state->color_mgmt_changed) {
2409 			ret = drm_atomic_add_affected_planes(state, crtc);
2410 			if (ret)
2411 				return ret;
2412 		}
2413 	}
2414 
2415 	ret = drm_atomic_helper_check(dev, state);
2416 	if (ret)
2417 		return ret;
2418 
2419 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2420 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2421 		if (ret)
2422 			return ret;
2423 
2424 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2425 		if (ret)
2426 			return ret;
2427 	}
2428 
2429 	ret = drm_dp_mst_atomic_check(state);
2430 	if (ret)
2431 		return ret;
2432 
2433 	nv50_crc_atomic_check_outp(atom);
2434 
2435 	return 0;
2436 }
2437 
2438 static void
2439 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2440 {
2441 	struct nv50_atom *atom = nv50_atom(state);
2442 	struct nv50_outp_atom *outp, *outt;
2443 
2444 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2445 		list_del(&outp->head);
2446 		kfree(outp);
2447 	}
2448 
2449 	drm_atomic_state_default_clear(state);
2450 }
2451 
2452 static void
2453 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2454 {
2455 	struct nv50_atom *atom = nv50_atom(state);
2456 	drm_atomic_state_default_release(&atom->state);
2457 	kfree(atom);
2458 }
2459 
2460 static struct drm_atomic_state *
2461 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2462 {
2463 	struct nv50_atom *atom;
2464 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2465 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2466 		kfree(atom);
2467 		return NULL;
2468 	}
2469 	INIT_LIST_HEAD(&atom->outp);
2470 	return &atom->state;
2471 }
2472 
2473 static const struct drm_mode_config_funcs
2474 nv50_disp_func = {
2475 	.fb_create = nouveau_user_framebuffer_create,
2476 	.output_poll_changed = drm_fb_helper_output_poll_changed,
2477 	.atomic_check = nv50_disp_atomic_check,
2478 	.atomic_commit = nv50_disp_atomic_commit,
2479 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2480 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2481 	.atomic_state_free = nv50_disp_atomic_state_free,
2482 };
2483 
2484 static const struct drm_mode_config_helper_funcs
2485 nv50_disp_helper_func = {
2486 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2487 };
2488 
2489 /******************************************************************************
2490  * Init
2491  *****************************************************************************/
2492 
2493 static void
2494 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2495 {
2496 	struct nouveau_drm *drm = nouveau_drm(dev);
2497 	struct drm_encoder *encoder;
2498 
2499 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2500 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2501 			nv50_mstm_fini(nouveau_encoder(encoder));
2502 	}
2503 
2504 	if (!runtime)
2505 		cancel_work_sync(&drm->hpd_work);
2506 }
2507 
2508 static int
2509 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2510 {
2511 	struct nv50_core *core = nv50_disp(dev)->core;
2512 	struct drm_encoder *encoder;
2513 
2514 	if (resume || runtime)
2515 		core->func->init(core);
2516 
2517 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2518 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2519 			struct nouveau_encoder *nv_encoder =
2520 				nouveau_encoder(encoder);
2521 			nv50_mstm_init(nv_encoder, runtime);
2522 		}
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 static void
2529 nv50_display_destroy(struct drm_device *dev)
2530 {
2531 	struct nv50_disp *disp = nv50_disp(dev);
2532 
2533 	nv50_audio_component_fini(nouveau_drm(dev));
2534 
2535 	nvif_object_unmap(&disp->caps);
2536 	nvif_object_dtor(&disp->caps);
2537 	nv50_core_del(&disp->core);
2538 
2539 	nouveau_bo_unmap(disp->sync);
2540 	if (disp->sync)
2541 		nouveau_bo_unpin(disp->sync);
2542 	nouveau_bo_ref(NULL, &disp->sync);
2543 
2544 	nouveau_display(dev)->priv = NULL;
2545 	kfree(disp);
2546 }
2547 
2548 int
2549 nv50_display_create(struct drm_device *dev)
2550 {
2551 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2552 	struct nouveau_drm *drm = nouveau_drm(dev);
2553 	struct dcb_table *dcb = &drm->vbios.dcb;
2554 	struct drm_connector *connector, *tmp;
2555 	struct nv50_disp *disp;
2556 	struct dcb_output *dcbe;
2557 	int crtcs, ret, i;
2558 	bool has_mst = nv50_has_mst(drm);
2559 
2560 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2561 	if (!disp)
2562 		return -ENOMEM;
2563 
2564 	mutex_init(&disp->mutex);
2565 
2566 	nouveau_display(dev)->priv = disp;
2567 	nouveau_display(dev)->dtor = nv50_display_destroy;
2568 	nouveau_display(dev)->init = nv50_display_init;
2569 	nouveau_display(dev)->fini = nv50_display_fini;
2570 	disp->disp = &nouveau_display(dev)->disp;
2571 	dev->mode_config.funcs = &nv50_disp_func;
2572 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2573 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2574 	dev->mode_config.normalize_zpos = true;
2575 
2576 	/* small shared memory area we use for notifiers and semaphores */
2577 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2578 			     NOUVEAU_GEM_DOMAIN_VRAM,
2579 			     0, 0x0000, NULL, NULL, &disp->sync);
2580 	if (!ret) {
2581 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2582 		if (!ret) {
2583 			ret = nouveau_bo_map(disp->sync);
2584 			if (ret)
2585 				nouveau_bo_unpin(disp->sync);
2586 		}
2587 		if (ret)
2588 			nouveau_bo_ref(NULL, &disp->sync);
2589 	}
2590 
2591 	if (ret)
2592 		goto out;
2593 
2594 	/* allocate master evo channel */
2595 	ret = nv50_core_new(drm, &disp->core);
2596 	if (ret)
2597 		goto out;
2598 
2599 	disp->core->func->init(disp->core);
2600 	if (disp->core->func->caps_init) {
2601 		ret = disp->core->func->caps_init(drm, disp);
2602 		if (ret)
2603 			goto out;
2604 	}
2605 
2606 	/* Assign the correct format modifiers */
2607 	if (disp->disp->object.oclass >= TU102_DISP)
2608 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2609 	else
2610 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2611 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2612 	else
2613 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2614 
2615 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2616 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2617 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2618 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2619 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2620 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2621 	 * large pages.
2622 	 */
2623 	if (disp->disp->object.oclass >= GM107_DISP) {
2624 		dev->mode_config.cursor_width = 256;
2625 		dev->mode_config.cursor_height = 256;
2626 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2627 		dev->mode_config.cursor_width = 128;
2628 		dev->mode_config.cursor_height = 128;
2629 	} else {
2630 		dev->mode_config.cursor_width = 64;
2631 		dev->mode_config.cursor_height = 64;
2632 	}
2633 
2634 	/* create crtc objects to represent the hw heads */
2635 	if (disp->disp->object.oclass >= GV100_DISP)
2636 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2637 	else
2638 	if (disp->disp->object.oclass >= GF110_DISP)
2639 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2640 	else
2641 		crtcs = 0x3;
2642 
2643 	for (i = 0; i < fls(crtcs); i++) {
2644 		struct nv50_head *head;
2645 
2646 		if (!(crtcs & (1 << i)))
2647 			continue;
2648 
2649 		head = nv50_head_create(dev, i);
2650 		if (IS_ERR(head)) {
2651 			ret = PTR_ERR(head);
2652 			goto out;
2653 		}
2654 
2655 		if (has_mst) {
2656 			head->msto = nv50_msto_new(dev, head, i);
2657 			if (IS_ERR(head->msto)) {
2658 				ret = PTR_ERR(head->msto);
2659 				head->msto = NULL;
2660 				goto out;
2661 			}
2662 
2663 			/*
2664 			 * FIXME: This is a hack to workaround the following
2665 			 * issues:
2666 			 *
2667 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2668 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2669 			 *
2670 			 * Once these issues are closed, this should be
2671 			 * removed
2672 			 */
2673 			head->msto->encoder.possible_crtcs = crtcs;
2674 		}
2675 	}
2676 
2677 	/* create encoder/connector objects based on VBIOS DCB table */
2678 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2679 		connector = nouveau_connector_create(dev, dcbe);
2680 		if (IS_ERR(connector))
2681 			continue;
2682 
2683 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2684 			switch (dcbe->type) {
2685 			case DCB_OUTPUT_TMDS:
2686 			case DCB_OUTPUT_LVDS:
2687 			case DCB_OUTPUT_DP:
2688 				ret = nv50_sor_create(connector, dcbe);
2689 				break;
2690 			case DCB_OUTPUT_ANALOG:
2691 				ret = nv50_dac_create(connector, dcbe);
2692 				break;
2693 			default:
2694 				ret = -ENODEV;
2695 				break;
2696 			}
2697 		} else {
2698 			ret = nv50_pior_create(connector, dcbe);
2699 		}
2700 
2701 		if (ret) {
2702 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2703 				     dcbe->location, dcbe->type,
2704 				     ffs(dcbe->or) - 1, ret);
2705 			ret = 0;
2706 		}
2707 	}
2708 
2709 	/* cull any connectors we created that don't have an encoder */
2710 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2711 		if (connector->possible_encoders)
2712 			continue;
2713 
2714 		NV_WARN(drm, "%s has no encoders, removing\n",
2715 			connector->name);
2716 		connector->funcs->destroy(connector);
2717 	}
2718 
2719 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2720 	dev->vblank_disable_immediate = true;
2721 
2722 	nv50_audio_component_init(drm);
2723 
2724 out:
2725 	if (ret)
2726 		nv50_display_destroy(dev);
2727 	return ret;
2728 }
2729 
2730 /******************************************************************************
2731  * Format modifiers
2732  *****************************************************************************/
2733 
2734 /****************************************************************
2735  *            Log2(block height) ----------------------------+  *
2736  *            Page Kind ----------------------------------+  |  *
2737  *            Gob Height/Page Kind Generation ------+     |  |  *
2738  *                          Sector layout -------+  |     |  |  *
2739  *                          Compression ------+  |  |     |  |  */
2740 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2741 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2742 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2743 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2744 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2745 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2746 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2747 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2748 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2749 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2750 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2751 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2752 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2753 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2754 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2755 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2756 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2757 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2758 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2759 	DRM_FORMAT_MOD_LINEAR,
2760 	DRM_FORMAT_MOD_INVALID
2761 };
2762 
2763 /****************************************************************
2764  *            Log2(block height) ----------------------------+  *
2765  *            Page Kind ----------------------------------+  |  *
2766  *            Gob Height/Page Kind Generation ------+     |  |  *
2767  *                          Sector layout -------+  |     |  |  *
2768  *                          Compression ------+  |  |     |  |  */
2769 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2770 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2771 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2772 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2773 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2774 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2775 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2776 	DRM_FORMAT_MOD_LINEAR,
2777 	DRM_FORMAT_MOD_INVALID
2778 };
2779