1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 
35 #include <drm/drm_atomic_helper.h>
36 #include <drm/drm_dp_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_fb_helper.h>
39 #include <drm/drm_plane_helper.h>
40 #include <drm/drm_probe_helper.h>
41 #include <drm/drm_scdc_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include <nvif/push507c.h>
45 
46 #include <nvif/class.h>
47 #include <nvif/cl0002.h>
48 #include <nvif/cl5070.h>
49 #include <nvif/cl507d.h>
50 #include <nvif/event.h>
51 #include <nvif/timer.h>
52 
53 #include <nvhw/class/cl507c.h>
54 #include <nvhw/class/cl507d.h>
55 #include <nvhw/class/cl837d.h>
56 #include <nvhw/class/cl887d.h>
57 #include <nvhw/class/cl907d.h>
58 #include <nvhw/class/cl917d.h>
59 
60 #include "nouveau_drv.h"
61 #include "nouveau_dma.h"
62 #include "nouveau_gem.h"
63 #include "nouveau_connector.h"
64 #include "nouveau_encoder.h"
65 #include "nouveau_fence.h"
66 #include "nouveau_fbcon.h"
67 
68 #include <subdev/bios/dp.h>
69 
70 /******************************************************************************
71  * EVO channel
72  *****************************************************************************/
73 
74 static int
75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
76 		 const s32 *oclass, u8 head, void *data, u32 size,
77 		 struct nv50_chan *chan)
78 {
79 	struct nvif_sclass *sclass;
80 	int ret, i, n;
81 
82 	chan->device = device;
83 
84 	ret = n = nvif_object_sclass_get(disp, &sclass);
85 	if (ret < 0)
86 		return ret;
87 
88 	while (oclass[0]) {
89 		for (i = 0; i < n; i++) {
90 			if (sclass[i].oclass == oclass[0]) {
91 				ret = nvif_object_ctor(disp, "kmsChan", 0,
92 						       oclass[0], data, size,
93 						       &chan->user);
94 				if (ret == 0)
95 					nvif_object_map(&chan->user, NULL, 0);
96 				nvif_object_sclass_put(&sclass);
97 				return ret;
98 			}
99 		}
100 		oclass++;
101 	}
102 
103 	nvif_object_sclass_put(&sclass);
104 	return -ENOSYS;
105 }
106 
107 static void
108 nv50_chan_destroy(struct nv50_chan *chan)
109 {
110 	nvif_object_dtor(&chan->user);
111 }
112 
113 /******************************************************************************
114  * DMA EVO channel
115  *****************************************************************************/
116 
117 void
118 nv50_dmac_destroy(struct nv50_dmac *dmac)
119 {
120 	nvif_object_dtor(&dmac->vram);
121 	nvif_object_dtor(&dmac->sync);
122 
123 	nv50_chan_destroy(&dmac->base);
124 
125 	nvif_mem_dtor(&dmac->_push.mem);
126 }
127 
128 static void
129 nv50_dmac_kick(struct nvif_push *push)
130 {
131 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
132 
133 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
134 	if (dmac->put != dmac->cur) {
135 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
136 		 * writes have been flushed right through to VRAM before writing PUT.
137 		 */
138 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
139 			struct nvif_device *device = dmac->base.device;
140 			nvif_wr32(&device->object, 0x070000, 0x00000001);
141 			nvif_msec(device, 2000,
142 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
143 					break;
144 			);
145 		}
146 
147 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
148 		dmac->put = dmac->cur;
149 	}
150 
151 	push->bgn = push->cur;
152 }
153 
154 static int
155 nv50_dmac_free(struct nv50_dmac *dmac)
156 {
157 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
158 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
159 		return get - dmac->cur - 5;
160 	return dmac->max - dmac->cur;
161 }
162 
163 static int
164 nv50_dmac_wind(struct nv50_dmac *dmac)
165 {
166 	/* Wait for GET to depart from the beginning of the push buffer to
167 	 * prevent writing PUT == GET, which would be ignored by HW.
168 	 */
169 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
170 	if (get == 0) {
171 		/* Corner-case, HW idle, but non-committed work pending. */
172 		if (dmac->put == 0)
173 			nv50_dmac_kick(dmac->push);
174 
175 		if (nvif_msec(dmac->base.device, 2000,
176 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
177 				break;
178 		) < 0)
179 			return -ETIMEDOUT;
180 	}
181 
182 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
183 	dmac->cur = 0;
184 	return 0;
185 }
186 
187 static int
188 nv50_dmac_wait(struct nvif_push *push, u32 size)
189 {
190 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
191 	int free;
192 
193 	if (WARN_ON(size > dmac->max))
194 		return -EINVAL;
195 
196 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
197 	if (dmac->cur + size >= dmac->max) {
198 		int ret = nv50_dmac_wind(dmac);
199 		if (ret)
200 			return ret;
201 
202 		push->cur = dmac->_push.mem.object.map.ptr;
203 		push->cur = push->cur + dmac->cur;
204 		nv50_dmac_kick(push);
205 	}
206 
207 	if (nvif_msec(dmac->base.device, 2000,
208 		if ((free = nv50_dmac_free(dmac)) >= size)
209 			break;
210 	) < 0) {
211 		WARN_ON(1);
212 		return -ETIMEDOUT;
213 	}
214 
215 	push->bgn = dmac->_push.mem.object.map.ptr;
216 	push->bgn = push->bgn + dmac->cur;
217 	push->cur = push->bgn;
218 	push->end = push->cur + free;
219 	return 0;
220 }
221 
222 int
223 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
224 		 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
225 		 struct nv50_dmac *dmac)
226 {
227 	struct nouveau_cli *cli = (void *)device->object.client;
228 	struct nv50_disp_core_channel_dma_v0 *args = data;
229 	u8 type = NVIF_MEM_COHERENT;
230 	int ret;
231 
232 	mutex_init(&dmac->lock);
233 
234 	/* Pascal added support for 47-bit physical addresses, but some
235 	 * parts of EVO still only accept 40-bit PAs.
236 	 *
237 	 * To avoid issues on systems with large amounts of RAM, and on
238 	 * systems where an IOMMU maps pages at a high address, we need
239 	 * to allocate push buffers in VRAM instead.
240 	 *
241 	 * This appears to match NVIDIA's behaviour on Pascal.
242 	 */
243 	if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
244 		type |= NVIF_MEM_VRAM;
245 
246 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
247 				&dmac->_push.mem);
248 	if (ret)
249 		return ret;
250 
251 	dmac->ptr = dmac->_push.mem.object.map.ptr;
252 	dmac->_push.wait = nv50_dmac_wait;
253 	dmac->_push.kick = nv50_dmac_kick;
254 	dmac->push = &dmac->_push;
255 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
256 	dmac->push->cur = dmac->push->bgn;
257 	dmac->push->end = dmac->push->bgn;
258 	dmac->max = 0x1000/4 - 1;
259 
260 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
261 	 * of the push buffer aren't able to be used safely.
262 	 */
263 	if (disp->oclass < GV100_DISP)
264 		dmac->max -= 12;
265 
266 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
267 
268 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
269 			       &dmac->base);
270 	if (ret)
271 		return ret;
272 
273 	if (!syncbuf)
274 		return 0;
275 
276 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
277 			       NV_DMA_IN_MEMORY,
278 			       &(struct nv_dma_v0) {
279 					.target = NV_DMA_V0_TARGET_VRAM,
280 					.access = NV_DMA_V0_ACCESS_RDWR,
281 					.start = syncbuf + 0x0000,
282 					.limit = syncbuf + 0x0fff,
283 			       }, sizeof(struct nv_dma_v0),
284 			       &dmac->sync);
285 	if (ret)
286 		return ret;
287 
288 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
289 			       NV_DMA_IN_MEMORY,
290 			       &(struct nv_dma_v0) {
291 					.target = NV_DMA_V0_TARGET_VRAM,
292 					.access = NV_DMA_V0_ACCESS_RDWR,
293 					.start = 0,
294 					.limit = device->info.ram_user - 1,
295 			       }, sizeof(struct nv_dma_v0),
296 			       &dmac->vram);
297 	if (ret)
298 		return ret;
299 
300 	return ret;
301 }
302 
303 /******************************************************************************
304  * Output path helpers
305  *****************************************************************************/
306 static void
307 nv50_outp_release(struct nouveau_encoder *nv_encoder)
308 {
309 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
310 	struct {
311 		struct nv50_disp_mthd_v1 base;
312 	} args = {
313 		.base.version = 1,
314 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
315 		.base.hasht  = nv_encoder->dcb->hasht,
316 		.base.hashm  = nv_encoder->dcb->hashm,
317 	};
318 
319 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
320 	nv_encoder->or = -1;
321 	nv_encoder->link = 0;
322 }
323 
324 static int
325 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
326 {
327 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
328 	struct nv50_disp *disp = nv50_disp(drm->dev);
329 	struct {
330 		struct nv50_disp_mthd_v1 base;
331 		struct nv50_disp_acquire_v0 info;
332 	} args = {
333 		.base.version = 1,
334 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
335 		.base.hasht  = nv_encoder->dcb->hasht,
336 		.base.hashm  = nv_encoder->dcb->hashm,
337 		.info.hda = hda,
338 	};
339 	int ret;
340 
341 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
342 	if (ret) {
343 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
344 		return ret;
345 	}
346 
347 	nv_encoder->or = args.info.or;
348 	nv_encoder->link = args.info.link;
349 	return 0;
350 }
351 
352 static int
353 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
354 			    struct drm_crtc_state *crtc_state,
355 			    struct drm_connector_state *conn_state,
356 			    struct drm_display_mode *native_mode)
357 {
358 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
359 	struct drm_display_mode *mode = &crtc_state->mode;
360 	struct drm_connector *connector = conn_state->connector;
361 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
362 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
363 
364 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
365 	asyc->scaler.full = false;
366 	if (!native_mode)
367 		return 0;
368 
369 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
370 		switch (connector->connector_type) {
371 		case DRM_MODE_CONNECTOR_LVDS:
372 		case DRM_MODE_CONNECTOR_eDP:
373 			/* Don't force scaler for EDID modes with
374 			 * same size as the native one (e.g. different
375 			 * refresh rate)
376 			 */
377 			if (mode->hdisplay == native_mode->hdisplay &&
378 			    mode->vdisplay == native_mode->vdisplay &&
379 			    mode->type & DRM_MODE_TYPE_DRIVER)
380 				break;
381 			mode = native_mode;
382 			asyc->scaler.full = true;
383 			break;
384 		default:
385 			break;
386 		}
387 	} else {
388 		mode = native_mode;
389 	}
390 
391 	if (!drm_mode_equal(adjusted_mode, mode)) {
392 		drm_mode_copy(adjusted_mode, mode);
393 		crtc_state->mode_changed = true;
394 	}
395 
396 	return 0;
397 }
398 
399 static int
400 nv50_outp_atomic_check(struct drm_encoder *encoder,
401 		       struct drm_crtc_state *crtc_state,
402 		       struct drm_connector_state *conn_state)
403 {
404 	struct drm_connector *connector = conn_state->connector;
405 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
406 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
407 	int ret;
408 
409 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
410 					  nv_connector->native_mode);
411 	if (ret)
412 		return ret;
413 
414 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
415 		asyh->or.bpc = connector->display_info.bpc;
416 
417 	return 0;
418 }
419 
420 /******************************************************************************
421  * DAC
422  *****************************************************************************/
423 static void
424 nv50_dac_disable(struct drm_encoder *encoder)
425 {
426 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
427 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
428 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
429 	if (nv_encoder->crtc)
430 		core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
431 	nv_encoder->crtc = NULL;
432 	nv50_outp_release(nv_encoder);
433 }
434 
435 static void
436 nv50_dac_enable(struct drm_encoder *encoder)
437 {
438 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
439 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
440 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
441 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
442 	u32 ctrl = 0;
443 
444 	switch (nv_crtc->index) {
445 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
446 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
447 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
448 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
449 	default:
450 		WARN_ON(1);
451 		break;
452 	}
453 
454 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
455 
456 	nv50_outp_acquire(nv_encoder, false);
457 
458 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
459 	asyh->or.depth = 0;
460 
461 	nv_encoder->crtc = encoder->crtc;
462 }
463 
464 static enum drm_connector_status
465 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
466 {
467 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
468 	struct nv50_disp *disp = nv50_disp(encoder->dev);
469 	struct {
470 		struct nv50_disp_mthd_v1 base;
471 		struct nv50_disp_dac_load_v0 load;
472 	} args = {
473 		.base.version = 1,
474 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
475 		.base.hasht  = nv_encoder->dcb->hasht,
476 		.base.hashm  = nv_encoder->dcb->hashm,
477 	};
478 	int ret;
479 
480 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
481 	if (args.load.data == 0)
482 		args.load.data = 340;
483 
484 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
485 	if (ret || !args.load.load)
486 		return connector_status_disconnected;
487 
488 	return connector_status_connected;
489 }
490 
491 static const struct drm_encoder_helper_funcs
492 nv50_dac_help = {
493 	.atomic_check = nv50_outp_atomic_check,
494 	.enable = nv50_dac_enable,
495 	.disable = nv50_dac_disable,
496 	.detect = nv50_dac_detect
497 };
498 
499 static void
500 nv50_dac_destroy(struct drm_encoder *encoder)
501 {
502 	drm_encoder_cleanup(encoder);
503 	kfree(encoder);
504 }
505 
506 static const struct drm_encoder_funcs
507 nv50_dac_func = {
508 	.destroy = nv50_dac_destroy,
509 };
510 
511 static int
512 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
513 {
514 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
515 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
516 	struct nvkm_i2c_bus *bus;
517 	struct nouveau_encoder *nv_encoder;
518 	struct drm_encoder *encoder;
519 	int type = DRM_MODE_ENCODER_DAC;
520 
521 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
522 	if (!nv_encoder)
523 		return -ENOMEM;
524 	nv_encoder->dcb = dcbe;
525 
526 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
527 	if (bus)
528 		nv_encoder->i2c = &bus->i2c;
529 
530 	encoder = to_drm_encoder(nv_encoder);
531 	encoder->possible_crtcs = dcbe->heads;
532 	encoder->possible_clones = 0;
533 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
534 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
535 	drm_encoder_helper_add(encoder, &nv50_dac_help);
536 
537 	drm_connector_attach_encoder(connector, encoder);
538 	return 0;
539 }
540 
541 /*
542  * audio component binding for ELD notification
543  */
544 static void
545 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
546 				int dev_id)
547 {
548 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
549 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
550 						 port, dev_id);
551 }
552 
553 static int
554 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
555 			     bool *enabled, unsigned char *buf, int max_bytes)
556 {
557 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
558 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
559 	struct drm_encoder *encoder;
560 	struct nouveau_encoder *nv_encoder;
561 	struct nouveau_connector *nv_connector;
562 	struct nouveau_crtc *nv_crtc;
563 	int ret = 0;
564 
565 	*enabled = false;
566 	drm_for_each_encoder(encoder, drm->dev) {
567 		nv_encoder = nouveau_encoder(encoder);
568 		nv_connector = nouveau_encoder_connector_get(nv_encoder);
569 		nv_crtc = nouveau_crtc(encoder->crtc);
570 		if (!nv_connector || !nv_crtc || nv_encoder->or != port ||
571 		    nv_crtc->index != dev_id)
572 			continue;
573 		*enabled = nv_encoder->audio;
574 		if (*enabled) {
575 			ret = drm_eld_size(nv_connector->base.eld);
576 			memcpy(buf, nv_connector->base.eld,
577 			       min(max_bytes, ret));
578 		}
579 		break;
580 	}
581 	return ret;
582 }
583 
584 static const struct drm_audio_component_ops nv50_audio_component_ops = {
585 	.get_eld = nv50_audio_component_get_eld,
586 };
587 
588 static int
589 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
590 			  void *data)
591 {
592 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
593 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
594 	struct drm_audio_component *acomp = data;
595 
596 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
597 		return -ENOMEM;
598 
599 	drm_modeset_lock_all(drm_dev);
600 	acomp->ops = &nv50_audio_component_ops;
601 	acomp->dev = kdev;
602 	drm->audio.component = acomp;
603 	drm_modeset_unlock_all(drm_dev);
604 	return 0;
605 }
606 
607 static void
608 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
609 			    void *data)
610 {
611 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
612 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
613 	struct drm_audio_component *acomp = data;
614 
615 	drm_modeset_lock_all(drm_dev);
616 	drm->audio.component = NULL;
617 	acomp->ops = NULL;
618 	acomp->dev = NULL;
619 	drm_modeset_unlock_all(drm_dev);
620 }
621 
622 static const struct component_ops nv50_audio_component_bind_ops = {
623 	.bind   = nv50_audio_component_bind,
624 	.unbind = nv50_audio_component_unbind,
625 };
626 
627 static void
628 nv50_audio_component_init(struct nouveau_drm *drm)
629 {
630 	if (!component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
631 		drm->audio.component_registered = true;
632 }
633 
634 static void
635 nv50_audio_component_fini(struct nouveau_drm *drm)
636 {
637 	if (drm->audio.component_registered) {
638 		component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
639 		drm->audio.component_registered = false;
640 	}
641 }
642 
643 /******************************************************************************
644  * Audio
645  *****************************************************************************/
646 static void
647 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
648 {
649 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
650 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
651 	struct nv50_disp *disp = nv50_disp(encoder->dev);
652 	struct {
653 		struct nv50_disp_mthd_v1 base;
654 		struct nv50_disp_sor_hda_eld_v0 eld;
655 	} args = {
656 		.base.version = 1,
657 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
658 		.base.hasht   = nv_encoder->dcb->hasht,
659 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
660 				(0x0100 << nv_crtc->index),
661 	};
662 
663 	if (!nv_encoder->audio)
664 		return;
665 
666 	nv_encoder->audio = false;
667 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
668 
669 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
670 					nv_crtc->index);
671 }
672 
673 static void
674 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
675 {
676 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
677 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
678 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
679 	struct nouveau_connector *nv_connector;
680 	struct nv50_disp *disp = nv50_disp(encoder->dev);
681 	struct __packed {
682 		struct {
683 			struct nv50_disp_mthd_v1 mthd;
684 			struct nv50_disp_sor_hda_eld_v0 eld;
685 		} base;
686 		u8 data[sizeof(nv_connector->base.eld)];
687 	} args = {
688 		.base.mthd.version = 1,
689 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
690 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
691 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
692 				     (0x0100 << nv_crtc->index),
693 	};
694 
695 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
696 	if (!drm_detect_monitor_audio(nv_connector->edid))
697 		return;
698 
699 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
700 
701 	nvif_mthd(&disp->disp->object, 0, &args,
702 		  sizeof(args.base) + drm_eld_size(args.data));
703 	nv_encoder->audio = true;
704 
705 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
706 					nv_crtc->index);
707 }
708 
709 /******************************************************************************
710  * HDMI
711  *****************************************************************************/
712 static void
713 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
714 {
715 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
716 	struct nv50_disp *disp = nv50_disp(encoder->dev);
717 	struct {
718 		struct nv50_disp_mthd_v1 base;
719 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
720 	} args = {
721 		.base.version = 1,
722 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
723 		.base.hasht  = nv_encoder->dcb->hasht,
724 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
725 			       (0x0100 << nv_crtc->index),
726 	};
727 
728 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
729 }
730 
731 static void
732 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
733 {
734 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
735 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
736 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
737 	struct nv50_disp *disp = nv50_disp(encoder->dev);
738 	struct {
739 		struct nv50_disp_mthd_v1 base;
740 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
741 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
742 	} args = {
743 		.base.version = 1,
744 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
745 		.base.hasht  = nv_encoder->dcb->hasht,
746 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
747 			       (0x0100 << nv_crtc->index),
748 		.pwr.state = 1,
749 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
750 	};
751 	struct nouveau_connector *nv_connector;
752 	struct drm_hdmi_info *hdmi;
753 	u32 max_ac_packet;
754 	union hdmi_infoframe avi_frame;
755 	union hdmi_infoframe vendor_frame;
756 	bool high_tmds_clock_ratio = false, scrambling = false;
757 	u8 config;
758 	int ret;
759 	int size;
760 
761 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
762 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
763 		return;
764 
765 	hdmi = &nv_connector->base.display_info.hdmi;
766 
767 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
768 						       &nv_connector->base, mode);
769 	if (!ret) {
770 		/* We have an AVI InfoFrame, populate it to the display */
771 		args.pwr.avi_infoframe_length
772 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
773 	}
774 
775 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
776 							  &nv_connector->base, mode);
777 	if (!ret) {
778 		/* We have a Vendor InfoFrame, populate it to the display */
779 		args.pwr.vendor_infoframe_length
780 			= hdmi_infoframe_pack(&vendor_frame,
781 					      args.infoframes
782 					      + args.pwr.avi_infoframe_length,
783 					      17);
784 	}
785 
786 	max_ac_packet  = mode->htotal - mode->hdisplay;
787 	max_ac_packet -= args.pwr.rekey;
788 	max_ac_packet -= 18; /* constant from tegra */
789 	args.pwr.max_ac_packet = max_ac_packet / 32;
790 
791 	if (hdmi->scdc.scrambling.supported) {
792 		high_tmds_clock_ratio = mode->clock > 340000;
793 		scrambling = high_tmds_clock_ratio ||
794 			hdmi->scdc.scrambling.low_rates;
795 	}
796 
797 	args.pwr.scdc =
798 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
799 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
800 
801 	size = sizeof(args.base)
802 		+ sizeof(args.pwr)
803 		+ args.pwr.avi_infoframe_length
804 		+ args.pwr.vendor_infoframe_length;
805 	nvif_mthd(&disp->disp->object, 0, &args, size);
806 
807 	nv50_audio_enable(encoder, mode);
808 
809 	/* If SCDC is supported by the downstream monitor, update
810 	 * divider / scrambling settings to what we programmed above.
811 	 */
812 	if (!hdmi->scdc.scrambling.supported)
813 		return;
814 
815 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
816 	if (ret < 0) {
817 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
818 		return;
819 	}
820 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
821 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
822 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
823 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
824 	if (ret < 0)
825 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
826 			 config, ret);
827 }
828 
829 /******************************************************************************
830  * MST
831  *****************************************************************************/
832 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
833 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
834 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
835 
836 struct nv50_mstm {
837 	struct nouveau_encoder *outp;
838 
839 	struct drm_dp_mst_topology_mgr mgr;
840 
841 	bool modified;
842 	bool disabled;
843 	int links;
844 };
845 
846 struct nv50_mstc {
847 	struct nv50_mstm *mstm;
848 	struct drm_dp_mst_port *port;
849 	struct drm_connector connector;
850 
851 	struct drm_display_mode *native;
852 	struct edid *edid;
853 };
854 
855 struct nv50_msto {
856 	struct drm_encoder encoder;
857 
858 	struct nv50_head *head;
859 	struct nv50_mstc *mstc;
860 	bool disabled;
861 };
862 
863 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
864 {
865 	struct nv50_msto *msto;
866 
867 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
868 		return nouveau_encoder(encoder);
869 
870 	msto = nv50_msto(encoder);
871 	if (!msto->mstc)
872 		return NULL;
873 	return msto->mstc->mstm->outp;
874 }
875 
876 static struct drm_dp_payload *
877 nv50_msto_payload(struct nv50_msto *msto)
878 {
879 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
880 	struct nv50_mstc *mstc = msto->mstc;
881 	struct nv50_mstm *mstm = mstc->mstm;
882 	int vcpi = mstc->port->vcpi.vcpi, i;
883 
884 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
885 
886 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
887 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
888 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
889 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
890 			  mstm->outp->base.base.name, i, payload->vcpi,
891 			  payload->start_slot, payload->num_slots);
892 	}
893 
894 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
895 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
896 		if (payload->vcpi == vcpi)
897 			return payload;
898 	}
899 
900 	return NULL;
901 }
902 
903 static void
904 nv50_msto_cleanup(struct nv50_msto *msto)
905 {
906 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
907 	struct nv50_mstc *mstc = msto->mstc;
908 	struct nv50_mstm *mstm = mstc->mstm;
909 
910 	if (!msto->disabled)
911 		return;
912 
913 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
914 
915 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
916 
917 	msto->mstc = NULL;
918 	msto->disabled = false;
919 }
920 
921 static void
922 nv50_msto_prepare(struct nv50_msto *msto)
923 {
924 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
925 	struct nv50_mstc *mstc = msto->mstc;
926 	struct nv50_mstm *mstm = mstc->mstm;
927 	struct {
928 		struct nv50_disp_mthd_v1 base;
929 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
930 	} args = {
931 		.base.version = 1,
932 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
933 		.base.hasht  = mstm->outp->dcb->hasht,
934 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
935 			       (0x0100 << msto->head->base.index),
936 	};
937 
938 	mutex_lock(&mstm->mgr.payload_lock);
939 
940 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
941 	if (mstc->port->vcpi.vcpi > 0) {
942 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
943 		if (payload) {
944 			args.vcpi.start_slot = payload->start_slot;
945 			args.vcpi.num_slots = payload->num_slots;
946 			args.vcpi.pbn = mstc->port->vcpi.pbn;
947 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
948 		}
949 	}
950 
951 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
952 		  msto->encoder.name, msto->head->base.base.name,
953 		  args.vcpi.start_slot, args.vcpi.num_slots,
954 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
955 
956 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
957 	mutex_unlock(&mstm->mgr.payload_lock);
958 }
959 
960 static int
961 nv50_msto_atomic_check(struct drm_encoder *encoder,
962 		       struct drm_crtc_state *crtc_state,
963 		       struct drm_connector_state *conn_state)
964 {
965 	struct drm_atomic_state *state = crtc_state->state;
966 	struct drm_connector *connector = conn_state->connector;
967 	struct nv50_mstc *mstc = nv50_mstc(connector);
968 	struct nv50_mstm *mstm = mstc->mstm;
969 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
970 	int slots;
971 	int ret;
972 
973 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
974 					  mstc->native);
975 	if (ret)
976 		return ret;
977 
978 	if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
979 		return 0;
980 
981 	/*
982 	 * When restoring duplicated states, we need to make sure that the bw
983 	 * remains the same and avoid recalculating it, as the connector's bpc
984 	 * may have changed after the state was duplicated
985 	 */
986 	if (!state->duplicated) {
987 		const int clock = crtc_state->adjusted_mode.clock;
988 
989 		asyh->or.bpc = connector->display_info.bpc;
990 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
991 						    false);
992 	}
993 
994 	slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
995 					      asyh->dp.pbn, 0);
996 	if (slots < 0)
997 		return slots;
998 
999 	asyh->dp.tu = slots;
1000 
1001 	return 0;
1002 }
1003 
1004 static u8
1005 nv50_dp_bpc_to_depth(unsigned int bpc)
1006 {
1007 	switch (bpc) {
1008 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1009 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1010 	case 10:
1011 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1012 	}
1013 }
1014 
1015 static void
1016 nv50_msto_enable(struct drm_encoder *encoder)
1017 {
1018 	struct nv50_head *head = nv50_head(encoder->crtc);
1019 	struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state);
1020 	struct nv50_msto *msto = nv50_msto(encoder);
1021 	struct nv50_mstc *mstc = NULL;
1022 	struct nv50_mstm *mstm = NULL;
1023 	struct drm_connector *connector;
1024 	struct drm_connector_list_iter conn_iter;
1025 	u8 proto;
1026 	bool r;
1027 
1028 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1029 	drm_for_each_connector_iter(connector, &conn_iter) {
1030 		if (connector->state->best_encoder == &msto->encoder) {
1031 			mstc = nv50_mstc(connector);
1032 			mstm = mstc->mstm;
1033 			break;
1034 		}
1035 	}
1036 	drm_connector_list_iter_end(&conn_iter);
1037 
1038 	if (WARN_ON(!mstc))
1039 		return;
1040 
1041 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn,
1042 				     armh->dp.tu);
1043 	if (!r)
1044 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1045 
1046 	if (!mstm->links++)
1047 		nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1048 
1049 	if (mstm->outp->link & 1)
1050 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1051 	else
1052 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1053 
1054 	mstm->outp->update(mstm->outp, head->base.index, armh, proto,
1055 			   nv50_dp_bpc_to_depth(armh->or.bpc));
1056 
1057 	msto->mstc = mstc;
1058 	mstm->modified = true;
1059 }
1060 
1061 static void
1062 nv50_msto_disable(struct drm_encoder *encoder)
1063 {
1064 	struct nv50_msto *msto = nv50_msto(encoder);
1065 	struct nv50_mstc *mstc = msto->mstc;
1066 	struct nv50_mstm *mstm = mstc->mstm;
1067 
1068 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1069 
1070 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1071 	mstm->modified = true;
1072 	if (!--mstm->links)
1073 		mstm->disabled = true;
1074 	msto->disabled = true;
1075 }
1076 
1077 static const struct drm_encoder_helper_funcs
1078 nv50_msto_help = {
1079 	.disable = nv50_msto_disable,
1080 	.enable = nv50_msto_enable,
1081 	.atomic_check = nv50_msto_atomic_check,
1082 };
1083 
1084 static void
1085 nv50_msto_destroy(struct drm_encoder *encoder)
1086 {
1087 	struct nv50_msto *msto = nv50_msto(encoder);
1088 	drm_encoder_cleanup(&msto->encoder);
1089 	kfree(msto);
1090 }
1091 
1092 static const struct drm_encoder_funcs
1093 nv50_msto = {
1094 	.destroy = nv50_msto_destroy,
1095 };
1096 
1097 static struct nv50_msto *
1098 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1099 {
1100 	struct nv50_msto *msto;
1101 	int ret;
1102 
1103 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1104 	if (!msto)
1105 		return ERR_PTR(-ENOMEM);
1106 
1107 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1108 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1109 	if (ret) {
1110 		kfree(msto);
1111 		return ERR_PTR(ret);
1112 	}
1113 
1114 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1115 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1116 	msto->head = head;
1117 	return msto;
1118 }
1119 
1120 static struct drm_encoder *
1121 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1122 			      struct drm_connector_state *connector_state)
1123 {
1124 	struct nv50_mstc *mstc = nv50_mstc(connector);
1125 	struct drm_crtc *crtc = connector_state->crtc;
1126 
1127 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1128 		return NULL;
1129 
1130 	return &nv50_head(crtc)->msto->encoder;
1131 }
1132 
1133 static enum drm_mode_status
1134 nv50_mstc_mode_valid(struct drm_connector *connector,
1135 		     struct drm_display_mode *mode)
1136 {
1137 	struct nv50_mstc *mstc = nv50_mstc(connector);
1138 	struct nouveau_encoder *outp = mstc->mstm->outp;
1139 
1140 	/* TODO: calculate the PBN from the dotclock and validate against the
1141 	 * MSTB's max possible PBN
1142 	 */
1143 
1144 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1145 }
1146 
1147 static int
1148 nv50_mstc_get_modes(struct drm_connector *connector)
1149 {
1150 	struct nv50_mstc *mstc = nv50_mstc(connector);
1151 	int ret = 0;
1152 
1153 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1154 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1155 	if (mstc->edid)
1156 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1157 
1158 	/*
1159 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1160 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1161 	 * to properly fix this by dynamically selecting the highest possible
1162 	 * bpc that would fit in the topology
1163 	 */
1164 	if (connector->display_info.bpc)
1165 		connector->display_info.bpc =
1166 			clamp(connector->display_info.bpc, 6U, 8U);
1167 	else
1168 		connector->display_info.bpc = 8;
1169 
1170 	if (mstc->native)
1171 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1172 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1173 	return ret;
1174 }
1175 
1176 static int
1177 nv50_mstc_atomic_check(struct drm_connector *connector,
1178 		       struct drm_atomic_state *state)
1179 {
1180 	struct nv50_mstc *mstc = nv50_mstc(connector);
1181 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1182 	struct drm_connector_state *new_conn_state =
1183 		drm_atomic_get_new_connector_state(state, connector);
1184 	struct drm_connector_state *old_conn_state =
1185 		drm_atomic_get_old_connector_state(state, connector);
1186 	struct drm_crtc_state *crtc_state;
1187 	struct drm_crtc *new_crtc = new_conn_state->crtc;
1188 
1189 	if (!old_conn_state->crtc)
1190 		return 0;
1191 
1192 	/* We only want to free VCPI if this state disables the CRTC on this
1193 	 * connector
1194 	 */
1195 	if (new_crtc) {
1196 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1197 
1198 		if (!crtc_state ||
1199 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
1200 		    crtc_state->enable)
1201 			return 0;
1202 	}
1203 
1204 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1205 }
1206 
1207 static int
1208 nv50_mstc_detect(struct drm_connector *connector,
1209 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1210 {
1211 	struct nv50_mstc *mstc = nv50_mstc(connector);
1212 	int ret;
1213 
1214 	if (drm_connector_is_unregistered(connector))
1215 		return connector_status_disconnected;
1216 
1217 	ret = pm_runtime_get_sync(connector->dev->dev);
1218 	if (ret < 0 && ret != -EACCES) {
1219 		pm_runtime_put_autosuspend(connector->dev->dev);
1220 		return connector_status_disconnected;
1221 	}
1222 
1223 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1224 				     mstc->port);
1225 
1226 	pm_runtime_mark_last_busy(connector->dev->dev);
1227 	pm_runtime_put_autosuspend(connector->dev->dev);
1228 	return ret;
1229 }
1230 
1231 static const struct drm_connector_helper_funcs
1232 nv50_mstc_help = {
1233 	.get_modes = nv50_mstc_get_modes,
1234 	.mode_valid = nv50_mstc_mode_valid,
1235 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1236 	.atomic_check = nv50_mstc_atomic_check,
1237 	.detect_ctx = nv50_mstc_detect,
1238 };
1239 
1240 static void
1241 nv50_mstc_destroy(struct drm_connector *connector)
1242 {
1243 	struct nv50_mstc *mstc = nv50_mstc(connector);
1244 
1245 	drm_connector_cleanup(&mstc->connector);
1246 	drm_dp_mst_put_port_malloc(mstc->port);
1247 
1248 	kfree(mstc);
1249 }
1250 
1251 static const struct drm_connector_funcs
1252 nv50_mstc = {
1253 	.reset = nouveau_conn_reset,
1254 	.fill_modes = drm_helper_probe_single_connector_modes,
1255 	.destroy = nv50_mstc_destroy,
1256 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1257 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1258 	.atomic_set_property = nouveau_conn_atomic_set_property,
1259 	.atomic_get_property = nouveau_conn_atomic_get_property,
1260 };
1261 
1262 static int
1263 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1264 	      const char *path, struct nv50_mstc **pmstc)
1265 {
1266 	struct drm_device *dev = mstm->outp->base.base.dev;
1267 	struct drm_crtc *crtc;
1268 	struct nv50_mstc *mstc;
1269 	int ret;
1270 
1271 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1272 		return -ENOMEM;
1273 	mstc->mstm = mstm;
1274 	mstc->port = port;
1275 
1276 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1277 				 DRM_MODE_CONNECTOR_DisplayPort);
1278 	if (ret) {
1279 		kfree(*pmstc);
1280 		*pmstc = NULL;
1281 		return ret;
1282 	}
1283 
1284 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1285 
1286 	mstc->connector.funcs->reset(&mstc->connector);
1287 	nouveau_conn_attach_properties(&mstc->connector);
1288 
1289 	drm_for_each_crtc(crtc, dev) {
1290 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1291 			continue;
1292 
1293 		drm_connector_attach_encoder(&mstc->connector,
1294 					     &nv50_head(crtc)->msto->encoder);
1295 	}
1296 
1297 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1298 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1299 	drm_connector_set_path_property(&mstc->connector, path);
1300 	drm_dp_mst_get_port_malloc(port);
1301 	return 0;
1302 }
1303 
1304 static void
1305 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1306 {
1307 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1308 	struct drm_encoder *encoder;
1309 	int ret;
1310 
1311 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1312 	ret = drm_dp_check_act_status(&mstm->mgr);
1313 
1314 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1315 
1316 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1317 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1318 			struct nv50_msto *msto = nv50_msto(encoder);
1319 			struct nv50_mstc *mstc = msto->mstc;
1320 			if (mstc && mstc->mstm == mstm)
1321 				nv50_msto_cleanup(msto);
1322 		}
1323 	}
1324 
1325 	mstm->modified = false;
1326 }
1327 
1328 static void
1329 nv50_mstm_prepare(struct nv50_mstm *mstm)
1330 {
1331 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1332 	struct drm_encoder *encoder;
1333 	int ret;
1334 
1335 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1336 	ret = drm_dp_update_payload_part1(&mstm->mgr);
1337 
1338 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1339 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1340 			struct nv50_msto *msto = nv50_msto(encoder);
1341 			struct nv50_mstc *mstc = msto->mstc;
1342 			if (mstc && mstc->mstm == mstm)
1343 				nv50_msto_prepare(msto);
1344 		}
1345 	}
1346 
1347 	if (mstm->disabled) {
1348 		if (!mstm->links)
1349 			nv50_outp_release(mstm->outp);
1350 		mstm->disabled = false;
1351 	}
1352 }
1353 
1354 static struct drm_connector *
1355 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1356 			struct drm_dp_mst_port *port, const char *path)
1357 {
1358 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1359 	struct nv50_mstc *mstc;
1360 	int ret;
1361 
1362 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1363 	if (ret)
1364 		return NULL;
1365 
1366 	return &mstc->connector;
1367 }
1368 
1369 static const struct drm_dp_mst_topology_cbs
1370 nv50_mstm = {
1371 	.add_connector = nv50_mstm_add_connector,
1372 };
1373 
1374 void
1375 nv50_mstm_service(struct nv50_mstm *mstm)
1376 {
1377 	struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
1378 	bool handled = true;
1379 	int ret;
1380 	u8 esi[8] = {};
1381 
1382 	if (!aux)
1383 		return;
1384 
1385 	while (handled) {
1386 		ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1387 		if (ret != 8) {
1388 			drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1389 			return;
1390 		}
1391 
1392 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1393 		if (!handled)
1394 			break;
1395 
1396 		drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
1397 	}
1398 }
1399 
1400 void
1401 nv50_mstm_remove(struct nv50_mstm *mstm)
1402 {
1403 	if (mstm)
1404 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1405 }
1406 
1407 static int
1408 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
1409 {
1410 	struct nouveau_encoder *outp = mstm->outp;
1411 	struct {
1412 		struct nv50_disp_mthd_v1 base;
1413 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1414 	} args = {
1415 		.base.version = 1,
1416 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1417 		.base.hasht = outp->dcb->hasht,
1418 		.base.hashm = outp->dcb->hashm,
1419 		.mst.state = state,
1420 	};
1421 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1422 	struct nvif_object *disp = &drm->display->disp.object;
1423 	int ret;
1424 
1425 	if (dpcd >= 0x12) {
1426 		/* Even if we're enabling MST, start with disabling the
1427 		 * branching unit to clear any sink-side MST topology state
1428 		 * that wasn't set by us
1429 		 */
1430 		ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
1431 		if (ret < 0)
1432 			return ret;
1433 
1434 		if (state) {
1435 			/* Now, start initializing */
1436 			ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
1437 						 DP_MST_EN);
1438 			if (ret < 0)
1439 				return ret;
1440 		}
1441 	}
1442 
1443 	return nvif_mthd(disp, 0, &args, sizeof(args));
1444 }
1445 
1446 int
1447 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
1448 {
1449 	struct drm_dp_aux *aux;
1450 	int ret;
1451 	bool old_state, new_state;
1452 	u8 mstm_ctrl;
1453 
1454 	if (!mstm)
1455 		return 0;
1456 
1457 	mutex_lock(&mstm->mgr.lock);
1458 
1459 	old_state = mstm->mgr.mst_state;
1460 	new_state = old_state;
1461 	aux = mstm->mgr.aux;
1462 
1463 	if (old_state) {
1464 		/* Just check that the MST hub is still as we expect it */
1465 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
1466 		if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
1467 			DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
1468 			new_state = false;
1469 		}
1470 	} else if (dpcd[0] >= 0x12) {
1471 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
1472 		if (ret < 0)
1473 			goto probe_error;
1474 
1475 		if (!(dpcd[1] & DP_MST_CAP))
1476 			dpcd[0] = 0x11;
1477 		else
1478 			new_state = allow;
1479 	}
1480 
1481 	if (new_state == old_state) {
1482 		mutex_unlock(&mstm->mgr.lock);
1483 		return new_state;
1484 	}
1485 
1486 	ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
1487 	if (ret)
1488 		goto probe_error;
1489 
1490 	mutex_unlock(&mstm->mgr.lock);
1491 
1492 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
1493 	if (ret)
1494 		return nv50_mstm_enable(mstm, dpcd[0], 0);
1495 
1496 	return new_state;
1497 
1498 probe_error:
1499 	mutex_unlock(&mstm->mgr.lock);
1500 	return ret;
1501 }
1502 
1503 static void
1504 nv50_mstm_fini(struct nv50_mstm *mstm)
1505 {
1506 	if (mstm && mstm->mgr.mst_state)
1507 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1508 }
1509 
1510 static void
1511 nv50_mstm_init(struct nv50_mstm *mstm, bool runtime)
1512 {
1513 	int ret;
1514 
1515 	if (!mstm || !mstm->mgr.mst_state)
1516 		return;
1517 
1518 	ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1519 	if (ret == -1) {
1520 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1521 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1522 	}
1523 }
1524 
1525 static void
1526 nv50_mstm_del(struct nv50_mstm **pmstm)
1527 {
1528 	struct nv50_mstm *mstm = *pmstm;
1529 	if (mstm) {
1530 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1531 		kfree(*pmstm);
1532 		*pmstm = NULL;
1533 	}
1534 }
1535 
1536 static int
1537 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1538 	      int conn_base_id, struct nv50_mstm **pmstm)
1539 {
1540 	const int max_payloads = hweight8(outp->dcb->heads);
1541 	struct drm_device *dev = outp->base.base.dev;
1542 	struct nv50_mstm *mstm;
1543 	int ret;
1544 	u8 dpcd;
1545 
1546 	/* This is a workaround for some monitors not functioning
1547 	 * correctly in MST mode on initial module load.  I think
1548 	 * some bad interaction with the VBIOS may be responsible.
1549 	 *
1550 	 * A good ol' off and on again seems to work here ;)
1551 	 */
1552 	ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
1553 	if (ret >= 0 && dpcd >= 0x12)
1554 		drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1555 
1556 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1557 		return -ENOMEM;
1558 	mstm->outp = outp;
1559 	mstm->mgr.cbs = &nv50_mstm;
1560 
1561 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1562 					   max_payloads, conn_base_id);
1563 	if (ret)
1564 		return ret;
1565 
1566 	return 0;
1567 }
1568 
1569 /******************************************************************************
1570  * SOR
1571  *****************************************************************************/
1572 static void
1573 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1574 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1575 {
1576 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1577 	struct nv50_core *core = disp->core;
1578 
1579 	if (!asyh) {
1580 		nv_encoder->ctrl &= ~BIT(head);
1581 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1582 			nv_encoder->ctrl = 0;
1583 	} else {
1584 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1585 		nv_encoder->ctrl |= BIT(head);
1586 		asyh->or.depth = depth;
1587 	}
1588 
1589 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1590 }
1591 
1592 static void
1593 nv50_sor_disable(struct drm_encoder *encoder)
1594 {
1595 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1596 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1597 
1598 	nv_encoder->crtc = NULL;
1599 
1600 	if (nv_crtc) {
1601 		struct nvkm_i2c_aux *aux = nv_encoder->aux;
1602 		u8 pwr;
1603 
1604 		if (aux) {
1605 			int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
1606 			if (ret == 0) {
1607 				pwr &= ~DP_SET_POWER_MASK;
1608 				pwr |=  DP_SET_POWER_D3;
1609 				nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
1610 			}
1611 		}
1612 
1613 		nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1614 		nv50_audio_disable(encoder, nv_crtc);
1615 		nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1616 		nv50_outp_release(nv_encoder);
1617 	}
1618 }
1619 
1620 static void
1621 nv50_sor_enable(struct drm_encoder *encoder)
1622 {
1623 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1624 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1625 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1626 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1627 	struct {
1628 		struct nv50_disp_mthd_v1 base;
1629 		struct nv50_disp_sor_lvds_script_v0 lvds;
1630 	} lvds = {
1631 		.base.version = 1,
1632 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1633 		.base.hasht   = nv_encoder->dcb->hasht,
1634 		.base.hashm   = nv_encoder->dcb->hashm,
1635 	};
1636 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1637 	struct drm_device *dev = encoder->dev;
1638 	struct nouveau_drm *drm = nouveau_drm(dev);
1639 	struct nouveau_connector *nv_connector;
1640 	struct nvbios *bios = &drm->vbios;
1641 	bool hda = false;
1642 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1643 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1644 
1645 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1646 	nv_encoder->crtc = encoder->crtc;
1647 
1648 	if ((disp->disp->object.oclass == GT214_DISP ||
1649 	     disp->disp->object.oclass >= GF110_DISP) &&
1650 	    drm_detect_monitor_audio(nv_connector->edid))
1651 		hda = true;
1652 	nv50_outp_acquire(nv_encoder, hda);
1653 
1654 	switch (nv_encoder->dcb->type) {
1655 	case DCB_OUTPUT_TMDS:
1656 		if (nv_encoder->link & 1) {
1657 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1658 			/* Only enable dual-link if:
1659 			 *  - Need to (i.e. rate > 165MHz)
1660 			 *  - DCB says we can
1661 			 *  - Not an HDMI monitor, since there's no dual-link
1662 			 *    on HDMI.
1663 			 */
1664 			if (mode->clock >= 165000 &&
1665 			    nv_encoder->dcb->duallink_possible &&
1666 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1667 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1668 		} else {
1669 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1670 		}
1671 
1672 		nv50_hdmi_enable(&nv_encoder->base.base, mode);
1673 		break;
1674 	case DCB_OUTPUT_LVDS:
1675 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1676 
1677 		if (bios->fp_no_ddc) {
1678 			if (bios->fp.dual_link)
1679 				lvds.lvds.script |= 0x0100;
1680 			if (bios->fp.if_is_24bit)
1681 				lvds.lvds.script |= 0x0200;
1682 		} else {
1683 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1684 				if (((u8 *)nv_connector->edid)[121] == 2)
1685 					lvds.lvds.script |= 0x0100;
1686 			} else
1687 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1688 				lvds.lvds.script |= 0x0100;
1689 			}
1690 
1691 			if (lvds.lvds.script & 0x0100) {
1692 				if (bios->fp.strapless_is_24bit & 2)
1693 					lvds.lvds.script |= 0x0200;
1694 			} else {
1695 				if (bios->fp.strapless_is_24bit & 1)
1696 					lvds.lvds.script |= 0x0200;
1697 			}
1698 
1699 			if (asyh->or.bpc == 8)
1700 				lvds.lvds.script |= 0x0200;
1701 		}
1702 
1703 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1704 		break;
1705 	case DCB_OUTPUT_DP:
1706 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1707 
1708 		if (nv_encoder->link & 1)
1709 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1710 		else
1711 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1712 
1713 		nv50_audio_enable(encoder, mode);
1714 		break;
1715 	default:
1716 		BUG();
1717 		break;
1718 	}
1719 
1720 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1721 }
1722 
1723 static const struct drm_encoder_helper_funcs
1724 nv50_sor_help = {
1725 	.atomic_check = nv50_outp_atomic_check,
1726 	.enable = nv50_sor_enable,
1727 	.disable = nv50_sor_disable,
1728 };
1729 
1730 static void
1731 nv50_sor_destroy(struct drm_encoder *encoder)
1732 {
1733 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1734 	nv50_mstm_del(&nv_encoder->dp.mstm);
1735 	drm_encoder_cleanup(encoder);
1736 	kfree(encoder);
1737 }
1738 
1739 static const struct drm_encoder_funcs
1740 nv50_sor_func = {
1741 	.destroy = nv50_sor_destroy,
1742 };
1743 
1744 static bool nv50_has_mst(struct nouveau_drm *drm)
1745 {
1746 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1747 	u32 data;
1748 	u8 ver, hdr, cnt, len;
1749 
1750 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1751 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1752 }
1753 
1754 static int
1755 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1756 {
1757 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1758 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1759 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1760 	struct nouveau_encoder *nv_encoder;
1761 	struct drm_encoder *encoder;
1762 	struct nv50_disp *disp = nv50_disp(connector->dev);
1763 	int type, ret;
1764 
1765 	switch (dcbe->type) {
1766 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1767 	case DCB_OUTPUT_TMDS:
1768 	case DCB_OUTPUT_DP:
1769 	default:
1770 		type = DRM_MODE_ENCODER_TMDS;
1771 		break;
1772 	}
1773 
1774 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1775 	if (!nv_encoder)
1776 		return -ENOMEM;
1777 	nv_encoder->dcb = dcbe;
1778 	nv_encoder->update = nv50_sor_update;
1779 
1780 	encoder = to_drm_encoder(nv_encoder);
1781 	encoder->possible_crtcs = dcbe->heads;
1782 	encoder->possible_clones = 0;
1783 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1784 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1785 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1786 
1787 	drm_connector_attach_encoder(connector, encoder);
1788 
1789 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1790 
1791 	if (dcbe->type == DCB_OUTPUT_DP) {
1792 		struct nvkm_i2c_aux *aux =
1793 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1794 
1795 		if (aux) {
1796 			if (disp->disp->object.oclass < GF110_DISP) {
1797 				/* HW has no support for address-only
1798 				 * transactions, so we're required to
1799 				 * use custom I2C-over-AUX code.
1800 				 */
1801 				nv_encoder->i2c = &aux->i2c;
1802 			} else {
1803 				nv_encoder->i2c = &nv_connector->aux.ddc;
1804 			}
1805 			nv_encoder->aux = aux;
1806 		}
1807 
1808 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1809 		    nv50_has_mst(drm)) {
1810 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1811 					    16, nv_connector->base.base.id,
1812 					    &nv_encoder->dp.mstm);
1813 			if (ret)
1814 				return ret;
1815 		}
1816 	} else {
1817 		struct nvkm_i2c_bus *bus =
1818 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1819 		if (bus)
1820 			nv_encoder->i2c = &bus->i2c;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 /******************************************************************************
1827  * PIOR
1828  *****************************************************************************/
1829 static int
1830 nv50_pior_atomic_check(struct drm_encoder *encoder,
1831 		       struct drm_crtc_state *crtc_state,
1832 		       struct drm_connector_state *conn_state)
1833 {
1834 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1835 	if (ret)
1836 		return ret;
1837 	crtc_state->adjusted_mode.clock *= 2;
1838 	return 0;
1839 }
1840 
1841 static void
1842 nv50_pior_disable(struct drm_encoder *encoder)
1843 {
1844 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1845 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1846 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1847 	if (nv_encoder->crtc)
1848 		core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1849 	nv_encoder->crtc = NULL;
1850 	nv50_outp_release(nv_encoder);
1851 }
1852 
1853 static void
1854 nv50_pior_enable(struct drm_encoder *encoder)
1855 {
1856 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1857 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1858 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1859 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1860 	u32 ctrl = 0;
1861 
1862 	switch (nv_crtc->index) {
1863 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1864 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1865 	default:
1866 		WARN_ON(1);
1867 		break;
1868 	}
1869 
1870 	nv50_outp_acquire(nv_encoder, false);
1871 
1872 	switch (asyh->or.bpc) {
1873 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1874 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1875 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1876 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1877 	}
1878 
1879 	switch (nv_encoder->dcb->type) {
1880 	case DCB_OUTPUT_TMDS:
1881 	case DCB_OUTPUT_DP:
1882 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1883 		break;
1884 	default:
1885 		BUG();
1886 		break;
1887 	}
1888 
1889 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1890 	nv_encoder->crtc = encoder->crtc;
1891 }
1892 
1893 static const struct drm_encoder_helper_funcs
1894 nv50_pior_help = {
1895 	.atomic_check = nv50_pior_atomic_check,
1896 	.enable = nv50_pior_enable,
1897 	.disable = nv50_pior_disable,
1898 };
1899 
1900 static void
1901 nv50_pior_destroy(struct drm_encoder *encoder)
1902 {
1903 	drm_encoder_cleanup(encoder);
1904 	kfree(encoder);
1905 }
1906 
1907 static const struct drm_encoder_funcs
1908 nv50_pior_func = {
1909 	.destroy = nv50_pior_destroy,
1910 };
1911 
1912 static int
1913 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1914 {
1915 	struct drm_device *dev = connector->dev;
1916 	struct nouveau_drm *drm = nouveau_drm(dev);
1917 	struct nv50_disp *disp = nv50_disp(dev);
1918 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1919 	struct nvkm_i2c_bus *bus = NULL;
1920 	struct nvkm_i2c_aux *aux = NULL;
1921 	struct i2c_adapter *ddc;
1922 	struct nouveau_encoder *nv_encoder;
1923 	struct drm_encoder *encoder;
1924 	int type;
1925 
1926 	switch (dcbe->type) {
1927 	case DCB_OUTPUT_TMDS:
1928 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1929 		ddc  = bus ? &bus->i2c : NULL;
1930 		type = DRM_MODE_ENCODER_TMDS;
1931 		break;
1932 	case DCB_OUTPUT_DP:
1933 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1934 		ddc  = aux ? &aux->i2c : NULL;
1935 		type = DRM_MODE_ENCODER_TMDS;
1936 		break;
1937 	default:
1938 		return -ENODEV;
1939 	}
1940 
1941 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1942 	if (!nv_encoder)
1943 		return -ENOMEM;
1944 	nv_encoder->dcb = dcbe;
1945 	nv_encoder->i2c = ddc;
1946 	nv_encoder->aux = aux;
1947 
1948 	encoder = to_drm_encoder(nv_encoder);
1949 	encoder->possible_crtcs = dcbe->heads;
1950 	encoder->possible_clones = 0;
1951 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1952 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1953 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1954 
1955 	drm_connector_attach_encoder(connector, encoder);
1956 
1957 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1958 
1959 	return 0;
1960 }
1961 
1962 /******************************************************************************
1963  * Atomic
1964  *****************************************************************************/
1965 
1966 static void
1967 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1968 {
1969 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1970 	struct nv50_disp *disp = nv50_disp(drm->dev);
1971 	struct nv50_core *core = disp->core;
1972 	struct nv50_mstm *mstm;
1973 	struct drm_encoder *encoder;
1974 
1975 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1976 
1977 	drm_for_each_encoder(encoder, drm->dev) {
1978 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1979 			mstm = nouveau_encoder(encoder)->dp.mstm;
1980 			if (mstm && mstm->modified)
1981 				nv50_mstm_prepare(mstm);
1982 		}
1983 	}
1984 
1985 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1986 	core->func->update(core, interlock, true);
1987 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1988 				       disp->core->chan.base.device))
1989 		NV_ERROR(drm, "core notifier timeout\n");
1990 
1991 	drm_for_each_encoder(encoder, drm->dev) {
1992 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1993 			mstm = nouveau_encoder(encoder)->dp.mstm;
1994 			if (mstm && mstm->modified)
1995 				nv50_mstm_cleanup(mstm);
1996 		}
1997 	}
1998 }
1999 
2000 static void
2001 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2002 {
2003 	struct drm_plane_state *new_plane_state;
2004 	struct drm_plane *plane;
2005 	int i;
2006 
2007 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2008 		struct nv50_wndw *wndw = nv50_wndw(plane);
2009 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2010 			if (wndw->func->update)
2011 				wndw->func->update(wndw, interlock);
2012 		}
2013 	}
2014 }
2015 
2016 static void
2017 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2018 {
2019 	struct drm_device *dev = state->dev;
2020 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2021 	struct drm_crtc *crtc;
2022 	struct drm_plane_state *new_plane_state;
2023 	struct drm_plane *plane;
2024 	struct nouveau_drm *drm = nouveau_drm(dev);
2025 	struct nv50_disp *disp = nv50_disp(dev);
2026 	struct nv50_atom *atom = nv50_atom(state);
2027 	struct nv50_core *core = disp->core;
2028 	struct nv50_outp_atom *outp, *outt;
2029 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2030 	int i;
2031 	bool flushed = false;
2032 
2033 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2034 	nv50_crc_atomic_stop_reporting(state);
2035 	drm_atomic_helper_wait_for_fences(dev, state, false);
2036 	drm_atomic_helper_wait_for_dependencies(state);
2037 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2038 
2039 	if (atom->lock_core)
2040 		mutex_lock(&disp->mutex);
2041 
2042 	/* Disable head(s). */
2043 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2044 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2045 		struct nv50_head *head = nv50_head(crtc);
2046 
2047 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2048 			  asyh->clr.mask, asyh->set.mask);
2049 
2050 		if (old_crtc_state->active && !new_crtc_state->active) {
2051 			pm_runtime_put_noidle(dev->dev);
2052 			drm_crtc_vblank_off(crtc);
2053 		}
2054 
2055 		if (asyh->clr.mask) {
2056 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2057 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2058 		}
2059 	}
2060 
2061 	/* Disable plane(s). */
2062 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2063 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2064 		struct nv50_wndw *wndw = nv50_wndw(plane);
2065 
2066 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2067 			  asyw->clr.mask, asyw->set.mask);
2068 		if (!asyw->clr.mask)
2069 			continue;
2070 
2071 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2072 	}
2073 
2074 	/* Disable output path(s). */
2075 	list_for_each_entry(outp, &atom->outp, head) {
2076 		const struct drm_encoder_helper_funcs *help;
2077 		struct drm_encoder *encoder;
2078 
2079 		encoder = outp->encoder;
2080 		help = encoder->helper_private;
2081 
2082 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2083 			  outp->clr.mask, outp->set.mask);
2084 
2085 		if (outp->clr.mask) {
2086 			help->disable(encoder);
2087 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2088 			if (outp->flush_disable) {
2089 				nv50_disp_atomic_commit_wndw(state, interlock);
2090 				nv50_disp_atomic_commit_core(state, interlock);
2091 				memset(interlock, 0x00, sizeof(interlock));
2092 
2093 				flushed = true;
2094 			}
2095 		}
2096 	}
2097 
2098 	/* Flush disable. */
2099 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2100 		if (atom->flush_disable) {
2101 			nv50_disp_atomic_commit_wndw(state, interlock);
2102 			nv50_disp_atomic_commit_core(state, interlock);
2103 			memset(interlock, 0x00, sizeof(interlock));
2104 
2105 			flushed = true;
2106 		}
2107 	}
2108 
2109 	if (flushed)
2110 		nv50_crc_atomic_release_notifier_contexts(state);
2111 	nv50_crc_atomic_init_notifier_contexts(state);
2112 
2113 	/* Update output path(s). */
2114 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2115 		const struct drm_encoder_helper_funcs *help;
2116 		struct drm_encoder *encoder;
2117 
2118 		encoder = outp->encoder;
2119 		help = encoder->helper_private;
2120 
2121 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2122 			  outp->set.mask, outp->clr.mask);
2123 
2124 		if (outp->set.mask) {
2125 			help->enable(encoder);
2126 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2127 		}
2128 
2129 		list_del(&outp->head);
2130 		kfree(outp);
2131 	}
2132 
2133 	/* Update head(s). */
2134 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2135 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2136 		struct nv50_head *head = nv50_head(crtc);
2137 
2138 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2139 			  asyh->set.mask, asyh->clr.mask);
2140 
2141 		if (asyh->set.mask) {
2142 			nv50_head_flush_set(head, asyh);
2143 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2144 		}
2145 
2146 		if (new_crtc_state->active) {
2147 			if (!old_crtc_state->active) {
2148 				drm_crtc_vblank_on(crtc);
2149 				pm_runtime_get_noresume(dev->dev);
2150 			}
2151 			if (new_crtc_state->event)
2152 				drm_crtc_vblank_get(crtc);
2153 		}
2154 	}
2155 
2156 	/* Update window->head assignment.
2157 	 *
2158 	 * This has to happen in an update that's not interlocked with
2159 	 * any window channels to avoid hitting HW error checks.
2160 	 *
2161 	 *TODO: Proper handling of window ownership (Turing apparently
2162 	 *      supports non-fixed mappings).
2163 	 */
2164 	if (core->assign_windows) {
2165 		core->func->wndw.owner(core);
2166 		nv50_disp_atomic_commit_core(state, interlock);
2167 		core->assign_windows = false;
2168 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2169 	}
2170 
2171 	/* Update plane(s). */
2172 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2173 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2174 		struct nv50_wndw *wndw = nv50_wndw(plane);
2175 
2176 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2177 			  asyw->set.mask, asyw->clr.mask);
2178 		if ( !asyw->set.mask &&
2179 		    (!asyw->clr.mask || atom->flush_disable))
2180 			continue;
2181 
2182 		nv50_wndw_flush_set(wndw, interlock, asyw);
2183 	}
2184 
2185 	/* Flush update. */
2186 	nv50_disp_atomic_commit_wndw(state, interlock);
2187 
2188 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2189 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2190 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2191 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2192 		    !atom->state.legacy_cursor_update)
2193 			nv50_disp_atomic_commit_core(state, interlock);
2194 		else
2195 			disp->core->func->update(disp->core, interlock, false);
2196 	}
2197 
2198 	if (atom->lock_core)
2199 		mutex_unlock(&disp->mutex);
2200 
2201 	/* Wait for HW to signal completion. */
2202 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2203 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2204 		struct nv50_wndw *wndw = nv50_wndw(plane);
2205 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2206 		if (ret)
2207 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2208 	}
2209 
2210 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2211 		if (new_crtc_state->event) {
2212 			unsigned long flags;
2213 			/* Get correct count/ts if racing with vblank irq */
2214 			if (new_crtc_state->active)
2215 				drm_crtc_accurate_vblank_count(crtc);
2216 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2217 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2218 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2219 
2220 			new_crtc_state->event = NULL;
2221 			if (new_crtc_state->active)
2222 				drm_crtc_vblank_put(crtc);
2223 		}
2224 	}
2225 
2226 	nv50_crc_atomic_start_reporting(state);
2227 	if (!flushed)
2228 		nv50_crc_atomic_release_notifier_contexts(state);
2229 	drm_atomic_helper_commit_hw_done(state);
2230 	drm_atomic_helper_cleanup_planes(dev, state);
2231 	drm_atomic_helper_commit_cleanup_done(state);
2232 	drm_atomic_state_put(state);
2233 
2234 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2235 	pm_runtime_mark_last_busy(dev->dev);
2236 	pm_runtime_put_autosuspend(dev->dev);
2237 }
2238 
2239 static void
2240 nv50_disp_atomic_commit_work(struct work_struct *work)
2241 {
2242 	struct drm_atomic_state *state =
2243 		container_of(work, typeof(*state), commit_work);
2244 	nv50_disp_atomic_commit_tail(state);
2245 }
2246 
2247 static int
2248 nv50_disp_atomic_commit(struct drm_device *dev,
2249 			struct drm_atomic_state *state, bool nonblock)
2250 {
2251 	struct drm_plane_state *new_plane_state;
2252 	struct drm_plane *plane;
2253 	int ret, i;
2254 
2255 	ret = pm_runtime_get_sync(dev->dev);
2256 	if (ret < 0 && ret != -EACCES) {
2257 		pm_runtime_put_autosuspend(dev->dev);
2258 		return ret;
2259 	}
2260 
2261 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2262 	if (ret)
2263 		goto done;
2264 
2265 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2266 
2267 	ret = drm_atomic_helper_prepare_planes(dev, state);
2268 	if (ret)
2269 		goto done;
2270 
2271 	if (!nonblock) {
2272 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2273 		if (ret)
2274 			goto err_cleanup;
2275 	}
2276 
2277 	ret = drm_atomic_helper_swap_state(state, true);
2278 	if (ret)
2279 		goto err_cleanup;
2280 
2281 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2282 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2283 		struct nv50_wndw *wndw = nv50_wndw(plane);
2284 
2285 		if (asyw->set.image)
2286 			nv50_wndw_ntfy_enable(wndw, asyw);
2287 	}
2288 
2289 	drm_atomic_state_get(state);
2290 
2291 	/*
2292 	 * Grab another RPM ref for the commit tail, which will release the
2293 	 * ref when it's finished
2294 	 */
2295 	pm_runtime_get_noresume(dev->dev);
2296 
2297 	if (nonblock)
2298 		queue_work(system_unbound_wq, &state->commit_work);
2299 	else
2300 		nv50_disp_atomic_commit_tail(state);
2301 
2302 err_cleanup:
2303 	if (ret)
2304 		drm_atomic_helper_cleanup_planes(dev, state);
2305 done:
2306 	pm_runtime_put_autosuspend(dev->dev);
2307 	return ret;
2308 }
2309 
2310 static struct nv50_outp_atom *
2311 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2312 {
2313 	struct nv50_outp_atom *outp;
2314 
2315 	list_for_each_entry(outp, &atom->outp, head) {
2316 		if (outp->encoder == encoder)
2317 			return outp;
2318 	}
2319 
2320 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2321 	if (!outp)
2322 		return ERR_PTR(-ENOMEM);
2323 
2324 	list_add(&outp->head, &atom->outp);
2325 	outp->encoder = encoder;
2326 	return outp;
2327 }
2328 
2329 static int
2330 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2331 				struct drm_connector_state *old_connector_state)
2332 {
2333 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2334 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2335 	struct drm_crtc *crtc;
2336 	struct nv50_outp_atom *outp;
2337 
2338 	if (!(crtc = old_connector_state->crtc))
2339 		return 0;
2340 
2341 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2342 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2343 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2344 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2345 		if (IS_ERR(outp))
2346 			return PTR_ERR(outp);
2347 
2348 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2349 			outp->flush_disable = true;
2350 			atom->flush_disable = true;
2351 		}
2352 		outp->clr.ctrl = true;
2353 		atom->lock_core = true;
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static int
2360 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2361 				struct drm_connector_state *connector_state)
2362 {
2363 	struct drm_encoder *encoder = connector_state->best_encoder;
2364 	struct drm_crtc_state *new_crtc_state;
2365 	struct drm_crtc *crtc;
2366 	struct nv50_outp_atom *outp;
2367 
2368 	if (!(crtc = connector_state->crtc))
2369 		return 0;
2370 
2371 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2372 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2373 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2374 		if (IS_ERR(outp))
2375 			return PTR_ERR(outp);
2376 
2377 		outp->set.ctrl = true;
2378 		atom->lock_core = true;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static int
2385 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2386 {
2387 	struct nv50_atom *atom = nv50_atom(state);
2388 	struct nv50_core *core = nv50_disp(dev)->core;
2389 	struct drm_connector_state *old_connector_state, *new_connector_state;
2390 	struct drm_connector *connector;
2391 	struct drm_crtc_state *new_crtc_state;
2392 	struct drm_crtc *crtc;
2393 	struct nv50_head *head;
2394 	struct nv50_head_atom *asyh;
2395 	int ret, i;
2396 
2397 	if (core->assign_windows && core->func->head->static_wndw_map) {
2398 		drm_for_each_crtc(crtc, dev) {
2399 			new_crtc_state = drm_atomic_get_crtc_state(state,
2400 								   crtc);
2401 			if (IS_ERR(new_crtc_state))
2402 				return PTR_ERR(new_crtc_state);
2403 
2404 			head = nv50_head(crtc);
2405 			asyh = nv50_head_atom(new_crtc_state);
2406 			core->func->head->static_wndw_map(head, asyh);
2407 		}
2408 	}
2409 
2410 	/* We need to handle colour management on a per-plane basis. */
2411 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2412 		if (new_crtc_state->color_mgmt_changed) {
2413 			ret = drm_atomic_add_affected_planes(state, crtc);
2414 			if (ret)
2415 				return ret;
2416 		}
2417 	}
2418 
2419 	ret = drm_atomic_helper_check(dev, state);
2420 	if (ret)
2421 		return ret;
2422 
2423 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2424 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2425 		if (ret)
2426 			return ret;
2427 
2428 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2429 		if (ret)
2430 			return ret;
2431 	}
2432 
2433 	ret = drm_dp_mst_atomic_check(state);
2434 	if (ret)
2435 		return ret;
2436 
2437 	nv50_crc_atomic_check_outp(atom);
2438 
2439 	return 0;
2440 }
2441 
2442 static void
2443 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2444 {
2445 	struct nv50_atom *atom = nv50_atom(state);
2446 	struct nv50_outp_atom *outp, *outt;
2447 
2448 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2449 		list_del(&outp->head);
2450 		kfree(outp);
2451 	}
2452 
2453 	drm_atomic_state_default_clear(state);
2454 }
2455 
2456 static void
2457 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2458 {
2459 	struct nv50_atom *atom = nv50_atom(state);
2460 	drm_atomic_state_default_release(&atom->state);
2461 	kfree(atom);
2462 }
2463 
2464 static struct drm_atomic_state *
2465 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2466 {
2467 	struct nv50_atom *atom;
2468 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2469 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2470 		kfree(atom);
2471 		return NULL;
2472 	}
2473 	INIT_LIST_HEAD(&atom->outp);
2474 	return &atom->state;
2475 }
2476 
2477 static const struct drm_mode_config_funcs
2478 nv50_disp_func = {
2479 	.fb_create = nouveau_user_framebuffer_create,
2480 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2481 	.atomic_check = nv50_disp_atomic_check,
2482 	.atomic_commit = nv50_disp_atomic_commit,
2483 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2484 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2485 	.atomic_state_free = nv50_disp_atomic_state_free,
2486 };
2487 
2488 /******************************************************************************
2489  * Init
2490  *****************************************************************************/
2491 
2492 static void
2493 nv50_display_fini(struct drm_device *dev, bool suspend)
2494 {
2495 	struct nouveau_encoder *nv_encoder;
2496 	struct drm_encoder *encoder;
2497 	struct drm_plane *plane;
2498 
2499 	drm_for_each_plane(plane, dev) {
2500 		struct nv50_wndw *wndw = nv50_wndw(plane);
2501 		if (plane->funcs != &nv50_wndw)
2502 			continue;
2503 		nv50_wndw_fini(wndw);
2504 	}
2505 
2506 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2507 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2508 			nv_encoder = nouveau_encoder(encoder);
2509 			nv50_mstm_fini(nv_encoder->dp.mstm);
2510 		}
2511 	}
2512 }
2513 
2514 static int
2515 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2516 {
2517 	struct nv50_core *core = nv50_disp(dev)->core;
2518 	struct drm_encoder *encoder;
2519 	struct drm_plane *plane;
2520 
2521 	if (resume || runtime)
2522 		core->func->init(core);
2523 
2524 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2525 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2526 			struct nouveau_encoder *nv_encoder =
2527 				nouveau_encoder(encoder);
2528 			nv50_mstm_init(nv_encoder->dp.mstm, runtime);
2529 		}
2530 	}
2531 
2532 	drm_for_each_plane(plane, dev) {
2533 		struct nv50_wndw *wndw = nv50_wndw(plane);
2534 		if (plane->funcs != &nv50_wndw)
2535 			continue;
2536 		nv50_wndw_init(wndw);
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static void
2543 nv50_display_destroy(struct drm_device *dev)
2544 {
2545 	struct nv50_disp *disp = nv50_disp(dev);
2546 
2547 	nv50_audio_component_fini(nouveau_drm(dev));
2548 
2549 	nvif_object_unmap(&disp->caps);
2550 	nvif_object_dtor(&disp->caps);
2551 	nv50_core_del(&disp->core);
2552 
2553 	nouveau_bo_unmap(disp->sync);
2554 	if (disp->sync)
2555 		nouveau_bo_unpin(disp->sync);
2556 	nouveau_bo_ref(NULL, &disp->sync);
2557 
2558 	nouveau_display(dev)->priv = NULL;
2559 	kfree(disp);
2560 }
2561 
2562 int
2563 nv50_display_create(struct drm_device *dev)
2564 {
2565 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2566 	struct nouveau_drm *drm = nouveau_drm(dev);
2567 	struct dcb_table *dcb = &drm->vbios.dcb;
2568 	struct drm_connector *connector, *tmp;
2569 	struct nv50_disp *disp;
2570 	struct dcb_output *dcbe;
2571 	int crtcs, ret, i;
2572 	bool has_mst = nv50_has_mst(drm);
2573 
2574 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2575 	if (!disp)
2576 		return -ENOMEM;
2577 
2578 	mutex_init(&disp->mutex);
2579 
2580 	nouveau_display(dev)->priv = disp;
2581 	nouveau_display(dev)->dtor = nv50_display_destroy;
2582 	nouveau_display(dev)->init = nv50_display_init;
2583 	nouveau_display(dev)->fini = nv50_display_fini;
2584 	disp->disp = &nouveau_display(dev)->disp;
2585 	dev->mode_config.funcs = &nv50_disp_func;
2586 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2587 	dev->mode_config.normalize_zpos = true;
2588 
2589 	/* small shared memory area we use for notifiers and semaphores */
2590 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2591 			     0, 0x0000, NULL, NULL, &disp->sync);
2592 	if (!ret) {
2593 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2594 		if (!ret) {
2595 			ret = nouveau_bo_map(disp->sync);
2596 			if (ret)
2597 				nouveau_bo_unpin(disp->sync);
2598 		}
2599 		if (ret)
2600 			nouveau_bo_ref(NULL, &disp->sync);
2601 	}
2602 
2603 	if (ret)
2604 		goto out;
2605 
2606 	/* allocate master evo channel */
2607 	ret = nv50_core_new(drm, &disp->core);
2608 	if (ret)
2609 		goto out;
2610 
2611 	disp->core->func->init(disp->core);
2612 	if (disp->core->func->caps_init) {
2613 		ret = disp->core->func->caps_init(drm, disp);
2614 		if (ret)
2615 			goto out;
2616 	}
2617 
2618 	/* Assign the correct format modifiers */
2619 	if (disp->disp->object.oclass >= TU102_DISP)
2620 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2621 	else
2622 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2623 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2624 	else
2625 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2626 
2627 	/* create crtc objects to represent the hw heads */
2628 	if (disp->disp->object.oclass >= GV100_DISP)
2629 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2630 	else
2631 	if (disp->disp->object.oclass >= GF110_DISP)
2632 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2633 	else
2634 		crtcs = 0x3;
2635 
2636 	for (i = 0; i < fls(crtcs); i++) {
2637 		struct nv50_head *head;
2638 
2639 		if (!(crtcs & (1 << i)))
2640 			continue;
2641 
2642 		head = nv50_head_create(dev, i);
2643 		if (IS_ERR(head)) {
2644 			ret = PTR_ERR(head);
2645 			goto out;
2646 		}
2647 
2648 		if (has_mst) {
2649 			head->msto = nv50_msto_new(dev, head, i);
2650 			if (IS_ERR(head->msto)) {
2651 				ret = PTR_ERR(head->msto);
2652 				head->msto = NULL;
2653 				goto out;
2654 			}
2655 
2656 			/*
2657 			 * FIXME: This is a hack to workaround the following
2658 			 * issues:
2659 			 *
2660 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2661 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2662 			 *
2663 			 * Once these issues are closed, this should be
2664 			 * removed
2665 			 */
2666 			head->msto->encoder.possible_crtcs = crtcs;
2667 		}
2668 	}
2669 
2670 	/* create encoder/connector objects based on VBIOS DCB table */
2671 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2672 		connector = nouveau_connector_create(dev, dcbe);
2673 		if (IS_ERR(connector))
2674 			continue;
2675 
2676 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2677 			switch (dcbe->type) {
2678 			case DCB_OUTPUT_TMDS:
2679 			case DCB_OUTPUT_LVDS:
2680 			case DCB_OUTPUT_DP:
2681 				ret = nv50_sor_create(connector, dcbe);
2682 				break;
2683 			case DCB_OUTPUT_ANALOG:
2684 				ret = nv50_dac_create(connector, dcbe);
2685 				break;
2686 			default:
2687 				ret = -ENODEV;
2688 				break;
2689 			}
2690 		} else {
2691 			ret = nv50_pior_create(connector, dcbe);
2692 		}
2693 
2694 		if (ret) {
2695 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2696 				     dcbe->location, dcbe->type,
2697 				     ffs(dcbe->or) - 1, ret);
2698 			ret = 0;
2699 		}
2700 	}
2701 
2702 	/* cull any connectors we created that don't have an encoder */
2703 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2704 		if (connector->possible_encoders)
2705 			continue;
2706 
2707 		NV_WARN(drm, "%s has no encoders, removing\n",
2708 			connector->name);
2709 		connector->funcs->destroy(connector);
2710 	}
2711 
2712 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2713 	dev->vblank_disable_immediate = true;
2714 
2715 	nv50_audio_component_init(drm);
2716 
2717 out:
2718 	if (ret)
2719 		nv50_display_destroy(dev);
2720 	return ret;
2721 }
2722 
2723 /******************************************************************************
2724  * Format modifiers
2725  *****************************************************************************/
2726 
2727 /****************************************************************
2728  *            Log2(block height) ----------------------------+  *
2729  *            Page Kind ----------------------------------+  |  *
2730  *            Gob Height/Page Kind Generation ------+     |  |  *
2731  *                          Sector layout -------+  |     |  |  *
2732  *                          Compression ------+  |  |     |  |  */
2733 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2734 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2735 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2736 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2737 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2738 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2739 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2740 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2741 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2742 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2743 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2744 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2745 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2746 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2747 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2748 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2749 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2750 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2751 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2752 	DRM_FORMAT_MOD_LINEAR,
2753 	DRM_FORMAT_MOD_INVALID
2754 };
2755 
2756 /****************************************************************
2757  *            Log2(block height) ----------------------------+  *
2758  *            Page Kind ----------------------------------+  |  *
2759  *            Gob Height/Page Kind Generation ------+     |  |  *
2760  *                          Sector layout -------+  |     |  |  *
2761  *                          Compression ------+  |  |     |  |  */
2762 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2763 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2764 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2765 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2766 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2767 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2768 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2769 	DRM_FORMAT_MOD_LINEAR,
2770 	DRM_FORMAT_MOD_INVALID
2771 };
2772