1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/hdmi.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_dp_helper.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_fb_helper.h>
37 #include <drm/drm_plane_helper.h>
38 #include <drm/drm_probe_helper.h>
39 #include <drm/drm_scdc_helper.h>
40 #include <drm/drm_vblank.h>
41 
42 #include <nvif/class.h>
43 #include <nvif/cl0002.h>
44 #include <nvif/cl5070.h>
45 #include <nvif/cl507d.h>
46 #include <nvif/event.h>
47 
48 #include "nouveau_drv.h"
49 #include "nouveau_dma.h"
50 #include "nouveau_gem.h"
51 #include "nouveau_connector.h"
52 #include "nouveau_encoder.h"
53 #include "nouveau_fence.h"
54 #include "nouveau_fbcon.h"
55 
56 #include <subdev/bios/dp.h>
57 
58 /******************************************************************************
59  * Atomic state
60  *****************************************************************************/
61 
62 struct nv50_outp_atom {
63 	struct list_head head;
64 
65 	struct drm_encoder *encoder;
66 	bool flush_disable;
67 
68 	union nv50_outp_atom_mask {
69 		struct {
70 			bool ctrl:1;
71 		};
72 		u8 mask;
73 	} set, clr;
74 };
75 
76 /******************************************************************************
77  * EVO channel
78  *****************************************************************************/
79 
80 static int
81 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
82 		 const s32 *oclass, u8 head, void *data, u32 size,
83 		 struct nv50_chan *chan)
84 {
85 	struct nvif_sclass *sclass;
86 	int ret, i, n;
87 
88 	chan->device = device;
89 
90 	ret = n = nvif_object_sclass_get(disp, &sclass);
91 	if (ret < 0)
92 		return ret;
93 
94 	while (oclass[0]) {
95 		for (i = 0; i < n; i++) {
96 			if (sclass[i].oclass == oclass[0]) {
97 				ret = nvif_object_init(disp, 0, oclass[0],
98 						       data, size, &chan->user);
99 				if (ret == 0)
100 					nvif_object_map(&chan->user, NULL, 0);
101 				nvif_object_sclass_put(&sclass);
102 				return ret;
103 			}
104 		}
105 		oclass++;
106 	}
107 
108 	nvif_object_sclass_put(&sclass);
109 	return -ENOSYS;
110 }
111 
112 static void
113 nv50_chan_destroy(struct nv50_chan *chan)
114 {
115 	nvif_object_fini(&chan->user);
116 }
117 
118 /******************************************************************************
119  * DMA EVO channel
120  *****************************************************************************/
121 
122 void
123 nv50_dmac_destroy(struct nv50_dmac *dmac)
124 {
125 	nvif_object_fini(&dmac->vram);
126 	nvif_object_fini(&dmac->sync);
127 
128 	nv50_chan_destroy(&dmac->base);
129 
130 	nvif_mem_fini(&dmac->push);
131 }
132 
133 int
134 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
135 		 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
136 		 struct nv50_dmac *dmac)
137 {
138 	struct nouveau_cli *cli = (void *)device->object.client;
139 	struct nv50_disp_core_channel_dma_v0 *args = data;
140 	u8 type = NVIF_MEM_COHERENT;
141 	int ret;
142 
143 	mutex_init(&dmac->lock);
144 
145 	/* Pascal added support for 47-bit physical addresses, but some
146 	 * parts of EVO still only accept 40-bit PAs.
147 	 *
148 	 * To avoid issues on systems with large amounts of RAM, and on
149 	 * systems where an IOMMU maps pages at a high address, we need
150 	 * to allocate push buffers in VRAM instead.
151 	 *
152 	 * This appears to match NVIDIA's behaviour on Pascal.
153 	 */
154 	if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
155 		type |= NVIF_MEM_VRAM;
156 
157 	ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push);
158 	if (ret)
159 		return ret;
160 
161 	dmac->ptr = dmac->push.object.map.ptr;
162 
163 	args->pushbuf = nvif_handle(&dmac->push.object);
164 
165 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
166 			       &dmac->base);
167 	if (ret)
168 		return ret;
169 
170 	if (!syncbuf)
171 		return 0;
172 
173 	ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
174 			       &(struct nv_dma_v0) {
175 					.target = NV_DMA_V0_TARGET_VRAM,
176 					.access = NV_DMA_V0_ACCESS_RDWR,
177 					.start = syncbuf + 0x0000,
178 					.limit = syncbuf + 0x0fff,
179 			       }, sizeof(struct nv_dma_v0),
180 			       &dmac->sync);
181 	if (ret)
182 		return ret;
183 
184 	ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
185 			       &(struct nv_dma_v0) {
186 					.target = NV_DMA_V0_TARGET_VRAM,
187 					.access = NV_DMA_V0_ACCESS_RDWR,
188 					.start = 0,
189 					.limit = device->info.ram_user - 1,
190 			       }, sizeof(struct nv_dma_v0),
191 			       &dmac->vram);
192 	if (ret)
193 		return ret;
194 
195 	return ret;
196 }
197 
198 /******************************************************************************
199  * EVO channel helpers
200  *****************************************************************************/
201 static void
202 evo_flush(struct nv50_dmac *dmac)
203 {
204 	/* Push buffer fetches are not coherent with BAR1, we need to ensure
205 	 * writes have been flushed right through to VRAM before writing PUT.
206 	 */
207 	if (dmac->push.type & NVIF_MEM_VRAM) {
208 		struct nvif_device *device = dmac->base.device;
209 		nvif_wr32(&device->object, 0x070000, 0x00000001);
210 		nvif_msec(device, 2000,
211 			if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
212 				break;
213 		);
214 	}
215 }
216 
217 u32 *
218 evo_wait(struct nv50_dmac *evoc, int nr)
219 {
220 	struct nv50_dmac *dmac = evoc;
221 	struct nvif_device *device = dmac->base.device;
222 	u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
223 
224 	mutex_lock(&dmac->lock);
225 	if (put + nr >= (PAGE_SIZE / 4) - 8) {
226 		dmac->ptr[put] = 0x20000000;
227 		evo_flush(dmac);
228 
229 		nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
230 		if (nvif_msec(device, 2000,
231 			if (!nvif_rd32(&dmac->base.user, 0x0004))
232 				break;
233 		) < 0) {
234 			mutex_unlock(&dmac->lock);
235 			pr_err("nouveau: evo channel stalled\n");
236 			return NULL;
237 		}
238 
239 		put = 0;
240 	}
241 
242 	return dmac->ptr + put;
243 }
244 
245 void
246 evo_kick(u32 *push, struct nv50_dmac *evoc)
247 {
248 	struct nv50_dmac *dmac = evoc;
249 
250 	evo_flush(dmac);
251 
252 	nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
253 	mutex_unlock(&dmac->lock);
254 }
255 
256 /******************************************************************************
257  * Output path helpers
258  *****************************************************************************/
259 static void
260 nv50_outp_release(struct nouveau_encoder *nv_encoder)
261 {
262 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
263 	struct {
264 		struct nv50_disp_mthd_v1 base;
265 	} args = {
266 		.base.version = 1,
267 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
268 		.base.hasht  = nv_encoder->dcb->hasht,
269 		.base.hashm  = nv_encoder->dcb->hashm,
270 	};
271 
272 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
273 	nv_encoder->or = -1;
274 	nv_encoder->link = 0;
275 }
276 
277 static int
278 nv50_outp_acquire(struct nouveau_encoder *nv_encoder)
279 {
280 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
281 	struct nv50_disp *disp = nv50_disp(drm->dev);
282 	struct {
283 		struct nv50_disp_mthd_v1 base;
284 		struct nv50_disp_acquire_v0 info;
285 	} args = {
286 		.base.version = 1,
287 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
288 		.base.hasht  = nv_encoder->dcb->hasht,
289 		.base.hashm  = nv_encoder->dcb->hashm,
290 	};
291 	int ret;
292 
293 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
294 	if (ret) {
295 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
296 		return ret;
297 	}
298 
299 	nv_encoder->or = args.info.or;
300 	nv_encoder->link = args.info.link;
301 	return 0;
302 }
303 
304 static int
305 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
306 			    struct drm_crtc_state *crtc_state,
307 			    struct drm_connector_state *conn_state,
308 			    struct drm_display_mode *native_mode)
309 {
310 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
311 	struct drm_display_mode *mode = &crtc_state->mode;
312 	struct drm_connector *connector = conn_state->connector;
313 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
314 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
315 
316 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
317 	asyc->scaler.full = false;
318 	if (!native_mode)
319 		return 0;
320 
321 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
322 		switch (connector->connector_type) {
323 		case DRM_MODE_CONNECTOR_LVDS:
324 		case DRM_MODE_CONNECTOR_eDP:
325 			/* Don't force scaler for EDID modes with
326 			 * same size as the native one (e.g. different
327 			 * refresh rate)
328 			 */
329 			if (adjusted_mode->hdisplay == native_mode->hdisplay &&
330 			    adjusted_mode->vdisplay == native_mode->vdisplay &&
331 			    adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
332 				break;
333 			mode = native_mode;
334 			asyc->scaler.full = true;
335 			break;
336 		default:
337 			break;
338 		}
339 	} else {
340 		mode = native_mode;
341 	}
342 
343 	if (!drm_mode_equal(adjusted_mode, mode)) {
344 		drm_mode_copy(adjusted_mode, mode);
345 		crtc_state->mode_changed = true;
346 	}
347 
348 	return 0;
349 }
350 
351 static int
352 nv50_outp_atomic_check(struct drm_encoder *encoder,
353 		       struct drm_crtc_state *crtc_state,
354 		       struct drm_connector_state *conn_state)
355 {
356 	struct nouveau_connector *nv_connector =
357 		nouveau_connector(conn_state->connector);
358 	return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
359 					   nv_connector->native_mode);
360 }
361 
362 /******************************************************************************
363  * DAC
364  *****************************************************************************/
365 static void
366 nv50_dac_disable(struct drm_encoder *encoder)
367 {
368 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
369 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
370 	if (nv_encoder->crtc)
371 		core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL);
372 	nv_encoder->crtc = NULL;
373 	nv50_outp_release(nv_encoder);
374 }
375 
376 static void
377 nv50_dac_enable(struct drm_encoder *encoder)
378 {
379 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
380 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
381 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
382 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
383 
384 	nv50_outp_acquire(nv_encoder);
385 
386 	core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh);
387 	asyh->or.depth = 0;
388 
389 	nv_encoder->crtc = encoder->crtc;
390 }
391 
392 static enum drm_connector_status
393 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
394 {
395 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
396 	struct nv50_disp *disp = nv50_disp(encoder->dev);
397 	struct {
398 		struct nv50_disp_mthd_v1 base;
399 		struct nv50_disp_dac_load_v0 load;
400 	} args = {
401 		.base.version = 1,
402 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
403 		.base.hasht  = nv_encoder->dcb->hasht,
404 		.base.hashm  = nv_encoder->dcb->hashm,
405 	};
406 	int ret;
407 
408 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
409 	if (args.load.data == 0)
410 		args.load.data = 340;
411 
412 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
413 	if (ret || !args.load.load)
414 		return connector_status_disconnected;
415 
416 	return connector_status_connected;
417 }
418 
419 static const struct drm_encoder_helper_funcs
420 nv50_dac_help = {
421 	.atomic_check = nv50_outp_atomic_check,
422 	.enable = nv50_dac_enable,
423 	.disable = nv50_dac_disable,
424 	.detect = nv50_dac_detect
425 };
426 
427 static void
428 nv50_dac_destroy(struct drm_encoder *encoder)
429 {
430 	drm_encoder_cleanup(encoder);
431 	kfree(encoder);
432 }
433 
434 static const struct drm_encoder_funcs
435 nv50_dac_func = {
436 	.destroy = nv50_dac_destroy,
437 };
438 
439 static int
440 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
441 {
442 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
443 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
444 	struct nvkm_i2c_bus *bus;
445 	struct nouveau_encoder *nv_encoder;
446 	struct drm_encoder *encoder;
447 	int type = DRM_MODE_ENCODER_DAC;
448 
449 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
450 	if (!nv_encoder)
451 		return -ENOMEM;
452 	nv_encoder->dcb = dcbe;
453 
454 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
455 	if (bus)
456 		nv_encoder->i2c = &bus->i2c;
457 
458 	encoder = to_drm_encoder(nv_encoder);
459 	encoder->possible_crtcs = dcbe->heads;
460 	encoder->possible_clones = 0;
461 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
462 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
463 	drm_encoder_helper_add(encoder, &nv50_dac_help);
464 
465 	drm_connector_attach_encoder(connector, encoder);
466 	return 0;
467 }
468 
469 /******************************************************************************
470  * Audio
471  *****************************************************************************/
472 static void
473 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
474 {
475 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
476 	struct nv50_disp *disp = nv50_disp(encoder->dev);
477 	struct {
478 		struct nv50_disp_mthd_v1 base;
479 		struct nv50_disp_sor_hda_eld_v0 eld;
480 	} args = {
481 		.base.version = 1,
482 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
483 		.base.hasht   = nv_encoder->dcb->hasht,
484 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
485 				(0x0100 << nv_crtc->index),
486 	};
487 
488 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
489 }
490 
491 static void
492 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
493 {
494 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
495 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
496 	struct nouveau_connector *nv_connector;
497 	struct nv50_disp *disp = nv50_disp(encoder->dev);
498 	struct __packed {
499 		struct {
500 			struct nv50_disp_mthd_v1 mthd;
501 			struct nv50_disp_sor_hda_eld_v0 eld;
502 		} base;
503 		u8 data[sizeof(nv_connector->base.eld)];
504 	} args = {
505 		.base.mthd.version = 1,
506 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
507 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
508 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
509 				     (0x0100 << nv_crtc->index),
510 	};
511 
512 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
513 	if (!drm_detect_monitor_audio(nv_connector->edid))
514 		return;
515 
516 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
517 
518 	nvif_mthd(&disp->disp->object, 0, &args,
519 		  sizeof(args.base) + drm_eld_size(args.data));
520 }
521 
522 /******************************************************************************
523  * HDMI
524  *****************************************************************************/
525 static void
526 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
527 {
528 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
529 	struct nv50_disp *disp = nv50_disp(encoder->dev);
530 	struct {
531 		struct nv50_disp_mthd_v1 base;
532 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
533 	} args = {
534 		.base.version = 1,
535 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
536 		.base.hasht  = nv_encoder->dcb->hasht,
537 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
538 			       (0x0100 << nv_crtc->index),
539 	};
540 
541 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
542 }
543 
544 static void
545 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
546 {
547 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
548 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
549 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
550 	struct nv50_disp *disp = nv50_disp(encoder->dev);
551 	struct {
552 		struct nv50_disp_mthd_v1 base;
553 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
554 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
555 	} args = {
556 		.base.version = 1,
557 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
558 		.base.hasht  = nv_encoder->dcb->hasht,
559 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
560 			       (0x0100 << nv_crtc->index),
561 		.pwr.state = 1,
562 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
563 	};
564 	struct nouveau_connector *nv_connector;
565 	struct drm_hdmi_info *hdmi;
566 	u32 max_ac_packet;
567 	union hdmi_infoframe avi_frame;
568 	union hdmi_infoframe vendor_frame;
569 	bool high_tmds_clock_ratio = false, scrambling = false;
570 	u8 config;
571 	int ret;
572 	int size;
573 
574 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
575 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
576 		return;
577 
578 	hdmi = &nv_connector->base.display_info.hdmi;
579 
580 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
581 						       &nv_connector->base, mode);
582 	if (!ret) {
583 		/* We have an AVI InfoFrame, populate it to the display */
584 		args.pwr.avi_infoframe_length
585 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
586 	}
587 
588 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
589 							  &nv_connector->base, mode);
590 	if (!ret) {
591 		/* We have a Vendor InfoFrame, populate it to the display */
592 		args.pwr.vendor_infoframe_length
593 			= hdmi_infoframe_pack(&vendor_frame,
594 					      args.infoframes
595 					      + args.pwr.avi_infoframe_length,
596 					      17);
597 	}
598 
599 	max_ac_packet  = mode->htotal - mode->hdisplay;
600 	max_ac_packet -= args.pwr.rekey;
601 	max_ac_packet -= 18; /* constant from tegra */
602 	args.pwr.max_ac_packet = max_ac_packet / 32;
603 
604 	if (hdmi->scdc.scrambling.supported) {
605 		high_tmds_clock_ratio = mode->clock > 340000;
606 		scrambling = high_tmds_clock_ratio ||
607 			hdmi->scdc.scrambling.low_rates;
608 	}
609 
610 	args.pwr.scdc =
611 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
612 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
613 
614 	size = sizeof(args.base)
615 		+ sizeof(args.pwr)
616 		+ args.pwr.avi_infoframe_length
617 		+ args.pwr.vendor_infoframe_length;
618 	nvif_mthd(&disp->disp->object, 0, &args, size);
619 
620 	nv50_audio_enable(encoder, mode);
621 
622 	/* If SCDC is supported by the downstream monitor, update
623 	 * divider / scrambling settings to what we programmed above.
624 	 */
625 	if (!hdmi->scdc.scrambling.supported)
626 		return;
627 
628 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
629 	if (ret < 0) {
630 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
631 		return;
632 	}
633 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
634 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
635 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
636 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
637 	if (ret < 0)
638 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
639 			 config, ret);
640 }
641 
642 /******************************************************************************
643  * MST
644  *****************************************************************************/
645 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
646 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
647 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
648 
649 struct nv50_mstm {
650 	struct nouveau_encoder *outp;
651 
652 	struct drm_dp_mst_topology_mgr mgr;
653 	struct nv50_msto *msto[4];
654 
655 	bool modified;
656 	bool disabled;
657 	int links;
658 };
659 
660 struct nv50_mstc {
661 	struct nv50_mstm *mstm;
662 	struct drm_dp_mst_port *port;
663 	struct drm_connector connector;
664 
665 	struct drm_display_mode *native;
666 	struct edid *edid;
667 };
668 
669 struct nv50_msto {
670 	struct drm_encoder encoder;
671 
672 	struct nv50_head *head;
673 	struct nv50_mstc *mstc;
674 	bool disabled;
675 };
676 
677 static struct drm_dp_payload *
678 nv50_msto_payload(struct nv50_msto *msto)
679 {
680 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
681 	struct nv50_mstc *mstc = msto->mstc;
682 	struct nv50_mstm *mstm = mstc->mstm;
683 	int vcpi = mstc->port->vcpi.vcpi, i;
684 
685 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
686 
687 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
688 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
689 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
690 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
691 			  mstm->outp->base.base.name, i, payload->vcpi,
692 			  payload->start_slot, payload->num_slots);
693 	}
694 
695 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
696 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
697 		if (payload->vcpi == vcpi)
698 			return payload;
699 	}
700 
701 	return NULL;
702 }
703 
704 static void
705 nv50_msto_cleanup(struct nv50_msto *msto)
706 {
707 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
708 	struct nv50_mstc *mstc = msto->mstc;
709 	struct nv50_mstm *mstm = mstc->mstm;
710 
711 	if (!msto->disabled)
712 		return;
713 
714 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
715 
716 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
717 
718 	msto->mstc = NULL;
719 	msto->head = NULL;
720 	msto->disabled = false;
721 }
722 
723 static void
724 nv50_msto_prepare(struct nv50_msto *msto)
725 {
726 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
727 	struct nv50_mstc *mstc = msto->mstc;
728 	struct nv50_mstm *mstm = mstc->mstm;
729 	struct {
730 		struct nv50_disp_mthd_v1 base;
731 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
732 	} args = {
733 		.base.version = 1,
734 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
735 		.base.hasht  = mstm->outp->dcb->hasht,
736 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
737 			       (0x0100 << msto->head->base.index),
738 	};
739 
740 	mutex_lock(&mstm->mgr.payload_lock);
741 
742 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
743 	if (mstc->port->vcpi.vcpi > 0) {
744 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
745 		if (payload) {
746 			args.vcpi.start_slot = payload->start_slot;
747 			args.vcpi.num_slots = payload->num_slots;
748 			args.vcpi.pbn = mstc->port->vcpi.pbn;
749 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
750 		}
751 	}
752 
753 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
754 		  msto->encoder.name, msto->head->base.base.name,
755 		  args.vcpi.start_slot, args.vcpi.num_slots,
756 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
757 
758 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
759 	mutex_unlock(&mstm->mgr.payload_lock);
760 }
761 
762 static int
763 nv50_msto_atomic_check(struct drm_encoder *encoder,
764 		       struct drm_crtc_state *crtc_state,
765 		       struct drm_connector_state *conn_state)
766 {
767 	struct drm_atomic_state *state = crtc_state->state;
768 	struct drm_connector *connector = conn_state->connector;
769 	struct nv50_mstc *mstc = nv50_mstc(connector);
770 	struct nv50_mstm *mstm = mstc->mstm;
771 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
772 	int slots;
773 
774 	/* When restoring duplicated states, we need to make sure that the
775 	 * bw remains the same and avoid recalculating it, as the connector's
776 	 * bpc may have changed after the state was duplicated
777 	 */
778 	if (!state->duplicated)
779 		asyh->dp.pbn =
780 			drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock,
781 					     connector->display_info.bpc * 3);
782 
783 	if (crtc_state->mode_changed) {
784 		slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr,
785 						      mstc->port,
786 						      asyh->dp.pbn);
787 		if (slots < 0)
788 			return slots;
789 
790 		asyh->dp.tu = slots;
791 	}
792 
793 	return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
794 					   mstc->native);
795 }
796 
797 static void
798 nv50_msto_enable(struct drm_encoder *encoder)
799 {
800 	struct nv50_head *head = nv50_head(encoder->crtc);
801 	struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state);
802 	struct nv50_msto *msto = nv50_msto(encoder);
803 	struct nv50_mstc *mstc = NULL;
804 	struct nv50_mstm *mstm = NULL;
805 	struct drm_connector *connector;
806 	struct drm_connector_list_iter conn_iter;
807 	u8 proto, depth;
808 	bool r;
809 
810 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
811 	drm_for_each_connector_iter(connector, &conn_iter) {
812 		if (connector->state->best_encoder == &msto->encoder) {
813 			mstc = nv50_mstc(connector);
814 			mstm = mstc->mstm;
815 			break;
816 		}
817 	}
818 	drm_connector_list_iter_end(&conn_iter);
819 
820 	if (WARN_ON(!mstc))
821 		return;
822 
823 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn,
824 				     armh->dp.tu);
825 	if (!r)
826 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
827 
828 	if (!mstm->links++)
829 		nv50_outp_acquire(mstm->outp);
830 
831 	if (mstm->outp->link & 1)
832 		proto = 0x8;
833 	else
834 		proto = 0x9;
835 
836 	switch (mstc->connector.display_info.bpc) {
837 	case  6: depth = 0x2; break;
838 	case  8: depth = 0x5; break;
839 	case 10:
840 	default: depth = 0x6; break;
841 	}
842 
843 	mstm->outp->update(mstm->outp, head->base.index, armh, proto, depth);
844 
845 	msto->head = head;
846 	msto->mstc = mstc;
847 	mstm->modified = true;
848 }
849 
850 static void
851 nv50_msto_disable(struct drm_encoder *encoder)
852 {
853 	struct nv50_msto *msto = nv50_msto(encoder);
854 	struct nv50_mstc *mstc = msto->mstc;
855 	struct nv50_mstm *mstm = mstc->mstm;
856 
857 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
858 
859 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
860 	mstm->modified = true;
861 	if (!--mstm->links)
862 		mstm->disabled = true;
863 	msto->disabled = true;
864 }
865 
866 static const struct drm_encoder_helper_funcs
867 nv50_msto_help = {
868 	.disable = nv50_msto_disable,
869 	.enable = nv50_msto_enable,
870 	.atomic_check = nv50_msto_atomic_check,
871 };
872 
873 static void
874 nv50_msto_destroy(struct drm_encoder *encoder)
875 {
876 	struct nv50_msto *msto = nv50_msto(encoder);
877 	drm_encoder_cleanup(&msto->encoder);
878 	kfree(msto);
879 }
880 
881 static const struct drm_encoder_funcs
882 nv50_msto = {
883 	.destroy = nv50_msto_destroy,
884 };
885 
886 static int
887 nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
888 	      struct nv50_msto **pmsto)
889 {
890 	struct nv50_msto *msto;
891 	int ret;
892 
893 	if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
894 		return -ENOMEM;
895 
896 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
897 			       DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
898 	if (ret) {
899 		kfree(*pmsto);
900 		*pmsto = NULL;
901 		return ret;
902 	}
903 
904 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
905 	msto->encoder.possible_crtcs = heads;
906 	return 0;
907 }
908 
909 static struct drm_encoder *
910 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
911 			      struct drm_connector_state *connector_state)
912 {
913 	struct nv50_head *head = nv50_head(connector_state->crtc);
914 	struct nv50_mstc *mstc = nv50_mstc(connector);
915 
916 	return &mstc->mstm->msto[head->base.index]->encoder;
917 }
918 
919 static struct drm_encoder *
920 nv50_mstc_best_encoder(struct drm_connector *connector)
921 {
922 	struct nv50_mstc *mstc = nv50_mstc(connector);
923 
924 	return &mstc->mstm->msto[0]->encoder;
925 }
926 
927 static enum drm_mode_status
928 nv50_mstc_mode_valid(struct drm_connector *connector,
929 		     struct drm_display_mode *mode)
930 {
931 	return MODE_OK;
932 }
933 
934 static int
935 nv50_mstc_get_modes(struct drm_connector *connector)
936 {
937 	struct nv50_mstc *mstc = nv50_mstc(connector);
938 	int ret = 0;
939 
940 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
941 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
942 	if (mstc->edid)
943 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
944 
945 	if (!mstc->connector.display_info.bpc)
946 		mstc->connector.display_info.bpc = 8;
947 
948 	if (mstc->native)
949 		drm_mode_destroy(mstc->connector.dev, mstc->native);
950 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
951 	return ret;
952 }
953 
954 static int
955 nv50_mstc_atomic_check(struct drm_connector *connector,
956 		       struct drm_atomic_state *state)
957 {
958 	struct nv50_mstc *mstc = nv50_mstc(connector);
959 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
960 	struct drm_connector_state *new_conn_state =
961 		drm_atomic_get_new_connector_state(state, connector);
962 	struct drm_connector_state *old_conn_state =
963 		drm_atomic_get_old_connector_state(state, connector);
964 	struct drm_crtc_state *crtc_state;
965 	struct drm_crtc *new_crtc = new_conn_state->crtc;
966 
967 	if (!old_conn_state->crtc)
968 		return 0;
969 
970 	/* We only want to free VCPI if this state disables the CRTC on this
971 	 * connector
972 	 */
973 	if (new_crtc) {
974 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
975 
976 		if (!crtc_state ||
977 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
978 		    crtc_state->enable)
979 			return 0;
980 	}
981 
982 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
983 }
984 
985 static const struct drm_connector_helper_funcs
986 nv50_mstc_help = {
987 	.get_modes = nv50_mstc_get_modes,
988 	.mode_valid = nv50_mstc_mode_valid,
989 	.best_encoder = nv50_mstc_best_encoder,
990 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
991 	.atomic_check = nv50_mstc_atomic_check,
992 };
993 
994 static enum drm_connector_status
995 nv50_mstc_detect(struct drm_connector *connector, bool force)
996 {
997 	struct nv50_mstc *mstc = nv50_mstc(connector);
998 	enum drm_connector_status conn_status;
999 	int ret;
1000 
1001 	if (drm_connector_is_unregistered(connector))
1002 		return connector_status_disconnected;
1003 
1004 	ret = pm_runtime_get_sync(connector->dev->dev);
1005 	if (ret < 0 && ret != -EACCES)
1006 		return connector_status_disconnected;
1007 
1008 	conn_status = drm_dp_mst_detect_port(connector, mstc->port->mgr,
1009 					     mstc->port);
1010 
1011 	pm_runtime_mark_last_busy(connector->dev->dev);
1012 	pm_runtime_put_autosuspend(connector->dev->dev);
1013 	return conn_status;
1014 }
1015 
1016 static void
1017 nv50_mstc_destroy(struct drm_connector *connector)
1018 {
1019 	struct nv50_mstc *mstc = nv50_mstc(connector);
1020 
1021 	drm_connector_cleanup(&mstc->connector);
1022 	drm_dp_mst_put_port_malloc(mstc->port);
1023 
1024 	kfree(mstc);
1025 }
1026 
1027 static const struct drm_connector_funcs
1028 nv50_mstc = {
1029 	.reset = nouveau_conn_reset,
1030 	.detect = nv50_mstc_detect,
1031 	.fill_modes = drm_helper_probe_single_connector_modes,
1032 	.destroy = nv50_mstc_destroy,
1033 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1034 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1035 	.atomic_set_property = nouveau_conn_atomic_set_property,
1036 	.atomic_get_property = nouveau_conn_atomic_get_property,
1037 };
1038 
1039 static int
1040 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1041 	      const char *path, struct nv50_mstc **pmstc)
1042 {
1043 	struct drm_device *dev = mstm->outp->base.base.dev;
1044 	struct nv50_mstc *mstc;
1045 	int ret, i;
1046 
1047 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1048 		return -ENOMEM;
1049 	mstc->mstm = mstm;
1050 	mstc->port = port;
1051 
1052 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1053 				 DRM_MODE_CONNECTOR_DisplayPort);
1054 	if (ret) {
1055 		kfree(*pmstc);
1056 		*pmstc = NULL;
1057 		return ret;
1058 	}
1059 
1060 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1061 
1062 	mstc->connector.funcs->reset(&mstc->connector);
1063 	nouveau_conn_attach_properties(&mstc->connector);
1064 
1065 	for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++)
1066 		drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
1067 
1068 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1069 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1070 	drm_connector_set_path_property(&mstc->connector, path);
1071 	drm_dp_mst_get_port_malloc(port);
1072 	return 0;
1073 }
1074 
1075 static void
1076 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1077 {
1078 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1079 	struct drm_encoder *encoder;
1080 	int ret;
1081 
1082 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1083 	ret = drm_dp_check_act_status(&mstm->mgr);
1084 
1085 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1086 
1087 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1088 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1089 			struct nv50_msto *msto = nv50_msto(encoder);
1090 			struct nv50_mstc *mstc = msto->mstc;
1091 			if (mstc && mstc->mstm == mstm)
1092 				nv50_msto_cleanup(msto);
1093 		}
1094 	}
1095 
1096 	mstm->modified = false;
1097 }
1098 
1099 static void
1100 nv50_mstm_prepare(struct nv50_mstm *mstm)
1101 {
1102 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1103 	struct drm_encoder *encoder;
1104 	int ret;
1105 
1106 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1107 	ret = drm_dp_update_payload_part1(&mstm->mgr);
1108 
1109 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1110 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1111 			struct nv50_msto *msto = nv50_msto(encoder);
1112 			struct nv50_mstc *mstc = msto->mstc;
1113 			if (mstc && mstc->mstm == mstm)
1114 				nv50_msto_prepare(msto);
1115 		}
1116 	}
1117 
1118 	if (mstm->disabled) {
1119 		if (!mstm->links)
1120 			nv50_outp_release(mstm->outp);
1121 		mstm->disabled = false;
1122 	}
1123 }
1124 
1125 static void
1126 nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
1127 			    struct drm_connector *connector)
1128 {
1129 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1130 	struct nv50_mstc *mstc = nv50_mstc(connector);
1131 
1132 	drm_connector_unregister(&mstc->connector);
1133 
1134 	drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
1135 
1136 	drm_connector_put(&mstc->connector);
1137 }
1138 
1139 static void
1140 nv50_mstm_register_connector(struct drm_connector *connector)
1141 {
1142 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1143 
1144 	drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
1145 
1146 	drm_connector_register(connector);
1147 }
1148 
1149 static struct drm_connector *
1150 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1151 			struct drm_dp_mst_port *port, const char *path)
1152 {
1153 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1154 	struct nv50_mstc *mstc;
1155 	int ret;
1156 
1157 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1158 	if (ret)
1159 		return NULL;
1160 
1161 	return &mstc->connector;
1162 }
1163 
1164 static const struct drm_dp_mst_topology_cbs
1165 nv50_mstm = {
1166 	.add_connector = nv50_mstm_add_connector,
1167 	.register_connector = nv50_mstm_register_connector,
1168 	.destroy_connector = nv50_mstm_destroy_connector,
1169 };
1170 
1171 void
1172 nv50_mstm_service(struct nv50_mstm *mstm)
1173 {
1174 	struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
1175 	bool handled = true;
1176 	int ret;
1177 	u8 esi[8] = {};
1178 
1179 	if (!aux)
1180 		return;
1181 
1182 	while (handled) {
1183 		ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1184 		if (ret != 8) {
1185 			drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1186 			return;
1187 		}
1188 
1189 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1190 		if (!handled)
1191 			break;
1192 
1193 		drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
1194 	}
1195 }
1196 
1197 void
1198 nv50_mstm_remove(struct nv50_mstm *mstm)
1199 {
1200 	if (mstm)
1201 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1202 }
1203 
1204 static int
1205 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
1206 {
1207 	struct nouveau_encoder *outp = mstm->outp;
1208 	struct {
1209 		struct nv50_disp_mthd_v1 base;
1210 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1211 	} args = {
1212 		.base.version = 1,
1213 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1214 		.base.hasht = outp->dcb->hasht,
1215 		.base.hashm = outp->dcb->hashm,
1216 		.mst.state = state,
1217 	};
1218 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1219 	struct nvif_object *disp = &drm->display->disp.object;
1220 	int ret;
1221 
1222 	if (dpcd >= 0x12) {
1223 		/* Even if we're enabling MST, start with disabling the
1224 		 * branching unit to clear any sink-side MST topology state
1225 		 * that wasn't set by us
1226 		 */
1227 		ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
1228 		if (ret < 0)
1229 			return ret;
1230 
1231 		if (state) {
1232 			/* Now, start initializing */
1233 			ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
1234 						 DP_MST_EN);
1235 			if (ret < 0)
1236 				return ret;
1237 		}
1238 	}
1239 
1240 	return nvif_mthd(disp, 0, &args, sizeof(args));
1241 }
1242 
1243 int
1244 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
1245 {
1246 	struct drm_dp_aux *aux;
1247 	int ret;
1248 	bool old_state, new_state;
1249 	u8 mstm_ctrl;
1250 
1251 	if (!mstm)
1252 		return 0;
1253 
1254 	mutex_lock(&mstm->mgr.lock);
1255 
1256 	old_state = mstm->mgr.mst_state;
1257 	new_state = old_state;
1258 	aux = mstm->mgr.aux;
1259 
1260 	if (old_state) {
1261 		/* Just check that the MST hub is still as we expect it */
1262 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
1263 		if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
1264 			DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
1265 			new_state = false;
1266 		}
1267 	} else if (dpcd[0] >= 0x12) {
1268 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
1269 		if (ret < 0)
1270 			goto probe_error;
1271 
1272 		if (!(dpcd[1] & DP_MST_CAP))
1273 			dpcd[0] = 0x11;
1274 		else
1275 			new_state = allow;
1276 	}
1277 
1278 	if (new_state == old_state) {
1279 		mutex_unlock(&mstm->mgr.lock);
1280 		return new_state;
1281 	}
1282 
1283 	ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
1284 	if (ret)
1285 		goto probe_error;
1286 
1287 	mutex_unlock(&mstm->mgr.lock);
1288 
1289 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
1290 	if (ret)
1291 		return nv50_mstm_enable(mstm, dpcd[0], 0);
1292 
1293 	return new_state;
1294 
1295 probe_error:
1296 	mutex_unlock(&mstm->mgr.lock);
1297 	return ret;
1298 }
1299 
1300 static void
1301 nv50_mstm_fini(struct nv50_mstm *mstm)
1302 {
1303 	if (mstm && mstm->mgr.mst_state)
1304 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1305 }
1306 
1307 static void
1308 nv50_mstm_init(struct nv50_mstm *mstm)
1309 {
1310 	int ret;
1311 
1312 	if (!mstm || !mstm->mgr.mst_state)
1313 		return;
1314 
1315 	ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr);
1316 	if (ret == -1) {
1317 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1318 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1319 	}
1320 }
1321 
1322 static void
1323 nv50_mstm_del(struct nv50_mstm **pmstm)
1324 {
1325 	struct nv50_mstm *mstm = *pmstm;
1326 	if (mstm) {
1327 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1328 		kfree(*pmstm);
1329 		*pmstm = NULL;
1330 	}
1331 }
1332 
1333 static int
1334 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1335 	      int conn_base_id, struct nv50_mstm **pmstm)
1336 {
1337 	const int max_payloads = hweight8(outp->dcb->heads);
1338 	struct drm_device *dev = outp->base.base.dev;
1339 	struct nv50_mstm *mstm;
1340 	int ret, i;
1341 	u8 dpcd;
1342 
1343 	/* This is a workaround for some monitors not functioning
1344 	 * correctly in MST mode on initial module load.  I think
1345 	 * some bad interaction with the VBIOS may be responsible.
1346 	 *
1347 	 * A good ol' off and on again seems to work here ;)
1348 	 */
1349 	ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
1350 	if (ret >= 0 && dpcd >= 0x12)
1351 		drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1352 
1353 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1354 		return -ENOMEM;
1355 	mstm->outp = outp;
1356 	mstm->mgr.cbs = &nv50_mstm;
1357 
1358 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1359 					   max_payloads, conn_base_id);
1360 	if (ret)
1361 		return ret;
1362 
1363 	for (i = 0; i < max_payloads; i++) {
1364 		ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
1365 				    i, &mstm->msto[i]);
1366 		if (ret)
1367 			return ret;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 /******************************************************************************
1374  * SOR
1375  *****************************************************************************/
1376 static void
1377 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1378 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1379 {
1380 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1381 	struct nv50_core *core = disp->core;
1382 
1383 	if (!asyh) {
1384 		nv_encoder->ctrl &= ~BIT(head);
1385 		if (!(nv_encoder->ctrl & 0x0000000f))
1386 			nv_encoder->ctrl = 0;
1387 	} else {
1388 		nv_encoder->ctrl |= proto << 8;
1389 		nv_encoder->ctrl |= BIT(head);
1390 		asyh->or.depth = depth;
1391 	}
1392 
1393 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1394 }
1395 
1396 static void
1397 nv50_sor_disable(struct drm_encoder *encoder)
1398 {
1399 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1400 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1401 
1402 	nv_encoder->crtc = NULL;
1403 
1404 	if (nv_crtc) {
1405 		struct nvkm_i2c_aux *aux = nv_encoder->aux;
1406 		u8 pwr;
1407 
1408 		if (aux) {
1409 			int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
1410 			if (ret == 0) {
1411 				pwr &= ~DP_SET_POWER_MASK;
1412 				pwr |=  DP_SET_POWER_D3;
1413 				nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
1414 			}
1415 		}
1416 
1417 		nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1418 		nv50_audio_disable(encoder, nv_crtc);
1419 		nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1420 		nv50_outp_release(nv_encoder);
1421 	}
1422 }
1423 
1424 static void
1425 nv50_sor_enable(struct drm_encoder *encoder)
1426 {
1427 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1428 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1429 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1430 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1431 	struct {
1432 		struct nv50_disp_mthd_v1 base;
1433 		struct nv50_disp_sor_lvds_script_v0 lvds;
1434 	} lvds = {
1435 		.base.version = 1,
1436 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1437 		.base.hasht   = nv_encoder->dcb->hasht,
1438 		.base.hashm   = nv_encoder->dcb->hashm,
1439 	};
1440 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1441 	struct drm_device *dev = encoder->dev;
1442 	struct nouveau_drm *drm = nouveau_drm(dev);
1443 	struct nouveau_connector *nv_connector;
1444 	struct nvbios *bios = &drm->vbios;
1445 	u8 proto = 0xf;
1446 	u8 depth = 0x0;
1447 
1448 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1449 	nv_encoder->crtc = encoder->crtc;
1450 	nv50_outp_acquire(nv_encoder);
1451 
1452 	switch (nv_encoder->dcb->type) {
1453 	case DCB_OUTPUT_TMDS:
1454 		if (nv_encoder->link & 1) {
1455 			proto = 0x1;
1456 			/* Only enable dual-link if:
1457 			 *  - Need to (i.e. rate > 165MHz)
1458 			 *  - DCB says we can
1459 			 *  - Not an HDMI monitor, since there's no dual-link
1460 			 *    on HDMI.
1461 			 */
1462 			if (mode->clock >= 165000 &&
1463 			    nv_encoder->dcb->duallink_possible &&
1464 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1465 				proto |= 0x4;
1466 		} else {
1467 			proto = 0x2;
1468 		}
1469 
1470 		nv50_hdmi_enable(&nv_encoder->base.base, mode);
1471 		break;
1472 	case DCB_OUTPUT_LVDS:
1473 		proto = 0x0;
1474 
1475 		if (bios->fp_no_ddc) {
1476 			if (bios->fp.dual_link)
1477 				lvds.lvds.script |= 0x0100;
1478 			if (bios->fp.if_is_24bit)
1479 				lvds.lvds.script |= 0x0200;
1480 		} else {
1481 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1482 				if (((u8 *)nv_connector->edid)[121] == 2)
1483 					lvds.lvds.script |= 0x0100;
1484 			} else
1485 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1486 				lvds.lvds.script |= 0x0100;
1487 			}
1488 
1489 			if (lvds.lvds.script & 0x0100) {
1490 				if (bios->fp.strapless_is_24bit & 2)
1491 					lvds.lvds.script |= 0x0200;
1492 			} else {
1493 				if (bios->fp.strapless_is_24bit & 1)
1494 					lvds.lvds.script |= 0x0200;
1495 			}
1496 
1497 			if (nv_connector->base.display_info.bpc == 8)
1498 				lvds.lvds.script |= 0x0200;
1499 		}
1500 
1501 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1502 		break;
1503 	case DCB_OUTPUT_DP:
1504 		if (nv_connector->base.display_info.bpc == 6)
1505 			depth = 0x2;
1506 		else
1507 		if (nv_connector->base.display_info.bpc == 8)
1508 			depth = 0x5;
1509 		else
1510 			depth = 0x6;
1511 
1512 		if (nv_encoder->link & 1)
1513 			proto = 0x8;
1514 		else
1515 			proto = 0x9;
1516 
1517 		nv50_audio_enable(encoder, mode);
1518 		break;
1519 	default:
1520 		BUG();
1521 		break;
1522 	}
1523 
1524 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1525 }
1526 
1527 static const struct drm_encoder_helper_funcs
1528 nv50_sor_help = {
1529 	.atomic_check = nv50_outp_atomic_check,
1530 	.enable = nv50_sor_enable,
1531 	.disable = nv50_sor_disable,
1532 };
1533 
1534 static void
1535 nv50_sor_destroy(struct drm_encoder *encoder)
1536 {
1537 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1538 	nv50_mstm_del(&nv_encoder->dp.mstm);
1539 	drm_encoder_cleanup(encoder);
1540 	kfree(encoder);
1541 }
1542 
1543 static const struct drm_encoder_funcs
1544 nv50_sor_func = {
1545 	.destroy = nv50_sor_destroy,
1546 };
1547 
1548 static int
1549 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1550 {
1551 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1552 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1553 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1554 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1555 	struct nouveau_encoder *nv_encoder;
1556 	struct drm_encoder *encoder;
1557 	u8 ver, hdr, cnt, len;
1558 	u32 data;
1559 	int type, ret;
1560 
1561 	switch (dcbe->type) {
1562 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1563 	case DCB_OUTPUT_TMDS:
1564 	case DCB_OUTPUT_DP:
1565 	default:
1566 		type = DRM_MODE_ENCODER_TMDS;
1567 		break;
1568 	}
1569 
1570 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1571 	if (!nv_encoder)
1572 		return -ENOMEM;
1573 	nv_encoder->dcb = dcbe;
1574 	nv_encoder->update = nv50_sor_update;
1575 
1576 	encoder = to_drm_encoder(nv_encoder);
1577 	encoder->possible_crtcs = dcbe->heads;
1578 	encoder->possible_clones = 0;
1579 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1580 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1581 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1582 
1583 	drm_connector_attach_encoder(connector, encoder);
1584 
1585 	if (dcbe->type == DCB_OUTPUT_DP) {
1586 		struct nv50_disp *disp = nv50_disp(encoder->dev);
1587 		struct nvkm_i2c_aux *aux =
1588 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1589 		if (aux) {
1590 			if (disp->disp->object.oclass < GF110_DISP) {
1591 				/* HW has no support for address-only
1592 				 * transactions, so we're required to
1593 				 * use custom I2C-over-AUX code.
1594 				 */
1595 				nv_encoder->i2c = &aux->i2c;
1596 			} else {
1597 				nv_encoder->i2c = &nv_connector->aux.ddc;
1598 			}
1599 			nv_encoder->aux = aux;
1600 		}
1601 
1602 		if ((data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) &&
1603 		    ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) {
1604 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
1605 					    nv_connector->base.base.id,
1606 					    &nv_encoder->dp.mstm);
1607 			if (ret)
1608 				return ret;
1609 		}
1610 	} else {
1611 		struct nvkm_i2c_bus *bus =
1612 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1613 		if (bus)
1614 			nv_encoder->i2c = &bus->i2c;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 /******************************************************************************
1621  * PIOR
1622  *****************************************************************************/
1623 static int
1624 nv50_pior_atomic_check(struct drm_encoder *encoder,
1625 		       struct drm_crtc_state *crtc_state,
1626 		       struct drm_connector_state *conn_state)
1627 {
1628 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1629 	if (ret)
1630 		return ret;
1631 	crtc_state->adjusted_mode.clock *= 2;
1632 	return 0;
1633 }
1634 
1635 static void
1636 nv50_pior_disable(struct drm_encoder *encoder)
1637 {
1638 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1639 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1640 	if (nv_encoder->crtc)
1641 		core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL);
1642 	nv_encoder->crtc = NULL;
1643 	nv50_outp_release(nv_encoder);
1644 }
1645 
1646 static void
1647 nv50_pior_enable(struct drm_encoder *encoder)
1648 {
1649 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1650 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1651 	struct nouveau_connector *nv_connector;
1652 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1653 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1654 	u8 owner = 1 << nv_crtc->index;
1655 	u8 proto;
1656 
1657 	nv50_outp_acquire(nv_encoder);
1658 
1659 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1660 	switch (nv_connector->base.display_info.bpc) {
1661 	case 10: asyh->or.depth = 0x6; break;
1662 	case  8: asyh->or.depth = 0x5; break;
1663 	case  6: asyh->or.depth = 0x2; break;
1664 	default: asyh->or.depth = 0x0; break;
1665 	}
1666 
1667 	switch (nv_encoder->dcb->type) {
1668 	case DCB_OUTPUT_TMDS:
1669 	case DCB_OUTPUT_DP:
1670 		proto = 0x0;
1671 		break;
1672 	default:
1673 		BUG();
1674 		break;
1675 	}
1676 
1677 	core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh);
1678 	nv_encoder->crtc = encoder->crtc;
1679 }
1680 
1681 static const struct drm_encoder_helper_funcs
1682 nv50_pior_help = {
1683 	.atomic_check = nv50_pior_atomic_check,
1684 	.enable = nv50_pior_enable,
1685 	.disable = nv50_pior_disable,
1686 };
1687 
1688 static void
1689 nv50_pior_destroy(struct drm_encoder *encoder)
1690 {
1691 	drm_encoder_cleanup(encoder);
1692 	kfree(encoder);
1693 }
1694 
1695 static const struct drm_encoder_funcs
1696 nv50_pior_func = {
1697 	.destroy = nv50_pior_destroy,
1698 };
1699 
1700 static int
1701 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1702 {
1703 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1704 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1705 	struct nvkm_i2c_bus *bus = NULL;
1706 	struct nvkm_i2c_aux *aux = NULL;
1707 	struct i2c_adapter *ddc;
1708 	struct nouveau_encoder *nv_encoder;
1709 	struct drm_encoder *encoder;
1710 	int type;
1711 
1712 	switch (dcbe->type) {
1713 	case DCB_OUTPUT_TMDS:
1714 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1715 		ddc  = bus ? &bus->i2c : NULL;
1716 		type = DRM_MODE_ENCODER_TMDS;
1717 		break;
1718 	case DCB_OUTPUT_DP:
1719 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1720 		ddc  = aux ? &aux->i2c : NULL;
1721 		type = DRM_MODE_ENCODER_TMDS;
1722 		break;
1723 	default:
1724 		return -ENODEV;
1725 	}
1726 
1727 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1728 	if (!nv_encoder)
1729 		return -ENOMEM;
1730 	nv_encoder->dcb = dcbe;
1731 	nv_encoder->i2c = ddc;
1732 	nv_encoder->aux = aux;
1733 
1734 	encoder = to_drm_encoder(nv_encoder);
1735 	encoder->possible_crtcs = dcbe->heads;
1736 	encoder->possible_clones = 0;
1737 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1738 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1739 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1740 
1741 	drm_connector_attach_encoder(connector, encoder);
1742 	return 0;
1743 }
1744 
1745 /******************************************************************************
1746  * Atomic
1747  *****************************************************************************/
1748 
1749 static void
1750 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1751 {
1752 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1753 	struct nv50_disp *disp = nv50_disp(drm->dev);
1754 	struct nv50_core *core = disp->core;
1755 	struct nv50_mstm *mstm;
1756 	struct drm_encoder *encoder;
1757 
1758 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1759 
1760 	drm_for_each_encoder(encoder, drm->dev) {
1761 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1762 			mstm = nouveau_encoder(encoder)->dp.mstm;
1763 			if (mstm && mstm->modified)
1764 				nv50_mstm_prepare(mstm);
1765 		}
1766 	}
1767 
1768 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1769 	core->func->update(core, interlock, true);
1770 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1771 				       disp->core->chan.base.device))
1772 		NV_ERROR(drm, "core notifier timeout\n");
1773 
1774 	drm_for_each_encoder(encoder, drm->dev) {
1775 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1776 			mstm = nouveau_encoder(encoder)->dp.mstm;
1777 			if (mstm && mstm->modified)
1778 				nv50_mstm_cleanup(mstm);
1779 		}
1780 	}
1781 }
1782 
1783 static void
1784 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1785 {
1786 	struct drm_plane_state *new_plane_state;
1787 	struct drm_plane *plane;
1788 	int i;
1789 
1790 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1791 		struct nv50_wndw *wndw = nv50_wndw(plane);
1792 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1793 			if (wndw->func->update)
1794 				wndw->func->update(wndw, interlock);
1795 		}
1796 	}
1797 }
1798 
1799 static void
1800 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1801 {
1802 	struct drm_device *dev = state->dev;
1803 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1804 	struct drm_crtc *crtc;
1805 	struct drm_plane_state *new_plane_state;
1806 	struct drm_plane *plane;
1807 	struct nouveau_drm *drm = nouveau_drm(dev);
1808 	struct nv50_disp *disp = nv50_disp(dev);
1809 	struct nv50_atom *atom = nv50_atom(state);
1810 	struct nv50_outp_atom *outp, *outt;
1811 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1812 	int i;
1813 
1814 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
1815 	drm_atomic_helper_wait_for_fences(dev, state, false);
1816 	drm_atomic_helper_wait_for_dependencies(state);
1817 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
1818 
1819 	if (atom->lock_core)
1820 		mutex_lock(&disp->mutex);
1821 
1822 	/* Disable head(s). */
1823 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1824 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1825 		struct nv50_head *head = nv50_head(crtc);
1826 
1827 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
1828 			  asyh->clr.mask, asyh->set.mask);
1829 
1830 		if (old_crtc_state->active && !new_crtc_state->active) {
1831 			pm_runtime_put_noidle(dev->dev);
1832 			drm_crtc_vblank_off(crtc);
1833 		}
1834 
1835 		if (asyh->clr.mask) {
1836 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
1837 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1838 		}
1839 	}
1840 
1841 	/* Disable plane(s). */
1842 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1843 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1844 		struct nv50_wndw *wndw = nv50_wndw(plane);
1845 
1846 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
1847 			  asyw->clr.mask, asyw->set.mask);
1848 		if (!asyw->clr.mask)
1849 			continue;
1850 
1851 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
1852 	}
1853 
1854 	/* Disable output path(s). */
1855 	list_for_each_entry(outp, &atom->outp, head) {
1856 		const struct drm_encoder_helper_funcs *help;
1857 		struct drm_encoder *encoder;
1858 
1859 		encoder = outp->encoder;
1860 		help = encoder->helper_private;
1861 
1862 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
1863 			  outp->clr.mask, outp->set.mask);
1864 
1865 		if (outp->clr.mask) {
1866 			help->disable(encoder);
1867 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1868 			if (outp->flush_disable) {
1869 				nv50_disp_atomic_commit_wndw(state, interlock);
1870 				nv50_disp_atomic_commit_core(state, interlock);
1871 				memset(interlock, 0x00, sizeof(interlock));
1872 			}
1873 		}
1874 	}
1875 
1876 	/* Flush disable. */
1877 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1878 		if (atom->flush_disable) {
1879 			nv50_disp_atomic_commit_wndw(state, interlock);
1880 			nv50_disp_atomic_commit_core(state, interlock);
1881 			memset(interlock, 0x00, sizeof(interlock));
1882 		}
1883 	}
1884 
1885 	/* Update output path(s). */
1886 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
1887 		const struct drm_encoder_helper_funcs *help;
1888 		struct drm_encoder *encoder;
1889 
1890 		encoder = outp->encoder;
1891 		help = encoder->helper_private;
1892 
1893 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
1894 			  outp->set.mask, outp->clr.mask);
1895 
1896 		if (outp->set.mask) {
1897 			help->enable(encoder);
1898 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1899 		}
1900 
1901 		list_del(&outp->head);
1902 		kfree(outp);
1903 	}
1904 
1905 	/* Update head(s). */
1906 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1907 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1908 		struct nv50_head *head = nv50_head(crtc);
1909 
1910 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
1911 			  asyh->set.mask, asyh->clr.mask);
1912 
1913 		if (asyh->set.mask) {
1914 			nv50_head_flush_set(head, asyh);
1915 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1916 		}
1917 
1918 		if (new_crtc_state->active) {
1919 			if (!old_crtc_state->active) {
1920 				drm_crtc_vblank_on(crtc);
1921 				pm_runtime_get_noresume(dev->dev);
1922 			}
1923 			if (new_crtc_state->event)
1924 				drm_crtc_vblank_get(crtc);
1925 		}
1926 	}
1927 
1928 	/* Update plane(s). */
1929 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1930 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1931 		struct nv50_wndw *wndw = nv50_wndw(plane);
1932 
1933 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
1934 			  asyw->set.mask, asyw->clr.mask);
1935 		if ( !asyw->set.mask &&
1936 		    (!asyw->clr.mask || atom->flush_disable))
1937 			continue;
1938 
1939 		nv50_wndw_flush_set(wndw, interlock, asyw);
1940 	}
1941 
1942 	/* Flush update. */
1943 	nv50_disp_atomic_commit_wndw(state, interlock);
1944 
1945 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1946 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
1947 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
1948 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
1949 		    !atom->state.legacy_cursor_update)
1950 			nv50_disp_atomic_commit_core(state, interlock);
1951 		else
1952 			disp->core->func->update(disp->core, interlock, false);
1953 	}
1954 
1955 	if (atom->lock_core)
1956 		mutex_unlock(&disp->mutex);
1957 
1958 	/* Wait for HW to signal completion. */
1959 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1960 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1961 		struct nv50_wndw *wndw = nv50_wndw(plane);
1962 		int ret = nv50_wndw_wait_armed(wndw, asyw);
1963 		if (ret)
1964 			NV_ERROR(drm, "%s: timeout\n", plane->name);
1965 	}
1966 
1967 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
1968 		if (new_crtc_state->event) {
1969 			unsigned long flags;
1970 			/* Get correct count/ts if racing with vblank irq */
1971 			if (new_crtc_state->active)
1972 				drm_crtc_accurate_vblank_count(crtc);
1973 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
1974 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
1975 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1976 
1977 			new_crtc_state->event = NULL;
1978 			if (new_crtc_state->active)
1979 				drm_crtc_vblank_put(crtc);
1980 		}
1981 	}
1982 
1983 	drm_atomic_helper_commit_hw_done(state);
1984 	drm_atomic_helper_cleanup_planes(dev, state);
1985 	drm_atomic_helper_commit_cleanup_done(state);
1986 	drm_atomic_state_put(state);
1987 
1988 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
1989 	pm_runtime_mark_last_busy(dev->dev);
1990 	pm_runtime_put_autosuspend(dev->dev);
1991 }
1992 
1993 static void
1994 nv50_disp_atomic_commit_work(struct work_struct *work)
1995 {
1996 	struct drm_atomic_state *state =
1997 		container_of(work, typeof(*state), commit_work);
1998 	nv50_disp_atomic_commit_tail(state);
1999 }
2000 
2001 static int
2002 nv50_disp_atomic_commit(struct drm_device *dev,
2003 			struct drm_atomic_state *state, bool nonblock)
2004 {
2005 	struct drm_plane_state *new_plane_state;
2006 	struct drm_plane *plane;
2007 	int ret, i;
2008 
2009 	ret = pm_runtime_get_sync(dev->dev);
2010 	if (ret < 0 && ret != -EACCES)
2011 		return ret;
2012 
2013 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2014 	if (ret)
2015 		goto done;
2016 
2017 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2018 
2019 	ret = drm_atomic_helper_prepare_planes(dev, state);
2020 	if (ret)
2021 		goto done;
2022 
2023 	if (!nonblock) {
2024 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2025 		if (ret)
2026 			goto err_cleanup;
2027 	}
2028 
2029 	ret = drm_atomic_helper_swap_state(state, true);
2030 	if (ret)
2031 		goto err_cleanup;
2032 
2033 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2034 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2035 		struct nv50_wndw *wndw = nv50_wndw(plane);
2036 
2037 		if (asyw->set.image)
2038 			nv50_wndw_ntfy_enable(wndw, asyw);
2039 	}
2040 
2041 	drm_atomic_state_get(state);
2042 
2043 	/*
2044 	 * Grab another RPM ref for the commit tail, which will release the
2045 	 * ref when it's finished
2046 	 */
2047 	pm_runtime_get_noresume(dev->dev);
2048 
2049 	if (nonblock)
2050 		queue_work(system_unbound_wq, &state->commit_work);
2051 	else
2052 		nv50_disp_atomic_commit_tail(state);
2053 
2054 err_cleanup:
2055 	if (ret)
2056 		drm_atomic_helper_cleanup_planes(dev, state);
2057 done:
2058 	pm_runtime_put_autosuspend(dev->dev);
2059 	return ret;
2060 }
2061 
2062 static struct nv50_outp_atom *
2063 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2064 {
2065 	struct nv50_outp_atom *outp;
2066 
2067 	list_for_each_entry(outp, &atom->outp, head) {
2068 		if (outp->encoder == encoder)
2069 			return outp;
2070 	}
2071 
2072 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2073 	if (!outp)
2074 		return ERR_PTR(-ENOMEM);
2075 
2076 	list_add(&outp->head, &atom->outp);
2077 	outp->encoder = encoder;
2078 	return outp;
2079 }
2080 
2081 static int
2082 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2083 				struct drm_connector_state *old_connector_state)
2084 {
2085 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2086 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2087 	struct drm_crtc *crtc;
2088 	struct nv50_outp_atom *outp;
2089 
2090 	if (!(crtc = old_connector_state->crtc))
2091 		return 0;
2092 
2093 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2094 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2095 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2096 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2097 		if (IS_ERR(outp))
2098 			return PTR_ERR(outp);
2099 
2100 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2101 			outp->flush_disable = true;
2102 			atom->flush_disable = true;
2103 		}
2104 		outp->clr.ctrl = true;
2105 		atom->lock_core = true;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int
2112 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2113 				struct drm_connector_state *connector_state)
2114 {
2115 	struct drm_encoder *encoder = connector_state->best_encoder;
2116 	struct drm_crtc_state *new_crtc_state;
2117 	struct drm_crtc *crtc;
2118 	struct nv50_outp_atom *outp;
2119 
2120 	if (!(crtc = connector_state->crtc))
2121 		return 0;
2122 
2123 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2124 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2125 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2126 		if (IS_ERR(outp))
2127 			return PTR_ERR(outp);
2128 
2129 		outp->set.ctrl = true;
2130 		atom->lock_core = true;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static int
2137 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2138 {
2139 	struct nv50_atom *atom = nv50_atom(state);
2140 	struct drm_connector_state *old_connector_state, *new_connector_state;
2141 	struct drm_connector *connector;
2142 	struct drm_crtc_state *new_crtc_state;
2143 	struct drm_crtc *crtc;
2144 	int ret, i;
2145 
2146 	/* We need to handle colour management on a per-plane basis. */
2147 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2148 		if (new_crtc_state->color_mgmt_changed) {
2149 			ret = drm_atomic_add_affected_planes(state, crtc);
2150 			if (ret)
2151 				return ret;
2152 		}
2153 	}
2154 
2155 	ret = drm_atomic_helper_check(dev, state);
2156 	if (ret)
2157 		return ret;
2158 
2159 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2160 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2161 		if (ret)
2162 			return ret;
2163 
2164 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2165 		if (ret)
2166 			return ret;
2167 	}
2168 
2169 	ret = drm_dp_mst_atomic_check(state);
2170 	if (ret)
2171 		return ret;
2172 
2173 	return 0;
2174 }
2175 
2176 static void
2177 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2178 {
2179 	struct nv50_atom *atom = nv50_atom(state);
2180 	struct nv50_outp_atom *outp, *outt;
2181 
2182 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2183 		list_del(&outp->head);
2184 		kfree(outp);
2185 	}
2186 
2187 	drm_atomic_state_default_clear(state);
2188 }
2189 
2190 static void
2191 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2192 {
2193 	struct nv50_atom *atom = nv50_atom(state);
2194 	drm_atomic_state_default_release(&atom->state);
2195 	kfree(atom);
2196 }
2197 
2198 static struct drm_atomic_state *
2199 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2200 {
2201 	struct nv50_atom *atom;
2202 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2203 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2204 		kfree(atom);
2205 		return NULL;
2206 	}
2207 	INIT_LIST_HEAD(&atom->outp);
2208 	return &atom->state;
2209 }
2210 
2211 static const struct drm_mode_config_funcs
2212 nv50_disp_func = {
2213 	.fb_create = nouveau_user_framebuffer_create,
2214 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2215 	.atomic_check = nv50_disp_atomic_check,
2216 	.atomic_commit = nv50_disp_atomic_commit,
2217 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2218 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2219 	.atomic_state_free = nv50_disp_atomic_state_free,
2220 };
2221 
2222 /******************************************************************************
2223  * Init
2224  *****************************************************************************/
2225 
2226 static void
2227 nv50_display_fini(struct drm_device *dev, bool suspend)
2228 {
2229 	struct nouveau_encoder *nv_encoder;
2230 	struct drm_encoder *encoder;
2231 	struct drm_plane *plane;
2232 
2233 	drm_for_each_plane(plane, dev) {
2234 		struct nv50_wndw *wndw = nv50_wndw(plane);
2235 		if (plane->funcs != &nv50_wndw)
2236 			continue;
2237 		nv50_wndw_fini(wndw);
2238 	}
2239 
2240 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2241 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2242 			nv_encoder = nouveau_encoder(encoder);
2243 			nv50_mstm_fini(nv_encoder->dp.mstm);
2244 		}
2245 	}
2246 }
2247 
2248 static int
2249 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2250 {
2251 	struct nv50_core *core = nv50_disp(dev)->core;
2252 	struct drm_encoder *encoder;
2253 	struct drm_plane *plane;
2254 
2255 	core->func->init(core);
2256 
2257 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2258 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2259 			struct nouveau_encoder *nv_encoder =
2260 				nouveau_encoder(encoder);
2261 			nv50_mstm_init(nv_encoder->dp.mstm);
2262 		}
2263 	}
2264 
2265 	drm_for_each_plane(plane, dev) {
2266 		struct nv50_wndw *wndw = nv50_wndw(plane);
2267 		if (plane->funcs != &nv50_wndw)
2268 			continue;
2269 		nv50_wndw_init(wndw);
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 static void
2276 nv50_display_destroy(struct drm_device *dev)
2277 {
2278 	struct nv50_disp *disp = nv50_disp(dev);
2279 
2280 	nv50_core_del(&disp->core);
2281 
2282 	nouveau_bo_unmap(disp->sync);
2283 	if (disp->sync)
2284 		nouveau_bo_unpin(disp->sync);
2285 	nouveau_bo_ref(NULL, &disp->sync);
2286 
2287 	nouveau_display(dev)->priv = NULL;
2288 	kfree(disp);
2289 }
2290 
2291 int
2292 nv50_display_create(struct drm_device *dev)
2293 {
2294 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2295 	struct nouveau_drm *drm = nouveau_drm(dev);
2296 	struct dcb_table *dcb = &drm->vbios.dcb;
2297 	struct drm_connector *connector, *tmp;
2298 	struct nv50_disp *disp;
2299 	struct dcb_output *dcbe;
2300 	int crtcs, ret, i;
2301 
2302 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2303 	if (!disp)
2304 		return -ENOMEM;
2305 
2306 	mutex_init(&disp->mutex);
2307 
2308 	nouveau_display(dev)->priv = disp;
2309 	nouveau_display(dev)->dtor = nv50_display_destroy;
2310 	nouveau_display(dev)->init = nv50_display_init;
2311 	nouveau_display(dev)->fini = nv50_display_fini;
2312 	disp->disp = &nouveau_display(dev)->disp;
2313 	dev->mode_config.funcs = &nv50_disp_func;
2314 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2315 	dev->mode_config.normalize_zpos = true;
2316 
2317 	/* small shared memory area we use for notifiers and semaphores */
2318 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2319 			     0, 0x0000, NULL, NULL, &disp->sync);
2320 	if (!ret) {
2321 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2322 		if (!ret) {
2323 			ret = nouveau_bo_map(disp->sync);
2324 			if (ret)
2325 				nouveau_bo_unpin(disp->sync);
2326 		}
2327 		if (ret)
2328 			nouveau_bo_ref(NULL, &disp->sync);
2329 	}
2330 
2331 	if (ret)
2332 		goto out;
2333 
2334 	/* allocate master evo channel */
2335 	ret = nv50_core_new(drm, &disp->core);
2336 	if (ret)
2337 		goto out;
2338 
2339 	/* create crtc objects to represent the hw heads */
2340 	if (disp->disp->object.oclass >= GV100_DISP)
2341 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2342 	else
2343 	if (disp->disp->object.oclass >= GF110_DISP)
2344 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2345 	else
2346 		crtcs = 0x3;
2347 
2348 	for (i = 0; i < fls(crtcs); i++) {
2349 		if (!(crtcs & (1 << i)))
2350 			continue;
2351 		ret = nv50_head_create(dev, i);
2352 		if (ret)
2353 			goto out;
2354 	}
2355 
2356 	/* create encoder/connector objects based on VBIOS DCB table */
2357 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2358 		connector = nouveau_connector_create(dev, dcbe);
2359 		if (IS_ERR(connector))
2360 			continue;
2361 
2362 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2363 			switch (dcbe->type) {
2364 			case DCB_OUTPUT_TMDS:
2365 			case DCB_OUTPUT_LVDS:
2366 			case DCB_OUTPUT_DP:
2367 				ret = nv50_sor_create(connector, dcbe);
2368 				break;
2369 			case DCB_OUTPUT_ANALOG:
2370 				ret = nv50_dac_create(connector, dcbe);
2371 				break;
2372 			default:
2373 				ret = -ENODEV;
2374 				break;
2375 			}
2376 		} else {
2377 			ret = nv50_pior_create(connector, dcbe);
2378 		}
2379 
2380 		if (ret) {
2381 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2382 				     dcbe->location, dcbe->type,
2383 				     ffs(dcbe->or) - 1, ret);
2384 			ret = 0;
2385 		}
2386 	}
2387 
2388 	/* cull any connectors we created that don't have an encoder */
2389 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2390 		if (connector->encoder_ids[0])
2391 			continue;
2392 
2393 		NV_WARN(drm, "%s has no encoders, removing\n",
2394 			connector->name);
2395 		connector->funcs->destroy(connector);
2396 	}
2397 
2398 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2399 	dev->vblank_disable_immediate = true;
2400 
2401 out:
2402 	if (ret)
2403 		nv50_display_destroy(dev);
2404 	return ret;
2405 }
2406