1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 30 #include <linux/dma-mapping.h> 31 #include <linux/hdmi.h> 32 #include <linux/component.h> 33 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_dp_helper.h> 36 #include <drm/drm_edid.h> 37 #include <drm/drm_fb_helper.h> 38 #include <drm/drm_plane_helper.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_scdc_helper.h> 41 #include <drm/drm_vblank.h> 42 43 #include <nvif/class.h> 44 #include <nvif/cl0002.h> 45 #include <nvif/cl5070.h> 46 #include <nvif/cl507d.h> 47 #include <nvif/event.h> 48 #include <nvif/timer.h> 49 50 #include "nouveau_drv.h" 51 #include "nouveau_dma.h" 52 #include "nouveau_gem.h" 53 #include "nouveau_connector.h" 54 #include "nouveau_encoder.h" 55 #include "nouveau_fence.h" 56 #include "nouveau_fbcon.h" 57 58 #include <subdev/bios/dp.h> 59 60 /****************************************************************************** 61 * Atomic state 62 *****************************************************************************/ 63 64 struct nv50_outp_atom { 65 struct list_head head; 66 67 struct drm_encoder *encoder; 68 bool flush_disable; 69 70 union nv50_outp_atom_mask { 71 struct { 72 bool ctrl:1; 73 }; 74 u8 mask; 75 } set, clr; 76 }; 77 78 /****************************************************************************** 79 * EVO channel 80 *****************************************************************************/ 81 82 static int 83 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 84 const s32 *oclass, u8 head, void *data, u32 size, 85 struct nv50_chan *chan) 86 { 87 struct nvif_sclass *sclass; 88 int ret, i, n; 89 90 chan->device = device; 91 92 ret = n = nvif_object_sclass_get(disp, &sclass); 93 if (ret < 0) 94 return ret; 95 96 while (oclass[0]) { 97 for (i = 0; i < n; i++) { 98 if (sclass[i].oclass == oclass[0]) { 99 ret = nvif_object_init(disp, 0, oclass[0], 100 data, size, &chan->user); 101 if (ret == 0) 102 nvif_object_map(&chan->user, NULL, 0); 103 nvif_object_sclass_put(&sclass); 104 return ret; 105 } 106 } 107 oclass++; 108 } 109 110 nvif_object_sclass_put(&sclass); 111 return -ENOSYS; 112 } 113 114 static void 115 nv50_chan_destroy(struct nv50_chan *chan) 116 { 117 nvif_object_fini(&chan->user); 118 } 119 120 /****************************************************************************** 121 * DMA EVO channel 122 *****************************************************************************/ 123 124 void 125 nv50_dmac_destroy(struct nv50_dmac *dmac) 126 { 127 nvif_object_fini(&dmac->vram); 128 nvif_object_fini(&dmac->sync); 129 130 nv50_chan_destroy(&dmac->base); 131 132 nvif_mem_fini(&dmac->push); 133 } 134 135 int 136 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 137 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf, 138 struct nv50_dmac *dmac) 139 { 140 struct nouveau_cli *cli = (void *)device->object.client; 141 struct nv50_disp_core_channel_dma_v0 *args = data; 142 u8 type = NVIF_MEM_COHERENT; 143 int ret; 144 145 mutex_init(&dmac->lock); 146 147 /* Pascal added support for 47-bit physical addresses, but some 148 * parts of EVO still only accept 40-bit PAs. 149 * 150 * To avoid issues on systems with large amounts of RAM, and on 151 * systems where an IOMMU maps pages at a high address, we need 152 * to allocate push buffers in VRAM instead. 153 * 154 * This appears to match NVIDIA's behaviour on Pascal. 155 */ 156 if (device->info.family == NV_DEVICE_INFO_V0_PASCAL) 157 type |= NVIF_MEM_VRAM; 158 159 ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push); 160 if (ret) 161 return ret; 162 163 dmac->ptr = dmac->push.object.map.ptr; 164 165 args->pushbuf = nvif_handle(&dmac->push.object); 166 167 ret = nv50_chan_create(device, disp, oclass, head, data, size, 168 &dmac->base); 169 if (ret) 170 return ret; 171 172 if (!syncbuf) 173 return 0; 174 175 ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY, 176 &(struct nv_dma_v0) { 177 .target = NV_DMA_V0_TARGET_VRAM, 178 .access = NV_DMA_V0_ACCESS_RDWR, 179 .start = syncbuf + 0x0000, 180 .limit = syncbuf + 0x0fff, 181 }, sizeof(struct nv_dma_v0), 182 &dmac->sync); 183 if (ret) 184 return ret; 185 186 ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY, 187 &(struct nv_dma_v0) { 188 .target = NV_DMA_V0_TARGET_VRAM, 189 .access = NV_DMA_V0_ACCESS_RDWR, 190 .start = 0, 191 .limit = device->info.ram_user - 1, 192 }, sizeof(struct nv_dma_v0), 193 &dmac->vram); 194 if (ret) 195 return ret; 196 197 return ret; 198 } 199 200 /****************************************************************************** 201 * EVO channel helpers 202 *****************************************************************************/ 203 static void 204 evo_flush(struct nv50_dmac *dmac) 205 { 206 /* Push buffer fetches are not coherent with BAR1, we need to ensure 207 * writes have been flushed right through to VRAM before writing PUT. 208 */ 209 if (dmac->push.type & NVIF_MEM_VRAM) { 210 struct nvif_device *device = dmac->base.device; 211 nvif_wr32(&device->object, 0x070000, 0x00000001); 212 nvif_msec(device, 2000, 213 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 214 break; 215 ); 216 } 217 } 218 219 u32 * 220 evo_wait(struct nv50_dmac *evoc, int nr) 221 { 222 struct nv50_dmac *dmac = evoc; 223 struct nvif_device *device = dmac->base.device; 224 u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4; 225 226 mutex_lock(&dmac->lock); 227 if (put + nr >= (PAGE_SIZE / 4) - 8) { 228 dmac->ptr[put] = 0x20000000; 229 evo_flush(dmac); 230 231 nvif_wr32(&dmac->base.user, 0x0000, 0x00000000); 232 if (nvif_msec(device, 2000, 233 if (!nvif_rd32(&dmac->base.user, 0x0004)) 234 break; 235 ) < 0) { 236 mutex_unlock(&dmac->lock); 237 pr_err("nouveau: evo channel stalled\n"); 238 return NULL; 239 } 240 241 put = 0; 242 } 243 244 return dmac->ptr + put; 245 } 246 247 void 248 evo_kick(u32 *push, struct nv50_dmac *evoc) 249 { 250 struct nv50_dmac *dmac = evoc; 251 252 evo_flush(dmac); 253 254 nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2); 255 mutex_unlock(&dmac->lock); 256 } 257 258 /****************************************************************************** 259 * Output path helpers 260 *****************************************************************************/ 261 static void 262 nv50_outp_release(struct nouveau_encoder *nv_encoder) 263 { 264 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 265 struct { 266 struct nv50_disp_mthd_v1 base; 267 } args = { 268 .base.version = 1, 269 .base.method = NV50_DISP_MTHD_V1_RELEASE, 270 .base.hasht = nv_encoder->dcb->hasht, 271 .base.hashm = nv_encoder->dcb->hashm, 272 }; 273 274 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 275 nv_encoder->or = -1; 276 nv_encoder->link = 0; 277 } 278 279 static int 280 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda) 281 { 282 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 283 struct nv50_disp *disp = nv50_disp(drm->dev); 284 struct { 285 struct nv50_disp_mthd_v1 base; 286 struct nv50_disp_acquire_v0 info; 287 } args = { 288 .base.version = 1, 289 .base.method = NV50_DISP_MTHD_V1_ACQUIRE, 290 .base.hasht = nv_encoder->dcb->hasht, 291 .base.hashm = nv_encoder->dcb->hashm, 292 .info.hda = hda, 293 }; 294 int ret; 295 296 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 297 if (ret) { 298 NV_ERROR(drm, "error acquiring output path: %d\n", ret); 299 return ret; 300 } 301 302 nv_encoder->or = args.info.or; 303 nv_encoder->link = args.info.link; 304 return 0; 305 } 306 307 static int 308 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 309 struct drm_crtc_state *crtc_state, 310 struct drm_connector_state *conn_state, 311 struct drm_display_mode *native_mode) 312 { 313 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 314 struct drm_display_mode *mode = &crtc_state->mode; 315 struct drm_connector *connector = conn_state->connector; 316 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 317 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 318 319 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 320 asyc->scaler.full = false; 321 if (!native_mode) 322 return 0; 323 324 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 325 switch (connector->connector_type) { 326 case DRM_MODE_CONNECTOR_LVDS: 327 case DRM_MODE_CONNECTOR_eDP: 328 /* Don't force scaler for EDID modes with 329 * same size as the native one (e.g. different 330 * refresh rate) 331 */ 332 if (mode->hdisplay == native_mode->hdisplay && 333 mode->vdisplay == native_mode->vdisplay && 334 mode->type & DRM_MODE_TYPE_DRIVER) 335 break; 336 mode = native_mode; 337 asyc->scaler.full = true; 338 break; 339 default: 340 break; 341 } 342 } else { 343 mode = native_mode; 344 } 345 346 if (!drm_mode_equal(adjusted_mode, mode)) { 347 drm_mode_copy(adjusted_mode, mode); 348 crtc_state->mode_changed = true; 349 } 350 351 return 0; 352 } 353 354 static int 355 nv50_outp_atomic_check(struct drm_encoder *encoder, 356 struct drm_crtc_state *crtc_state, 357 struct drm_connector_state *conn_state) 358 { 359 struct drm_connector *connector = conn_state->connector; 360 struct nouveau_connector *nv_connector = nouveau_connector(connector); 361 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 362 int ret; 363 364 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 365 nv_connector->native_mode); 366 if (ret) 367 return ret; 368 369 if (crtc_state->mode_changed || crtc_state->connectors_changed) 370 asyh->or.bpc = connector->display_info.bpc; 371 372 return 0; 373 } 374 375 /****************************************************************************** 376 * DAC 377 *****************************************************************************/ 378 static void 379 nv50_dac_disable(struct drm_encoder *encoder) 380 { 381 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 382 struct nv50_core *core = nv50_disp(encoder->dev)->core; 383 if (nv_encoder->crtc) 384 core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL); 385 nv_encoder->crtc = NULL; 386 nv50_outp_release(nv_encoder); 387 } 388 389 static void 390 nv50_dac_enable(struct drm_encoder *encoder) 391 { 392 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 393 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 394 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 395 struct nv50_core *core = nv50_disp(encoder->dev)->core; 396 397 nv50_outp_acquire(nv_encoder, false); 398 399 core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh); 400 asyh->or.depth = 0; 401 402 nv_encoder->crtc = encoder->crtc; 403 } 404 405 static enum drm_connector_status 406 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 407 { 408 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 409 struct nv50_disp *disp = nv50_disp(encoder->dev); 410 struct { 411 struct nv50_disp_mthd_v1 base; 412 struct nv50_disp_dac_load_v0 load; 413 } args = { 414 .base.version = 1, 415 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, 416 .base.hasht = nv_encoder->dcb->hasht, 417 .base.hashm = nv_encoder->dcb->hashm, 418 }; 419 int ret; 420 421 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; 422 if (args.load.data == 0) 423 args.load.data = 340; 424 425 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 426 if (ret || !args.load.load) 427 return connector_status_disconnected; 428 429 return connector_status_connected; 430 } 431 432 static const struct drm_encoder_helper_funcs 433 nv50_dac_help = { 434 .atomic_check = nv50_outp_atomic_check, 435 .enable = nv50_dac_enable, 436 .disable = nv50_dac_disable, 437 .detect = nv50_dac_detect 438 }; 439 440 static void 441 nv50_dac_destroy(struct drm_encoder *encoder) 442 { 443 drm_encoder_cleanup(encoder); 444 kfree(encoder); 445 } 446 447 static const struct drm_encoder_funcs 448 nv50_dac_func = { 449 .destroy = nv50_dac_destroy, 450 }; 451 452 static int 453 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) 454 { 455 struct nouveau_drm *drm = nouveau_drm(connector->dev); 456 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 457 struct nvkm_i2c_bus *bus; 458 struct nouveau_encoder *nv_encoder; 459 struct drm_encoder *encoder; 460 int type = DRM_MODE_ENCODER_DAC; 461 462 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 463 if (!nv_encoder) 464 return -ENOMEM; 465 nv_encoder->dcb = dcbe; 466 467 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 468 if (bus) 469 nv_encoder->i2c = &bus->i2c; 470 471 encoder = to_drm_encoder(nv_encoder); 472 encoder->possible_crtcs = dcbe->heads; 473 encoder->possible_clones = 0; 474 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 475 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 476 drm_encoder_helper_add(encoder, &nv50_dac_help); 477 478 drm_connector_attach_encoder(connector, encoder); 479 return 0; 480 } 481 482 /* 483 * audio component binding for ELD notification 484 */ 485 static void 486 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 487 int dev_id) 488 { 489 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 490 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 491 port, dev_id); 492 } 493 494 static int 495 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 496 bool *enabled, unsigned char *buf, int max_bytes) 497 { 498 struct drm_device *drm_dev = dev_get_drvdata(kdev); 499 struct nouveau_drm *drm = nouveau_drm(drm_dev); 500 struct drm_encoder *encoder; 501 struct nouveau_encoder *nv_encoder; 502 struct nouveau_connector *nv_connector; 503 struct nouveau_crtc *nv_crtc; 504 int ret = 0; 505 506 *enabled = false; 507 drm_for_each_encoder(encoder, drm->dev) { 508 nv_encoder = nouveau_encoder(encoder); 509 nv_connector = nouveau_encoder_connector_get(nv_encoder); 510 nv_crtc = nouveau_crtc(encoder->crtc); 511 if (!nv_connector || !nv_crtc || nv_encoder->or != port || 512 nv_crtc->index != dev_id) 513 continue; 514 *enabled = nv_encoder->audio; 515 if (*enabled) { 516 ret = drm_eld_size(nv_connector->base.eld); 517 memcpy(buf, nv_connector->base.eld, 518 min(max_bytes, ret)); 519 } 520 break; 521 } 522 return ret; 523 } 524 525 static const struct drm_audio_component_ops nv50_audio_component_ops = { 526 .get_eld = nv50_audio_component_get_eld, 527 }; 528 529 static int 530 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 531 void *data) 532 { 533 struct drm_device *drm_dev = dev_get_drvdata(kdev); 534 struct nouveau_drm *drm = nouveau_drm(drm_dev); 535 struct drm_audio_component *acomp = data; 536 537 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 538 return -ENOMEM; 539 540 drm_modeset_lock_all(drm_dev); 541 acomp->ops = &nv50_audio_component_ops; 542 acomp->dev = kdev; 543 drm->audio.component = acomp; 544 drm_modeset_unlock_all(drm_dev); 545 return 0; 546 } 547 548 static void 549 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 550 void *data) 551 { 552 struct drm_device *drm_dev = dev_get_drvdata(kdev); 553 struct nouveau_drm *drm = nouveau_drm(drm_dev); 554 struct drm_audio_component *acomp = data; 555 556 drm_modeset_lock_all(drm_dev); 557 drm->audio.component = NULL; 558 acomp->ops = NULL; 559 acomp->dev = NULL; 560 drm_modeset_unlock_all(drm_dev); 561 } 562 563 static const struct component_ops nv50_audio_component_bind_ops = { 564 .bind = nv50_audio_component_bind, 565 .unbind = nv50_audio_component_unbind, 566 }; 567 568 static void 569 nv50_audio_component_init(struct nouveau_drm *drm) 570 { 571 if (!component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 572 drm->audio.component_registered = true; 573 } 574 575 static void 576 nv50_audio_component_fini(struct nouveau_drm *drm) 577 { 578 if (drm->audio.component_registered) { 579 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 580 drm->audio.component_registered = false; 581 } 582 } 583 584 /****************************************************************************** 585 * Audio 586 *****************************************************************************/ 587 static void 588 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 589 { 590 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 591 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 592 struct nv50_disp *disp = nv50_disp(encoder->dev); 593 struct { 594 struct nv50_disp_mthd_v1 base; 595 struct nv50_disp_sor_hda_eld_v0 eld; 596 } args = { 597 .base.version = 1, 598 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 599 .base.hasht = nv_encoder->dcb->hasht, 600 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 601 (0x0100 << nv_crtc->index), 602 }; 603 604 if (!nv_encoder->audio) 605 return; 606 607 nv_encoder->audio = false; 608 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 609 610 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or, 611 nv_crtc->index); 612 } 613 614 static void 615 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) 616 { 617 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 618 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 619 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 620 struct nouveau_connector *nv_connector; 621 struct nv50_disp *disp = nv50_disp(encoder->dev); 622 struct __packed { 623 struct { 624 struct nv50_disp_mthd_v1 mthd; 625 struct nv50_disp_sor_hda_eld_v0 eld; 626 } base; 627 u8 data[sizeof(nv_connector->base.eld)]; 628 } args = { 629 .base.mthd.version = 1, 630 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 631 .base.mthd.hasht = nv_encoder->dcb->hasht, 632 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 633 (0x0100 << nv_crtc->index), 634 }; 635 636 nv_connector = nouveau_encoder_connector_get(nv_encoder); 637 if (!drm_detect_monitor_audio(nv_connector->edid)) 638 return; 639 640 memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); 641 642 nvif_mthd(&disp->disp->object, 0, &args, 643 sizeof(args.base) + drm_eld_size(args.data)); 644 nv_encoder->audio = true; 645 646 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or, 647 nv_crtc->index); 648 } 649 650 /****************************************************************************** 651 * HDMI 652 *****************************************************************************/ 653 static void 654 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 655 { 656 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 657 struct nv50_disp *disp = nv50_disp(encoder->dev); 658 struct { 659 struct nv50_disp_mthd_v1 base; 660 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 661 } args = { 662 .base.version = 1, 663 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 664 .base.hasht = nv_encoder->dcb->hasht, 665 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 666 (0x0100 << nv_crtc->index), 667 }; 668 669 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 670 } 671 672 static void 673 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) 674 { 675 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 676 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 677 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 678 struct nv50_disp *disp = nv50_disp(encoder->dev); 679 struct { 680 struct nv50_disp_mthd_v1 base; 681 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 682 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */ 683 } args = { 684 .base.version = 1, 685 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 686 .base.hasht = nv_encoder->dcb->hasht, 687 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 688 (0x0100 << nv_crtc->index), 689 .pwr.state = 1, 690 .pwr.rekey = 56, /* binary driver, and tegra, constant */ 691 }; 692 struct nouveau_connector *nv_connector; 693 struct drm_hdmi_info *hdmi; 694 u32 max_ac_packet; 695 union hdmi_infoframe avi_frame; 696 union hdmi_infoframe vendor_frame; 697 bool high_tmds_clock_ratio = false, scrambling = false; 698 u8 config; 699 int ret; 700 int size; 701 702 nv_connector = nouveau_encoder_connector_get(nv_encoder); 703 if (!drm_detect_hdmi_monitor(nv_connector->edid)) 704 return; 705 706 hdmi = &nv_connector->base.display_info.hdmi; 707 708 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, 709 &nv_connector->base, mode); 710 if (!ret) { 711 /* We have an AVI InfoFrame, populate it to the display */ 712 args.pwr.avi_infoframe_length 713 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17); 714 } 715 716 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi, 717 &nv_connector->base, mode); 718 if (!ret) { 719 /* We have a Vendor InfoFrame, populate it to the display */ 720 args.pwr.vendor_infoframe_length 721 = hdmi_infoframe_pack(&vendor_frame, 722 args.infoframes 723 + args.pwr.avi_infoframe_length, 724 17); 725 } 726 727 max_ac_packet = mode->htotal - mode->hdisplay; 728 max_ac_packet -= args.pwr.rekey; 729 max_ac_packet -= 18; /* constant from tegra */ 730 args.pwr.max_ac_packet = max_ac_packet / 32; 731 732 if (hdmi->scdc.scrambling.supported) { 733 high_tmds_clock_ratio = mode->clock > 340000; 734 scrambling = high_tmds_clock_ratio || 735 hdmi->scdc.scrambling.low_rates; 736 } 737 738 args.pwr.scdc = 739 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling | 740 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio; 741 742 size = sizeof(args.base) 743 + sizeof(args.pwr) 744 + args.pwr.avi_infoframe_length 745 + args.pwr.vendor_infoframe_length; 746 nvif_mthd(&disp->disp->object, 0, &args, size); 747 748 nv50_audio_enable(encoder, mode); 749 750 /* If SCDC is supported by the downstream monitor, update 751 * divider / scrambling settings to what we programmed above. 752 */ 753 if (!hdmi->scdc.scrambling.supported) 754 return; 755 756 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config); 757 if (ret < 0) { 758 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 759 return; 760 } 761 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 762 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio; 763 config |= SCDC_SCRAMBLING_ENABLE * scrambling; 764 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config); 765 if (ret < 0) 766 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 767 config, ret); 768 } 769 770 /****************************************************************************** 771 * MST 772 *****************************************************************************/ 773 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 774 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 775 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 776 777 struct nv50_mstm { 778 struct nouveau_encoder *outp; 779 780 struct drm_dp_mst_topology_mgr mgr; 781 782 bool modified; 783 bool disabled; 784 int links; 785 }; 786 787 struct nv50_mstc { 788 struct nv50_mstm *mstm; 789 struct drm_dp_mst_port *port; 790 struct drm_connector connector; 791 792 struct drm_display_mode *native; 793 struct edid *edid; 794 }; 795 796 struct nv50_msto { 797 struct drm_encoder encoder; 798 799 struct nv50_head *head; 800 struct nv50_mstc *mstc; 801 bool disabled; 802 }; 803 804 static struct drm_dp_payload * 805 nv50_msto_payload(struct nv50_msto *msto) 806 { 807 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 808 struct nv50_mstc *mstc = msto->mstc; 809 struct nv50_mstm *mstm = mstc->mstm; 810 int vcpi = mstc->port->vcpi.vcpi, i; 811 812 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock)); 813 814 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi); 815 for (i = 0; i < mstm->mgr.max_payloads; i++) { 816 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 817 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n", 818 mstm->outp->base.base.name, i, payload->vcpi, 819 payload->start_slot, payload->num_slots); 820 } 821 822 for (i = 0; i < mstm->mgr.max_payloads; i++) { 823 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 824 if (payload->vcpi == vcpi) 825 return payload; 826 } 827 828 return NULL; 829 } 830 831 static void 832 nv50_msto_cleanup(struct nv50_msto *msto) 833 { 834 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 835 struct nv50_mstc *mstc = msto->mstc; 836 struct nv50_mstm *mstm = mstc->mstm; 837 838 if (!msto->disabled) 839 return; 840 841 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 842 843 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port); 844 845 msto->mstc = NULL; 846 msto->disabled = false; 847 } 848 849 static void 850 nv50_msto_prepare(struct nv50_msto *msto) 851 { 852 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 853 struct nv50_mstc *mstc = msto->mstc; 854 struct nv50_mstm *mstm = mstc->mstm; 855 struct { 856 struct nv50_disp_mthd_v1 base; 857 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi; 858 } args = { 859 .base.version = 1, 860 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI, 861 .base.hasht = mstm->outp->dcb->hasht, 862 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) | 863 (0x0100 << msto->head->base.index), 864 }; 865 866 mutex_lock(&mstm->mgr.payload_lock); 867 868 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 869 if (mstc->port->vcpi.vcpi > 0) { 870 struct drm_dp_payload *payload = nv50_msto_payload(msto); 871 if (payload) { 872 args.vcpi.start_slot = payload->start_slot; 873 args.vcpi.num_slots = payload->num_slots; 874 args.vcpi.pbn = mstc->port->vcpi.pbn; 875 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn; 876 } 877 } 878 879 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n", 880 msto->encoder.name, msto->head->base.base.name, 881 args.vcpi.start_slot, args.vcpi.num_slots, 882 args.vcpi.pbn, args.vcpi.aligned_pbn); 883 884 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args)); 885 mutex_unlock(&mstm->mgr.payload_lock); 886 } 887 888 static int 889 nv50_msto_atomic_check(struct drm_encoder *encoder, 890 struct drm_crtc_state *crtc_state, 891 struct drm_connector_state *conn_state) 892 { 893 struct drm_atomic_state *state = crtc_state->state; 894 struct drm_connector *connector = conn_state->connector; 895 struct nv50_mstc *mstc = nv50_mstc(connector); 896 struct nv50_mstm *mstm = mstc->mstm; 897 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 898 int slots; 899 int ret; 900 901 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 902 mstc->native); 903 if (ret) 904 return ret; 905 906 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 907 return 0; 908 909 /* 910 * When restoring duplicated states, we need to make sure that the bw 911 * remains the same and avoid recalculating it, as the connector's bpc 912 * may have changed after the state was duplicated 913 */ 914 if (!state->duplicated) { 915 const int clock = crtc_state->adjusted_mode.clock; 916 917 asyh->or.bpc = connector->display_info.bpc; 918 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 919 false); 920 } 921 922 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port, 923 asyh->dp.pbn, 0); 924 if (slots < 0) 925 return slots; 926 927 asyh->dp.tu = slots; 928 929 return 0; 930 } 931 932 static u8 933 nv50_dp_bpc_to_depth(unsigned int bpc) 934 { 935 switch (bpc) { 936 case 6: return 0x2; 937 case 8: return 0x5; 938 case 10: /* fall-through */ 939 default: return 0x6; 940 } 941 } 942 943 static void 944 nv50_msto_enable(struct drm_encoder *encoder) 945 { 946 struct nv50_head *head = nv50_head(encoder->crtc); 947 struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state); 948 struct nv50_msto *msto = nv50_msto(encoder); 949 struct nv50_mstc *mstc = NULL; 950 struct nv50_mstm *mstm = NULL; 951 struct drm_connector *connector; 952 struct drm_connector_list_iter conn_iter; 953 u8 proto; 954 bool r; 955 956 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 957 drm_for_each_connector_iter(connector, &conn_iter) { 958 if (connector->state->best_encoder == &msto->encoder) { 959 mstc = nv50_mstc(connector); 960 mstm = mstc->mstm; 961 break; 962 } 963 } 964 drm_connector_list_iter_end(&conn_iter); 965 966 if (WARN_ON(!mstc)) 967 return; 968 969 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn, 970 armh->dp.tu); 971 if (!r) 972 DRM_DEBUG_KMS("Failed to allocate VCPI\n"); 973 974 if (!mstm->links++) 975 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/); 976 977 if (mstm->outp->link & 1) 978 proto = 0x8; 979 else 980 proto = 0x9; 981 982 mstm->outp->update(mstm->outp, head->base.index, armh, proto, 983 nv50_dp_bpc_to_depth(armh->or.bpc)); 984 985 msto->mstc = mstc; 986 mstm->modified = true; 987 } 988 989 static void 990 nv50_msto_disable(struct drm_encoder *encoder) 991 { 992 struct nv50_msto *msto = nv50_msto(encoder); 993 struct nv50_mstc *mstc = msto->mstc; 994 struct nv50_mstm *mstm = mstc->mstm; 995 996 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port); 997 998 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 999 mstm->modified = true; 1000 if (!--mstm->links) 1001 mstm->disabled = true; 1002 msto->disabled = true; 1003 } 1004 1005 static const struct drm_encoder_helper_funcs 1006 nv50_msto_help = { 1007 .disable = nv50_msto_disable, 1008 .enable = nv50_msto_enable, 1009 .atomic_check = nv50_msto_atomic_check, 1010 }; 1011 1012 static void 1013 nv50_msto_destroy(struct drm_encoder *encoder) 1014 { 1015 struct nv50_msto *msto = nv50_msto(encoder); 1016 drm_encoder_cleanup(&msto->encoder); 1017 kfree(msto); 1018 } 1019 1020 static const struct drm_encoder_funcs 1021 nv50_msto = { 1022 .destroy = nv50_msto_destroy, 1023 }; 1024 1025 static struct nv50_msto * 1026 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1027 { 1028 struct nv50_msto *msto; 1029 int ret; 1030 1031 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1032 if (!msto) 1033 return ERR_PTR(-ENOMEM); 1034 1035 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1036 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1037 if (ret) { 1038 kfree(msto); 1039 return ERR_PTR(ret); 1040 } 1041 1042 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1043 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1044 msto->head = head; 1045 return msto; 1046 } 1047 1048 static struct drm_encoder * 1049 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1050 struct drm_connector_state *connector_state) 1051 { 1052 struct nv50_mstc *mstc = nv50_mstc(connector); 1053 struct drm_crtc *crtc = connector_state->crtc; 1054 1055 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1056 return NULL; 1057 1058 return &nv50_head(crtc)->msto->encoder; 1059 } 1060 1061 static enum drm_mode_status 1062 nv50_mstc_mode_valid(struct drm_connector *connector, 1063 struct drm_display_mode *mode) 1064 { 1065 struct nv50_mstc *mstc = nv50_mstc(connector); 1066 struct nouveau_encoder *outp = mstc->mstm->outp; 1067 1068 /* TODO: calculate the PBN from the dotclock and validate against the 1069 * MSTB's max possible PBN 1070 */ 1071 1072 return nv50_dp_mode_valid(connector, outp, mode, NULL); 1073 } 1074 1075 static int 1076 nv50_mstc_get_modes(struct drm_connector *connector) 1077 { 1078 struct nv50_mstc *mstc = nv50_mstc(connector); 1079 int ret = 0; 1080 1081 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1082 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1083 if (mstc->edid) 1084 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1085 1086 /* 1087 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1088 * to 8 to save bandwidth on the topology. In the future, we'll want 1089 * to properly fix this by dynamically selecting the highest possible 1090 * bpc that would fit in the topology 1091 */ 1092 if (connector->display_info.bpc) 1093 connector->display_info.bpc = 1094 clamp(connector->display_info.bpc, 6U, 8U); 1095 else 1096 connector->display_info.bpc = 8; 1097 1098 if (mstc->native) 1099 drm_mode_destroy(mstc->connector.dev, mstc->native); 1100 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1101 return ret; 1102 } 1103 1104 static int 1105 nv50_mstc_atomic_check(struct drm_connector *connector, 1106 struct drm_atomic_state *state) 1107 { 1108 struct nv50_mstc *mstc = nv50_mstc(connector); 1109 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1110 struct drm_connector_state *new_conn_state = 1111 drm_atomic_get_new_connector_state(state, connector); 1112 struct drm_connector_state *old_conn_state = 1113 drm_atomic_get_old_connector_state(state, connector); 1114 struct drm_crtc_state *crtc_state; 1115 struct drm_crtc *new_crtc = new_conn_state->crtc; 1116 1117 if (!old_conn_state->crtc) 1118 return 0; 1119 1120 /* We only want to free VCPI if this state disables the CRTC on this 1121 * connector 1122 */ 1123 if (new_crtc) { 1124 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc); 1125 1126 if (!crtc_state || 1127 !drm_atomic_crtc_needs_modeset(crtc_state) || 1128 crtc_state->enable) 1129 return 0; 1130 } 1131 1132 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port); 1133 } 1134 1135 static int 1136 nv50_mstc_detect(struct drm_connector *connector, 1137 struct drm_modeset_acquire_ctx *ctx, bool force) 1138 { 1139 struct nv50_mstc *mstc = nv50_mstc(connector); 1140 int ret; 1141 1142 if (drm_connector_is_unregistered(connector)) 1143 return connector_status_disconnected; 1144 1145 ret = pm_runtime_get_sync(connector->dev->dev); 1146 if (ret < 0 && ret != -EACCES) { 1147 pm_runtime_put_autosuspend(connector->dev->dev); 1148 return connector_status_disconnected; 1149 } 1150 1151 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1152 mstc->port); 1153 1154 pm_runtime_mark_last_busy(connector->dev->dev); 1155 pm_runtime_put_autosuspend(connector->dev->dev); 1156 return ret; 1157 } 1158 1159 static const struct drm_connector_helper_funcs 1160 nv50_mstc_help = { 1161 .get_modes = nv50_mstc_get_modes, 1162 .mode_valid = nv50_mstc_mode_valid, 1163 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1164 .atomic_check = nv50_mstc_atomic_check, 1165 .detect_ctx = nv50_mstc_detect, 1166 }; 1167 1168 static void 1169 nv50_mstc_destroy(struct drm_connector *connector) 1170 { 1171 struct nv50_mstc *mstc = nv50_mstc(connector); 1172 1173 drm_connector_cleanup(&mstc->connector); 1174 drm_dp_mst_put_port_malloc(mstc->port); 1175 1176 kfree(mstc); 1177 } 1178 1179 static const struct drm_connector_funcs 1180 nv50_mstc = { 1181 .reset = nouveau_conn_reset, 1182 .fill_modes = drm_helper_probe_single_connector_modes, 1183 .destroy = nv50_mstc_destroy, 1184 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1185 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1186 .atomic_set_property = nouveau_conn_atomic_set_property, 1187 .atomic_get_property = nouveau_conn_atomic_get_property, 1188 }; 1189 1190 static int 1191 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1192 const char *path, struct nv50_mstc **pmstc) 1193 { 1194 struct drm_device *dev = mstm->outp->base.base.dev; 1195 struct drm_crtc *crtc; 1196 struct nv50_mstc *mstc; 1197 int ret; 1198 1199 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1200 return -ENOMEM; 1201 mstc->mstm = mstm; 1202 mstc->port = port; 1203 1204 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1205 DRM_MODE_CONNECTOR_DisplayPort); 1206 if (ret) { 1207 kfree(*pmstc); 1208 *pmstc = NULL; 1209 return ret; 1210 } 1211 1212 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1213 1214 mstc->connector.funcs->reset(&mstc->connector); 1215 nouveau_conn_attach_properties(&mstc->connector); 1216 1217 drm_for_each_crtc(crtc, dev) { 1218 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1219 continue; 1220 1221 drm_connector_attach_encoder(&mstc->connector, 1222 &nv50_head(crtc)->msto->encoder); 1223 } 1224 1225 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1226 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1227 drm_connector_set_path_property(&mstc->connector, path); 1228 drm_dp_mst_get_port_malloc(port); 1229 return 0; 1230 } 1231 1232 static void 1233 nv50_mstm_cleanup(struct nv50_mstm *mstm) 1234 { 1235 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1236 struct drm_encoder *encoder; 1237 int ret; 1238 1239 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1240 ret = drm_dp_check_act_status(&mstm->mgr); 1241 1242 ret = drm_dp_update_payload_part2(&mstm->mgr); 1243 1244 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1245 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1246 struct nv50_msto *msto = nv50_msto(encoder); 1247 struct nv50_mstc *mstc = msto->mstc; 1248 if (mstc && mstc->mstm == mstm) 1249 nv50_msto_cleanup(msto); 1250 } 1251 } 1252 1253 mstm->modified = false; 1254 } 1255 1256 static void 1257 nv50_mstm_prepare(struct nv50_mstm *mstm) 1258 { 1259 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1260 struct drm_encoder *encoder; 1261 int ret; 1262 1263 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1264 ret = drm_dp_update_payload_part1(&mstm->mgr); 1265 1266 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1267 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1268 struct nv50_msto *msto = nv50_msto(encoder); 1269 struct nv50_mstc *mstc = msto->mstc; 1270 if (mstc && mstc->mstm == mstm) 1271 nv50_msto_prepare(msto); 1272 } 1273 } 1274 1275 if (mstm->disabled) { 1276 if (!mstm->links) 1277 nv50_outp_release(mstm->outp); 1278 mstm->disabled = false; 1279 } 1280 } 1281 1282 static struct drm_connector * 1283 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1284 struct drm_dp_mst_port *port, const char *path) 1285 { 1286 struct nv50_mstm *mstm = nv50_mstm(mgr); 1287 struct nv50_mstc *mstc; 1288 int ret; 1289 1290 ret = nv50_mstc_new(mstm, port, path, &mstc); 1291 if (ret) 1292 return NULL; 1293 1294 return &mstc->connector; 1295 } 1296 1297 static const struct drm_dp_mst_topology_cbs 1298 nv50_mstm = { 1299 .add_connector = nv50_mstm_add_connector, 1300 }; 1301 1302 void 1303 nv50_mstm_service(struct nv50_mstm *mstm) 1304 { 1305 struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL; 1306 bool handled = true; 1307 int ret; 1308 u8 esi[8] = {}; 1309 1310 if (!aux) 1311 return; 1312 1313 while (handled) { 1314 ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1315 if (ret != 8) { 1316 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1317 return; 1318 } 1319 1320 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); 1321 if (!handled) 1322 break; 1323 1324 drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3); 1325 } 1326 } 1327 1328 void 1329 nv50_mstm_remove(struct nv50_mstm *mstm) 1330 { 1331 if (mstm) 1332 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1333 } 1334 1335 static int 1336 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state) 1337 { 1338 struct nouveau_encoder *outp = mstm->outp; 1339 struct { 1340 struct nv50_disp_mthd_v1 base; 1341 struct nv50_disp_sor_dp_mst_link_v0 mst; 1342 } args = { 1343 .base.version = 1, 1344 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK, 1345 .base.hasht = outp->dcb->hasht, 1346 .base.hashm = outp->dcb->hashm, 1347 .mst.state = state, 1348 }; 1349 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev); 1350 struct nvif_object *disp = &drm->display->disp.object; 1351 int ret; 1352 1353 if (dpcd >= 0x12) { 1354 /* Even if we're enabling MST, start with disabling the 1355 * branching unit to clear any sink-side MST topology state 1356 * that wasn't set by us 1357 */ 1358 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0); 1359 if (ret < 0) 1360 return ret; 1361 1362 if (state) { 1363 /* Now, start initializing */ 1364 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 1365 DP_MST_EN); 1366 if (ret < 0) 1367 return ret; 1368 } 1369 } 1370 1371 return nvif_mthd(disp, 0, &args, sizeof(args)); 1372 } 1373 1374 int 1375 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow) 1376 { 1377 struct drm_dp_aux *aux; 1378 int ret; 1379 bool old_state, new_state; 1380 u8 mstm_ctrl; 1381 1382 if (!mstm) 1383 return 0; 1384 1385 mutex_lock(&mstm->mgr.lock); 1386 1387 old_state = mstm->mgr.mst_state; 1388 new_state = old_state; 1389 aux = mstm->mgr.aux; 1390 1391 if (old_state) { 1392 /* Just check that the MST hub is still as we expect it */ 1393 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl); 1394 if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) { 1395 DRM_DEBUG_KMS("Hub gone, disabling MST topology\n"); 1396 new_state = false; 1397 } 1398 } else if (dpcd[0] >= 0x12) { 1399 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]); 1400 if (ret < 0) 1401 goto probe_error; 1402 1403 if (!(dpcd[1] & DP_MST_CAP)) 1404 dpcd[0] = 0x11; 1405 else 1406 new_state = allow; 1407 } 1408 1409 if (new_state == old_state) { 1410 mutex_unlock(&mstm->mgr.lock); 1411 return new_state; 1412 } 1413 1414 ret = nv50_mstm_enable(mstm, dpcd[0], new_state); 1415 if (ret) 1416 goto probe_error; 1417 1418 mutex_unlock(&mstm->mgr.lock); 1419 1420 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state); 1421 if (ret) 1422 return nv50_mstm_enable(mstm, dpcd[0], 0); 1423 1424 return new_state; 1425 1426 probe_error: 1427 mutex_unlock(&mstm->mgr.lock); 1428 return ret; 1429 } 1430 1431 static void 1432 nv50_mstm_fini(struct nv50_mstm *mstm) 1433 { 1434 if (mstm && mstm->mgr.mst_state) 1435 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1436 } 1437 1438 static void 1439 nv50_mstm_init(struct nv50_mstm *mstm, bool runtime) 1440 { 1441 int ret; 1442 1443 if (!mstm || !mstm->mgr.mst_state) 1444 return; 1445 1446 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1447 if (ret == -1) { 1448 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1449 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1450 } 1451 } 1452 1453 static void 1454 nv50_mstm_del(struct nv50_mstm **pmstm) 1455 { 1456 struct nv50_mstm *mstm = *pmstm; 1457 if (mstm) { 1458 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1459 kfree(*pmstm); 1460 *pmstm = NULL; 1461 } 1462 } 1463 1464 static int 1465 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1466 int conn_base_id, struct nv50_mstm **pmstm) 1467 { 1468 const int max_payloads = hweight8(outp->dcb->heads); 1469 struct drm_device *dev = outp->base.base.dev; 1470 struct nv50_mstm *mstm; 1471 int ret; 1472 u8 dpcd; 1473 1474 /* This is a workaround for some monitors not functioning 1475 * correctly in MST mode on initial module load. I think 1476 * some bad interaction with the VBIOS may be responsible. 1477 * 1478 * A good ol' off and on again seems to work here ;) 1479 */ 1480 ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd); 1481 if (ret >= 0 && dpcd >= 0x12) 1482 drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1483 1484 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1485 return -ENOMEM; 1486 mstm->outp = outp; 1487 mstm->mgr.cbs = &nv50_mstm; 1488 1489 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1490 max_payloads, conn_base_id); 1491 if (ret) 1492 return ret; 1493 1494 return 0; 1495 } 1496 1497 /****************************************************************************** 1498 * SOR 1499 *****************************************************************************/ 1500 static void 1501 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1502 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1503 { 1504 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1505 struct nv50_core *core = disp->core; 1506 1507 if (!asyh) { 1508 nv_encoder->ctrl &= ~BIT(head); 1509 if (!(nv_encoder->ctrl & 0x0000000f)) 1510 nv_encoder->ctrl = 0; 1511 } else { 1512 nv_encoder->ctrl |= proto << 8; 1513 nv_encoder->ctrl |= BIT(head); 1514 asyh->or.depth = depth; 1515 } 1516 1517 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh); 1518 } 1519 1520 static void 1521 nv50_sor_disable(struct drm_encoder *encoder) 1522 { 1523 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1524 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); 1525 1526 nv_encoder->crtc = NULL; 1527 1528 if (nv_crtc) { 1529 struct nvkm_i2c_aux *aux = nv_encoder->aux; 1530 u8 pwr; 1531 1532 if (aux) { 1533 int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1); 1534 if (ret == 0) { 1535 pwr &= ~DP_SET_POWER_MASK; 1536 pwr |= DP_SET_POWER_D3; 1537 nvkm_wraux(aux, DP_SET_POWER, &pwr, 1); 1538 } 1539 } 1540 1541 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); 1542 nv50_audio_disable(encoder, nv_crtc); 1543 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc); 1544 nv50_outp_release(nv_encoder); 1545 } 1546 } 1547 1548 static void 1549 nv50_sor_enable(struct drm_encoder *encoder) 1550 { 1551 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1552 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 1553 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 1554 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1555 struct { 1556 struct nv50_disp_mthd_v1 base; 1557 struct nv50_disp_sor_lvds_script_v0 lvds; 1558 } lvds = { 1559 .base.version = 1, 1560 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT, 1561 .base.hasht = nv_encoder->dcb->hasht, 1562 .base.hashm = nv_encoder->dcb->hashm, 1563 }; 1564 struct nv50_disp *disp = nv50_disp(encoder->dev); 1565 struct drm_device *dev = encoder->dev; 1566 struct nouveau_drm *drm = nouveau_drm(dev); 1567 struct nouveau_connector *nv_connector; 1568 struct nvbios *bios = &drm->vbios; 1569 bool hda = false; 1570 u8 proto = 0xf; 1571 u8 depth = 0x0; 1572 1573 nv_connector = nouveau_encoder_connector_get(nv_encoder); 1574 nv_encoder->crtc = encoder->crtc; 1575 1576 if ((disp->disp->object.oclass == GT214_DISP || 1577 disp->disp->object.oclass >= GF110_DISP) && 1578 drm_detect_monitor_audio(nv_connector->edid)) 1579 hda = true; 1580 nv50_outp_acquire(nv_encoder, hda); 1581 1582 switch (nv_encoder->dcb->type) { 1583 case DCB_OUTPUT_TMDS: 1584 if (nv_encoder->link & 1) { 1585 proto = 0x1; 1586 /* Only enable dual-link if: 1587 * - Need to (i.e. rate > 165MHz) 1588 * - DCB says we can 1589 * - Not an HDMI monitor, since there's no dual-link 1590 * on HDMI. 1591 */ 1592 if (mode->clock >= 165000 && 1593 nv_encoder->dcb->duallink_possible && 1594 !drm_detect_hdmi_monitor(nv_connector->edid)) 1595 proto |= 0x4; 1596 } else { 1597 proto = 0x2; 1598 } 1599 1600 nv50_hdmi_enable(&nv_encoder->base.base, mode); 1601 break; 1602 case DCB_OUTPUT_LVDS: 1603 proto = 0x0; 1604 1605 if (bios->fp_no_ddc) { 1606 if (bios->fp.dual_link) 1607 lvds.lvds.script |= 0x0100; 1608 if (bios->fp.if_is_24bit) 1609 lvds.lvds.script |= 0x0200; 1610 } else { 1611 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1612 if (((u8 *)nv_connector->edid)[121] == 2) 1613 lvds.lvds.script |= 0x0100; 1614 } else 1615 if (mode->clock >= bios->fp.duallink_transition_clk) { 1616 lvds.lvds.script |= 0x0100; 1617 } 1618 1619 if (lvds.lvds.script & 0x0100) { 1620 if (bios->fp.strapless_is_24bit & 2) 1621 lvds.lvds.script |= 0x0200; 1622 } else { 1623 if (bios->fp.strapless_is_24bit & 1) 1624 lvds.lvds.script |= 0x0200; 1625 } 1626 1627 if (asyh->or.bpc == 8) 1628 lvds.lvds.script |= 0x0200; 1629 } 1630 1631 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds)); 1632 break; 1633 case DCB_OUTPUT_DP: 1634 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1635 1636 if (nv_encoder->link & 1) 1637 proto = 0x8; 1638 else 1639 proto = 0x9; 1640 1641 nv50_audio_enable(encoder, mode); 1642 break; 1643 default: 1644 BUG(); 1645 break; 1646 } 1647 1648 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1649 } 1650 1651 static const struct drm_encoder_helper_funcs 1652 nv50_sor_help = { 1653 .atomic_check = nv50_outp_atomic_check, 1654 .enable = nv50_sor_enable, 1655 .disable = nv50_sor_disable, 1656 }; 1657 1658 static void 1659 nv50_sor_destroy(struct drm_encoder *encoder) 1660 { 1661 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1662 nv50_mstm_del(&nv_encoder->dp.mstm); 1663 drm_encoder_cleanup(encoder); 1664 kfree(encoder); 1665 } 1666 1667 static const struct drm_encoder_funcs 1668 nv50_sor_func = { 1669 .destroy = nv50_sor_destroy, 1670 }; 1671 1672 static bool nv50_has_mst(struct nouveau_drm *drm) 1673 { 1674 struct nvkm_bios *bios = nvxx_bios(&drm->client.device); 1675 u32 data; 1676 u8 ver, hdr, cnt, len; 1677 1678 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len); 1679 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04); 1680 } 1681 1682 static int 1683 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) 1684 { 1685 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1686 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1687 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1688 struct nouveau_encoder *nv_encoder; 1689 struct drm_encoder *encoder; 1690 struct nv50_disp *disp = nv50_disp(connector->dev); 1691 int type, ret; 1692 1693 switch (dcbe->type) { 1694 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1695 case DCB_OUTPUT_TMDS: 1696 case DCB_OUTPUT_DP: 1697 default: 1698 type = DRM_MODE_ENCODER_TMDS; 1699 break; 1700 } 1701 1702 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1703 if (!nv_encoder) 1704 return -ENOMEM; 1705 nv_encoder->dcb = dcbe; 1706 nv_encoder->update = nv50_sor_update; 1707 1708 encoder = to_drm_encoder(nv_encoder); 1709 encoder->possible_crtcs = dcbe->heads; 1710 encoder->possible_clones = 0; 1711 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1712 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1713 drm_encoder_helper_add(encoder, &nv50_sor_help); 1714 1715 drm_connector_attach_encoder(connector, encoder); 1716 1717 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1718 1719 if (dcbe->type == DCB_OUTPUT_DP) { 1720 struct nvkm_i2c_aux *aux = 1721 nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1722 1723 if (aux) { 1724 if (disp->disp->object.oclass < GF110_DISP) { 1725 /* HW has no support for address-only 1726 * transactions, so we're required to 1727 * use custom I2C-over-AUX code. 1728 */ 1729 nv_encoder->i2c = &aux->i2c; 1730 } else { 1731 nv_encoder->i2c = &nv_connector->aux.ddc; 1732 } 1733 nv_encoder->aux = aux; 1734 } 1735 1736 if (nv_connector->type != DCB_CONNECTOR_eDP && 1737 nv50_has_mst(drm)) { 1738 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1739 16, nv_connector->base.base.id, 1740 &nv_encoder->dp.mstm); 1741 if (ret) 1742 return ret; 1743 } 1744 } else { 1745 struct nvkm_i2c_bus *bus = 1746 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1747 if (bus) 1748 nv_encoder->i2c = &bus->i2c; 1749 } 1750 1751 return 0; 1752 } 1753 1754 /****************************************************************************** 1755 * PIOR 1756 *****************************************************************************/ 1757 static int 1758 nv50_pior_atomic_check(struct drm_encoder *encoder, 1759 struct drm_crtc_state *crtc_state, 1760 struct drm_connector_state *conn_state) 1761 { 1762 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1763 if (ret) 1764 return ret; 1765 crtc_state->adjusted_mode.clock *= 2; 1766 return 0; 1767 } 1768 1769 static void 1770 nv50_pior_disable(struct drm_encoder *encoder) 1771 { 1772 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1773 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1774 if (nv_encoder->crtc) 1775 core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL); 1776 nv_encoder->crtc = NULL; 1777 nv50_outp_release(nv_encoder); 1778 } 1779 1780 static void 1781 nv50_pior_enable(struct drm_encoder *encoder) 1782 { 1783 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1784 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 1785 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 1786 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1787 u8 owner = 1 << nv_crtc->index; 1788 u8 proto; 1789 1790 nv50_outp_acquire(nv_encoder, false); 1791 1792 switch (asyh->or.bpc) { 1793 case 10: asyh->or.depth = 0x6; break; 1794 case 8: asyh->or.depth = 0x5; break; 1795 case 6: asyh->or.depth = 0x2; break; 1796 default: asyh->or.depth = 0x0; break; 1797 } 1798 1799 switch (nv_encoder->dcb->type) { 1800 case DCB_OUTPUT_TMDS: 1801 case DCB_OUTPUT_DP: 1802 proto = 0x0; 1803 break; 1804 default: 1805 BUG(); 1806 break; 1807 } 1808 1809 core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh); 1810 nv_encoder->crtc = encoder->crtc; 1811 } 1812 1813 static const struct drm_encoder_helper_funcs 1814 nv50_pior_help = { 1815 .atomic_check = nv50_pior_atomic_check, 1816 .enable = nv50_pior_enable, 1817 .disable = nv50_pior_disable, 1818 }; 1819 1820 static void 1821 nv50_pior_destroy(struct drm_encoder *encoder) 1822 { 1823 drm_encoder_cleanup(encoder); 1824 kfree(encoder); 1825 } 1826 1827 static const struct drm_encoder_funcs 1828 nv50_pior_func = { 1829 .destroy = nv50_pior_destroy, 1830 }; 1831 1832 static int 1833 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) 1834 { 1835 struct drm_device *dev = connector->dev; 1836 struct nouveau_drm *drm = nouveau_drm(dev); 1837 struct nv50_disp *disp = nv50_disp(dev); 1838 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1839 struct nvkm_i2c_bus *bus = NULL; 1840 struct nvkm_i2c_aux *aux = NULL; 1841 struct i2c_adapter *ddc; 1842 struct nouveau_encoder *nv_encoder; 1843 struct drm_encoder *encoder; 1844 int type; 1845 1846 switch (dcbe->type) { 1847 case DCB_OUTPUT_TMDS: 1848 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); 1849 ddc = bus ? &bus->i2c : NULL; 1850 type = DRM_MODE_ENCODER_TMDS; 1851 break; 1852 case DCB_OUTPUT_DP: 1853 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); 1854 ddc = aux ? &aux->i2c : NULL; 1855 type = DRM_MODE_ENCODER_TMDS; 1856 break; 1857 default: 1858 return -ENODEV; 1859 } 1860 1861 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1862 if (!nv_encoder) 1863 return -ENOMEM; 1864 nv_encoder->dcb = dcbe; 1865 nv_encoder->i2c = ddc; 1866 nv_encoder->aux = aux; 1867 1868 encoder = to_drm_encoder(nv_encoder); 1869 encoder->possible_crtcs = dcbe->heads; 1870 encoder->possible_clones = 0; 1871 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 1872 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 1873 drm_encoder_helper_add(encoder, &nv50_pior_help); 1874 1875 drm_connector_attach_encoder(connector, encoder); 1876 1877 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1878 1879 return 0; 1880 } 1881 1882 /****************************************************************************** 1883 * Atomic 1884 *****************************************************************************/ 1885 1886 static void 1887 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 1888 { 1889 struct nouveau_drm *drm = nouveau_drm(state->dev); 1890 struct nv50_disp *disp = nv50_disp(drm->dev); 1891 struct nv50_core *core = disp->core; 1892 struct nv50_mstm *mstm; 1893 struct drm_encoder *encoder; 1894 1895 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 1896 1897 drm_for_each_encoder(encoder, drm->dev) { 1898 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 1899 mstm = nouveau_encoder(encoder)->dp.mstm; 1900 if (mstm && mstm->modified) 1901 nv50_mstm_prepare(mstm); 1902 } 1903 } 1904 1905 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 1906 core->func->update(core, interlock, true); 1907 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 1908 disp->core->chan.base.device)) 1909 NV_ERROR(drm, "core notifier timeout\n"); 1910 1911 drm_for_each_encoder(encoder, drm->dev) { 1912 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 1913 mstm = nouveau_encoder(encoder)->dp.mstm; 1914 if (mstm && mstm->modified) 1915 nv50_mstm_cleanup(mstm); 1916 } 1917 } 1918 } 1919 1920 static void 1921 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 1922 { 1923 struct drm_plane_state *new_plane_state; 1924 struct drm_plane *plane; 1925 int i; 1926 1927 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1928 struct nv50_wndw *wndw = nv50_wndw(plane); 1929 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 1930 if (wndw->func->update) 1931 wndw->func->update(wndw, interlock); 1932 } 1933 } 1934 } 1935 1936 static void 1937 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 1938 { 1939 struct drm_device *dev = state->dev; 1940 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 1941 struct drm_crtc *crtc; 1942 struct drm_plane_state *new_plane_state; 1943 struct drm_plane *plane; 1944 struct nouveau_drm *drm = nouveau_drm(dev); 1945 struct nv50_disp *disp = nv50_disp(dev); 1946 struct nv50_atom *atom = nv50_atom(state); 1947 struct nv50_core *core = disp->core; 1948 struct nv50_outp_atom *outp, *outt; 1949 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 1950 int i; 1951 1952 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 1953 drm_atomic_helper_wait_for_fences(dev, state, false); 1954 drm_atomic_helper_wait_for_dependencies(state); 1955 drm_atomic_helper_update_legacy_modeset_state(dev, state); 1956 1957 if (atom->lock_core) 1958 mutex_lock(&disp->mutex); 1959 1960 /* Disable head(s). */ 1961 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 1962 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 1963 struct nv50_head *head = nv50_head(crtc); 1964 1965 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 1966 asyh->clr.mask, asyh->set.mask); 1967 1968 if (old_crtc_state->active && !new_crtc_state->active) { 1969 pm_runtime_put_noidle(dev->dev); 1970 drm_crtc_vblank_off(crtc); 1971 } 1972 1973 if (asyh->clr.mask) { 1974 nv50_head_flush_clr(head, asyh, atom->flush_disable); 1975 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 1976 } 1977 } 1978 1979 /* Disable plane(s). */ 1980 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1981 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 1982 struct nv50_wndw *wndw = nv50_wndw(plane); 1983 1984 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 1985 asyw->clr.mask, asyw->set.mask); 1986 if (!asyw->clr.mask) 1987 continue; 1988 1989 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 1990 } 1991 1992 /* Disable output path(s). */ 1993 list_for_each_entry(outp, &atom->outp, head) { 1994 const struct drm_encoder_helper_funcs *help; 1995 struct drm_encoder *encoder; 1996 1997 encoder = outp->encoder; 1998 help = encoder->helper_private; 1999 2000 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2001 outp->clr.mask, outp->set.mask); 2002 2003 if (outp->clr.mask) { 2004 help->disable(encoder); 2005 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2006 if (outp->flush_disable) { 2007 nv50_disp_atomic_commit_wndw(state, interlock); 2008 nv50_disp_atomic_commit_core(state, interlock); 2009 memset(interlock, 0x00, sizeof(interlock)); 2010 } 2011 } 2012 } 2013 2014 /* Flush disable. */ 2015 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2016 if (atom->flush_disable) { 2017 nv50_disp_atomic_commit_wndw(state, interlock); 2018 nv50_disp_atomic_commit_core(state, interlock); 2019 memset(interlock, 0x00, sizeof(interlock)); 2020 } 2021 } 2022 2023 /* Update output path(s). */ 2024 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2025 const struct drm_encoder_helper_funcs *help; 2026 struct drm_encoder *encoder; 2027 2028 encoder = outp->encoder; 2029 help = encoder->helper_private; 2030 2031 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2032 outp->set.mask, outp->clr.mask); 2033 2034 if (outp->set.mask) { 2035 help->enable(encoder); 2036 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2037 } 2038 2039 list_del(&outp->head); 2040 kfree(outp); 2041 } 2042 2043 /* Update head(s). */ 2044 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2045 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2046 struct nv50_head *head = nv50_head(crtc); 2047 2048 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2049 asyh->set.mask, asyh->clr.mask); 2050 2051 if (asyh->set.mask) { 2052 nv50_head_flush_set(head, asyh); 2053 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2054 } 2055 2056 if (new_crtc_state->active) { 2057 if (!old_crtc_state->active) { 2058 drm_crtc_vblank_on(crtc); 2059 pm_runtime_get_noresume(dev->dev); 2060 } 2061 if (new_crtc_state->event) 2062 drm_crtc_vblank_get(crtc); 2063 } 2064 } 2065 2066 /* Update window->head assignment. 2067 * 2068 * This has to happen in an update that's not interlocked with 2069 * any window channels to avoid hitting HW error checks. 2070 * 2071 *TODO: Proper handling of window ownership (Turing apparently 2072 * supports non-fixed mappings). 2073 */ 2074 if (core->assign_windows) { 2075 core->func->wndw.owner(core); 2076 core->func->update(core, interlock, false); 2077 core->assign_windows = false; 2078 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2079 } 2080 2081 /* Update plane(s). */ 2082 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2083 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2084 struct nv50_wndw *wndw = nv50_wndw(plane); 2085 2086 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2087 asyw->set.mask, asyw->clr.mask); 2088 if ( !asyw->set.mask && 2089 (!asyw->clr.mask || atom->flush_disable)) 2090 continue; 2091 2092 nv50_wndw_flush_set(wndw, interlock, asyw); 2093 } 2094 2095 /* Flush update. */ 2096 nv50_disp_atomic_commit_wndw(state, interlock); 2097 2098 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2099 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2100 interlock[NV50_DISP_INTERLOCK_OVLY] || 2101 interlock[NV50_DISP_INTERLOCK_WNDW] || 2102 !atom->state.legacy_cursor_update) 2103 nv50_disp_atomic_commit_core(state, interlock); 2104 else 2105 disp->core->func->update(disp->core, interlock, false); 2106 } 2107 2108 if (atom->lock_core) 2109 mutex_unlock(&disp->mutex); 2110 2111 /* Wait for HW to signal completion. */ 2112 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2113 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2114 struct nv50_wndw *wndw = nv50_wndw(plane); 2115 int ret = nv50_wndw_wait_armed(wndw, asyw); 2116 if (ret) 2117 NV_ERROR(drm, "%s: timeout\n", plane->name); 2118 } 2119 2120 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2121 if (new_crtc_state->event) { 2122 unsigned long flags; 2123 /* Get correct count/ts if racing with vblank irq */ 2124 if (new_crtc_state->active) 2125 drm_crtc_accurate_vblank_count(crtc); 2126 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2127 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2128 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2129 2130 new_crtc_state->event = NULL; 2131 if (new_crtc_state->active) 2132 drm_crtc_vblank_put(crtc); 2133 } 2134 } 2135 2136 drm_atomic_helper_commit_hw_done(state); 2137 drm_atomic_helper_cleanup_planes(dev, state); 2138 drm_atomic_helper_commit_cleanup_done(state); 2139 drm_atomic_state_put(state); 2140 2141 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2142 pm_runtime_mark_last_busy(dev->dev); 2143 pm_runtime_put_autosuspend(dev->dev); 2144 } 2145 2146 static void 2147 nv50_disp_atomic_commit_work(struct work_struct *work) 2148 { 2149 struct drm_atomic_state *state = 2150 container_of(work, typeof(*state), commit_work); 2151 nv50_disp_atomic_commit_tail(state); 2152 } 2153 2154 static int 2155 nv50_disp_atomic_commit(struct drm_device *dev, 2156 struct drm_atomic_state *state, bool nonblock) 2157 { 2158 struct drm_plane_state *new_plane_state; 2159 struct drm_plane *plane; 2160 int ret, i; 2161 2162 ret = pm_runtime_get_sync(dev->dev); 2163 if (ret < 0 && ret != -EACCES) 2164 return ret; 2165 2166 ret = drm_atomic_helper_setup_commit(state, nonblock); 2167 if (ret) 2168 goto done; 2169 2170 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2171 2172 ret = drm_atomic_helper_prepare_planes(dev, state); 2173 if (ret) 2174 goto done; 2175 2176 if (!nonblock) { 2177 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2178 if (ret) 2179 goto err_cleanup; 2180 } 2181 2182 ret = drm_atomic_helper_swap_state(state, true); 2183 if (ret) 2184 goto err_cleanup; 2185 2186 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2187 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2188 struct nv50_wndw *wndw = nv50_wndw(plane); 2189 2190 if (asyw->set.image) 2191 nv50_wndw_ntfy_enable(wndw, asyw); 2192 } 2193 2194 drm_atomic_state_get(state); 2195 2196 /* 2197 * Grab another RPM ref for the commit tail, which will release the 2198 * ref when it's finished 2199 */ 2200 pm_runtime_get_noresume(dev->dev); 2201 2202 if (nonblock) 2203 queue_work(system_unbound_wq, &state->commit_work); 2204 else 2205 nv50_disp_atomic_commit_tail(state); 2206 2207 err_cleanup: 2208 if (ret) 2209 drm_atomic_helper_cleanup_planes(dev, state); 2210 done: 2211 pm_runtime_put_autosuspend(dev->dev); 2212 return ret; 2213 } 2214 2215 static struct nv50_outp_atom * 2216 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2217 { 2218 struct nv50_outp_atom *outp; 2219 2220 list_for_each_entry(outp, &atom->outp, head) { 2221 if (outp->encoder == encoder) 2222 return outp; 2223 } 2224 2225 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2226 if (!outp) 2227 return ERR_PTR(-ENOMEM); 2228 2229 list_add(&outp->head, &atom->outp); 2230 outp->encoder = encoder; 2231 return outp; 2232 } 2233 2234 static int 2235 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2236 struct drm_connector_state *old_connector_state) 2237 { 2238 struct drm_encoder *encoder = old_connector_state->best_encoder; 2239 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2240 struct drm_crtc *crtc; 2241 struct nv50_outp_atom *outp; 2242 2243 if (!(crtc = old_connector_state->crtc)) 2244 return 0; 2245 2246 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2247 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2248 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2249 outp = nv50_disp_outp_atomic_add(atom, encoder); 2250 if (IS_ERR(outp)) 2251 return PTR_ERR(outp); 2252 2253 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 2254 outp->flush_disable = true; 2255 atom->flush_disable = true; 2256 } 2257 outp->clr.ctrl = true; 2258 atom->lock_core = true; 2259 } 2260 2261 return 0; 2262 } 2263 2264 static int 2265 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2266 struct drm_connector_state *connector_state) 2267 { 2268 struct drm_encoder *encoder = connector_state->best_encoder; 2269 struct drm_crtc_state *new_crtc_state; 2270 struct drm_crtc *crtc; 2271 struct nv50_outp_atom *outp; 2272 2273 if (!(crtc = connector_state->crtc)) 2274 return 0; 2275 2276 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2277 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2278 outp = nv50_disp_outp_atomic_add(atom, encoder); 2279 if (IS_ERR(outp)) 2280 return PTR_ERR(outp); 2281 2282 outp->set.ctrl = true; 2283 atom->lock_core = true; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int 2290 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2291 { 2292 struct nv50_atom *atom = nv50_atom(state); 2293 struct drm_connector_state *old_connector_state, *new_connector_state; 2294 struct drm_connector *connector; 2295 struct drm_crtc_state *new_crtc_state; 2296 struct drm_crtc *crtc; 2297 int ret, i; 2298 2299 /* We need to handle colour management on a per-plane basis. */ 2300 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2301 if (new_crtc_state->color_mgmt_changed) { 2302 ret = drm_atomic_add_affected_planes(state, crtc); 2303 if (ret) 2304 return ret; 2305 } 2306 } 2307 2308 ret = drm_atomic_helper_check(dev, state); 2309 if (ret) 2310 return ret; 2311 2312 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2313 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2314 if (ret) 2315 return ret; 2316 2317 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2318 if (ret) 2319 return ret; 2320 } 2321 2322 ret = drm_dp_mst_atomic_check(state); 2323 if (ret) 2324 return ret; 2325 2326 return 0; 2327 } 2328 2329 static void 2330 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2331 { 2332 struct nv50_atom *atom = nv50_atom(state); 2333 struct nv50_outp_atom *outp, *outt; 2334 2335 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2336 list_del(&outp->head); 2337 kfree(outp); 2338 } 2339 2340 drm_atomic_state_default_clear(state); 2341 } 2342 2343 static void 2344 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2345 { 2346 struct nv50_atom *atom = nv50_atom(state); 2347 drm_atomic_state_default_release(&atom->state); 2348 kfree(atom); 2349 } 2350 2351 static struct drm_atomic_state * 2352 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2353 { 2354 struct nv50_atom *atom; 2355 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2356 drm_atomic_state_init(dev, &atom->state) < 0) { 2357 kfree(atom); 2358 return NULL; 2359 } 2360 INIT_LIST_HEAD(&atom->outp); 2361 return &atom->state; 2362 } 2363 2364 static const struct drm_mode_config_funcs 2365 nv50_disp_func = { 2366 .fb_create = nouveau_user_framebuffer_create, 2367 .output_poll_changed = nouveau_fbcon_output_poll_changed, 2368 .atomic_check = nv50_disp_atomic_check, 2369 .atomic_commit = nv50_disp_atomic_commit, 2370 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2371 .atomic_state_clear = nv50_disp_atomic_state_clear, 2372 .atomic_state_free = nv50_disp_atomic_state_free, 2373 }; 2374 2375 /****************************************************************************** 2376 * Init 2377 *****************************************************************************/ 2378 2379 static void 2380 nv50_display_fini(struct drm_device *dev, bool suspend) 2381 { 2382 struct nouveau_encoder *nv_encoder; 2383 struct drm_encoder *encoder; 2384 struct drm_plane *plane; 2385 2386 drm_for_each_plane(plane, dev) { 2387 struct nv50_wndw *wndw = nv50_wndw(plane); 2388 if (plane->funcs != &nv50_wndw) 2389 continue; 2390 nv50_wndw_fini(wndw); 2391 } 2392 2393 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2394 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2395 nv_encoder = nouveau_encoder(encoder); 2396 nv50_mstm_fini(nv_encoder->dp.mstm); 2397 } 2398 } 2399 } 2400 2401 static int 2402 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2403 { 2404 struct nv50_core *core = nv50_disp(dev)->core; 2405 struct drm_encoder *encoder; 2406 struct drm_plane *plane; 2407 2408 if (resume || runtime) 2409 core->func->init(core); 2410 2411 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2412 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2413 struct nouveau_encoder *nv_encoder = 2414 nouveau_encoder(encoder); 2415 nv50_mstm_init(nv_encoder->dp.mstm, runtime); 2416 } 2417 } 2418 2419 drm_for_each_plane(plane, dev) { 2420 struct nv50_wndw *wndw = nv50_wndw(plane); 2421 if (plane->funcs != &nv50_wndw) 2422 continue; 2423 nv50_wndw_init(wndw); 2424 } 2425 2426 return 0; 2427 } 2428 2429 static void 2430 nv50_display_destroy(struct drm_device *dev) 2431 { 2432 struct nv50_disp *disp = nv50_disp(dev); 2433 2434 nv50_audio_component_fini(nouveau_drm(dev)); 2435 2436 nvif_object_unmap(&disp->caps); 2437 nvif_object_fini(&disp->caps); 2438 nv50_core_del(&disp->core); 2439 2440 nouveau_bo_unmap(disp->sync); 2441 if (disp->sync) 2442 nouveau_bo_unpin(disp->sync); 2443 nouveau_bo_ref(NULL, &disp->sync); 2444 2445 nouveau_display(dev)->priv = NULL; 2446 kfree(disp); 2447 } 2448 2449 int 2450 nv50_display_create(struct drm_device *dev) 2451 { 2452 struct nvif_device *device = &nouveau_drm(dev)->client.device; 2453 struct nouveau_drm *drm = nouveau_drm(dev); 2454 struct dcb_table *dcb = &drm->vbios.dcb; 2455 struct drm_connector *connector, *tmp; 2456 struct nv50_disp *disp; 2457 struct dcb_output *dcbe; 2458 int crtcs, ret, i; 2459 bool has_mst = nv50_has_mst(drm); 2460 2461 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2462 if (!disp) 2463 return -ENOMEM; 2464 2465 mutex_init(&disp->mutex); 2466 2467 nouveau_display(dev)->priv = disp; 2468 nouveau_display(dev)->dtor = nv50_display_destroy; 2469 nouveau_display(dev)->init = nv50_display_init; 2470 nouveau_display(dev)->fini = nv50_display_fini; 2471 disp->disp = &nouveau_display(dev)->disp; 2472 dev->mode_config.funcs = &nv50_disp_func; 2473 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2474 dev->mode_config.normalize_zpos = true; 2475 2476 /* small shared memory area we use for notifiers and semaphores */ 2477 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM, 2478 0, 0x0000, NULL, NULL, &disp->sync); 2479 if (!ret) { 2480 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true); 2481 if (!ret) { 2482 ret = nouveau_bo_map(disp->sync); 2483 if (ret) 2484 nouveau_bo_unpin(disp->sync); 2485 } 2486 if (ret) 2487 nouveau_bo_ref(NULL, &disp->sync); 2488 } 2489 2490 if (ret) 2491 goto out; 2492 2493 /* allocate master evo channel */ 2494 ret = nv50_core_new(drm, &disp->core); 2495 if (ret) 2496 goto out; 2497 2498 disp->core->func->init(disp->core); 2499 if (disp->core->func->caps_init) { 2500 ret = disp->core->func->caps_init(drm, disp); 2501 if (ret) 2502 goto out; 2503 } 2504 2505 /* Assign the correct format modifiers */ 2506 if (disp->disp->object.oclass >= TU102_DISP) 2507 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2508 else 2509 if (disp->disp->object.oclass >= GF110_DISP) 2510 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2511 else 2512 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2513 2514 /* create crtc objects to represent the hw heads */ 2515 if (disp->disp->object.oclass >= GV100_DISP) 2516 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; 2517 else 2518 if (disp->disp->object.oclass >= GF110_DISP) 2519 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; 2520 else 2521 crtcs = 0x3; 2522 2523 for (i = 0; i < fls(crtcs); i++) { 2524 struct nv50_head *head; 2525 2526 if (!(crtcs & (1 << i))) 2527 continue; 2528 2529 head = nv50_head_create(dev, i); 2530 if (IS_ERR(head)) { 2531 ret = PTR_ERR(head); 2532 goto out; 2533 } 2534 2535 if (has_mst) { 2536 head->msto = nv50_msto_new(dev, head, i); 2537 if (IS_ERR(head->msto)) { 2538 ret = PTR_ERR(head->msto); 2539 head->msto = NULL; 2540 goto out; 2541 } 2542 2543 /* 2544 * FIXME: This is a hack to workaround the following 2545 * issues: 2546 * 2547 * https://gitlab.gnome.org/GNOME/mutter/issues/759 2548 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 2549 * 2550 * Once these issues are closed, this should be 2551 * removed 2552 */ 2553 head->msto->encoder.possible_crtcs = crtcs; 2554 } 2555 } 2556 2557 /* create encoder/connector objects based on VBIOS DCB table */ 2558 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { 2559 connector = nouveau_connector_create(dev, dcbe); 2560 if (IS_ERR(connector)) 2561 continue; 2562 2563 if (dcbe->location == DCB_LOC_ON_CHIP) { 2564 switch (dcbe->type) { 2565 case DCB_OUTPUT_TMDS: 2566 case DCB_OUTPUT_LVDS: 2567 case DCB_OUTPUT_DP: 2568 ret = nv50_sor_create(connector, dcbe); 2569 break; 2570 case DCB_OUTPUT_ANALOG: 2571 ret = nv50_dac_create(connector, dcbe); 2572 break; 2573 default: 2574 ret = -ENODEV; 2575 break; 2576 } 2577 } else { 2578 ret = nv50_pior_create(connector, dcbe); 2579 } 2580 2581 if (ret) { 2582 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2583 dcbe->location, dcbe->type, 2584 ffs(dcbe->or) - 1, ret); 2585 ret = 0; 2586 } 2587 } 2588 2589 /* cull any connectors we created that don't have an encoder */ 2590 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2591 if (connector->possible_encoders) 2592 continue; 2593 2594 NV_WARN(drm, "%s has no encoders, removing\n", 2595 connector->name); 2596 connector->funcs->destroy(connector); 2597 } 2598 2599 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2600 dev->vblank_disable_immediate = true; 2601 2602 nv50_audio_component_init(drm); 2603 2604 out: 2605 if (ret) 2606 nv50_display_destroy(dev); 2607 return ret; 2608 } 2609 2610 /****************************************************************************** 2611 * Format modifiers 2612 *****************************************************************************/ 2613 2614 /**************************************************************** 2615 * Log2(block height) ----------------------------+ * 2616 * Page Kind ----------------------------------+ | * 2617 * Gob Height/Page Kind Generation ------+ | | * 2618 * Sector layout -------+ | | | * 2619 * Compression ------+ | | | | */ 2620 const u64 disp50xx_modifiers[] = { /* | | | | | */ 2621 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 2622 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 2623 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 2624 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 2625 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 2626 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 2627 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 2628 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 2629 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 2630 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 2631 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 2632 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 2633 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 2634 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 2635 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 2636 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 2637 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 2638 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 2639 DRM_FORMAT_MOD_LINEAR, 2640 DRM_FORMAT_MOD_INVALID 2641 }; 2642 2643 /**************************************************************** 2644 * Log2(block height) ----------------------------+ * 2645 * Page Kind ----------------------------------+ | * 2646 * Gob Height/Page Kind Generation ------+ | | * 2647 * Sector layout -------+ | | | * 2648 * Compression ------+ | | | | */ 2649 const u64 disp90xx_modifiers[] = { /* | | | | | */ 2650 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 2651 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 2652 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 2653 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 2654 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 2655 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 2656 DRM_FORMAT_MOD_LINEAR, 2657 DRM_FORMAT_MOD_INVALID 2658 }; 2659