1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/hdmi.h>
32 #include <linux/component.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_dp_helper.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_fb_helper.h>
38 #include <drm/drm_plane_helper.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_scdc_helper.h>
41 #include <drm/drm_vblank.h>
42 
43 #include <nvif/class.h>
44 #include <nvif/cl0002.h>
45 #include <nvif/cl5070.h>
46 #include <nvif/cl507d.h>
47 #include <nvif/event.h>
48 #include <nvif/timer.h>
49 
50 #include "nouveau_drv.h"
51 #include "nouveau_dma.h"
52 #include "nouveau_gem.h"
53 #include "nouveau_connector.h"
54 #include "nouveau_encoder.h"
55 #include "nouveau_fence.h"
56 #include "nouveau_fbcon.h"
57 
58 #include <subdev/bios/dp.h>
59 
60 /******************************************************************************
61  * Atomic state
62  *****************************************************************************/
63 
64 struct nv50_outp_atom {
65 	struct list_head head;
66 
67 	struct drm_encoder *encoder;
68 	bool flush_disable;
69 
70 	union nv50_outp_atom_mask {
71 		struct {
72 			bool ctrl:1;
73 		};
74 		u8 mask;
75 	} set, clr;
76 };
77 
78 /******************************************************************************
79  * EVO channel
80  *****************************************************************************/
81 
82 static int
83 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
84 		 const s32 *oclass, u8 head, void *data, u32 size,
85 		 struct nv50_chan *chan)
86 {
87 	struct nvif_sclass *sclass;
88 	int ret, i, n;
89 
90 	chan->device = device;
91 
92 	ret = n = nvif_object_sclass_get(disp, &sclass);
93 	if (ret < 0)
94 		return ret;
95 
96 	while (oclass[0]) {
97 		for (i = 0; i < n; i++) {
98 			if (sclass[i].oclass == oclass[0]) {
99 				ret = nvif_object_init(disp, 0, oclass[0],
100 						       data, size, &chan->user);
101 				if (ret == 0)
102 					nvif_object_map(&chan->user, NULL, 0);
103 				nvif_object_sclass_put(&sclass);
104 				return ret;
105 			}
106 		}
107 		oclass++;
108 	}
109 
110 	nvif_object_sclass_put(&sclass);
111 	return -ENOSYS;
112 }
113 
114 static void
115 nv50_chan_destroy(struct nv50_chan *chan)
116 {
117 	nvif_object_fini(&chan->user);
118 }
119 
120 /******************************************************************************
121  * DMA EVO channel
122  *****************************************************************************/
123 
124 void
125 nv50_dmac_destroy(struct nv50_dmac *dmac)
126 {
127 	nvif_object_fini(&dmac->vram);
128 	nvif_object_fini(&dmac->sync);
129 
130 	nv50_chan_destroy(&dmac->base);
131 
132 	nvif_mem_fini(&dmac->push);
133 }
134 
135 int
136 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
137 		 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
138 		 struct nv50_dmac *dmac)
139 {
140 	struct nouveau_cli *cli = (void *)device->object.client;
141 	struct nv50_disp_core_channel_dma_v0 *args = data;
142 	u8 type = NVIF_MEM_COHERENT;
143 	int ret;
144 
145 	mutex_init(&dmac->lock);
146 
147 	/* Pascal added support for 47-bit physical addresses, but some
148 	 * parts of EVO still only accept 40-bit PAs.
149 	 *
150 	 * To avoid issues on systems with large amounts of RAM, and on
151 	 * systems where an IOMMU maps pages at a high address, we need
152 	 * to allocate push buffers in VRAM instead.
153 	 *
154 	 * This appears to match NVIDIA's behaviour on Pascal.
155 	 */
156 	if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
157 		type |= NVIF_MEM_VRAM;
158 
159 	ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push);
160 	if (ret)
161 		return ret;
162 
163 	dmac->ptr = dmac->push.object.map.ptr;
164 
165 	args->pushbuf = nvif_handle(&dmac->push.object);
166 
167 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
168 			       &dmac->base);
169 	if (ret)
170 		return ret;
171 
172 	if (!syncbuf)
173 		return 0;
174 
175 	ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
176 			       &(struct nv_dma_v0) {
177 					.target = NV_DMA_V0_TARGET_VRAM,
178 					.access = NV_DMA_V0_ACCESS_RDWR,
179 					.start = syncbuf + 0x0000,
180 					.limit = syncbuf + 0x0fff,
181 			       }, sizeof(struct nv_dma_v0),
182 			       &dmac->sync);
183 	if (ret)
184 		return ret;
185 
186 	ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
187 			       &(struct nv_dma_v0) {
188 					.target = NV_DMA_V0_TARGET_VRAM,
189 					.access = NV_DMA_V0_ACCESS_RDWR,
190 					.start = 0,
191 					.limit = device->info.ram_user - 1,
192 			       }, sizeof(struct nv_dma_v0),
193 			       &dmac->vram);
194 	if (ret)
195 		return ret;
196 
197 	return ret;
198 }
199 
200 /******************************************************************************
201  * EVO channel helpers
202  *****************************************************************************/
203 static void
204 evo_flush(struct nv50_dmac *dmac)
205 {
206 	/* Push buffer fetches are not coherent with BAR1, we need to ensure
207 	 * writes have been flushed right through to VRAM before writing PUT.
208 	 */
209 	if (dmac->push.type & NVIF_MEM_VRAM) {
210 		struct nvif_device *device = dmac->base.device;
211 		nvif_wr32(&device->object, 0x070000, 0x00000001);
212 		nvif_msec(device, 2000,
213 			if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
214 				break;
215 		);
216 	}
217 }
218 
219 u32 *
220 evo_wait(struct nv50_dmac *evoc, int nr)
221 {
222 	struct nv50_dmac *dmac = evoc;
223 	struct nvif_device *device = dmac->base.device;
224 	u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
225 
226 	mutex_lock(&dmac->lock);
227 	if (put + nr >= (PAGE_SIZE / 4) - 8) {
228 		dmac->ptr[put] = 0x20000000;
229 		evo_flush(dmac);
230 
231 		nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
232 		if (nvif_msec(device, 2000,
233 			if (!nvif_rd32(&dmac->base.user, 0x0004))
234 				break;
235 		) < 0) {
236 			mutex_unlock(&dmac->lock);
237 			pr_err("nouveau: evo channel stalled\n");
238 			return NULL;
239 		}
240 
241 		put = 0;
242 	}
243 
244 	return dmac->ptr + put;
245 }
246 
247 void
248 evo_kick(u32 *push, struct nv50_dmac *evoc)
249 {
250 	struct nv50_dmac *dmac = evoc;
251 
252 	evo_flush(dmac);
253 
254 	nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
255 	mutex_unlock(&dmac->lock);
256 }
257 
258 /******************************************************************************
259  * Output path helpers
260  *****************************************************************************/
261 static void
262 nv50_outp_release(struct nouveau_encoder *nv_encoder)
263 {
264 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
265 	struct {
266 		struct nv50_disp_mthd_v1 base;
267 	} args = {
268 		.base.version = 1,
269 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
270 		.base.hasht  = nv_encoder->dcb->hasht,
271 		.base.hashm  = nv_encoder->dcb->hashm,
272 	};
273 
274 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
275 	nv_encoder->or = -1;
276 	nv_encoder->link = 0;
277 }
278 
279 static int
280 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
281 {
282 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
283 	struct nv50_disp *disp = nv50_disp(drm->dev);
284 	struct {
285 		struct nv50_disp_mthd_v1 base;
286 		struct nv50_disp_acquire_v0 info;
287 	} args = {
288 		.base.version = 1,
289 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
290 		.base.hasht  = nv_encoder->dcb->hasht,
291 		.base.hashm  = nv_encoder->dcb->hashm,
292 		.info.hda = hda,
293 	};
294 	int ret;
295 
296 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
297 	if (ret) {
298 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
299 		return ret;
300 	}
301 
302 	nv_encoder->or = args.info.or;
303 	nv_encoder->link = args.info.link;
304 	return 0;
305 }
306 
307 static int
308 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
309 			    struct drm_crtc_state *crtc_state,
310 			    struct drm_connector_state *conn_state,
311 			    struct drm_display_mode *native_mode)
312 {
313 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
314 	struct drm_display_mode *mode = &crtc_state->mode;
315 	struct drm_connector *connector = conn_state->connector;
316 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
317 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
318 
319 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
320 	asyc->scaler.full = false;
321 	if (!native_mode)
322 		return 0;
323 
324 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
325 		switch (connector->connector_type) {
326 		case DRM_MODE_CONNECTOR_LVDS:
327 		case DRM_MODE_CONNECTOR_eDP:
328 			/* Don't force scaler for EDID modes with
329 			 * same size as the native one (e.g. different
330 			 * refresh rate)
331 			 */
332 			if (mode->hdisplay == native_mode->hdisplay &&
333 			    mode->vdisplay == native_mode->vdisplay &&
334 			    mode->type & DRM_MODE_TYPE_DRIVER)
335 				break;
336 			mode = native_mode;
337 			asyc->scaler.full = true;
338 			break;
339 		default:
340 			break;
341 		}
342 	} else {
343 		mode = native_mode;
344 	}
345 
346 	if (!drm_mode_equal(adjusted_mode, mode)) {
347 		drm_mode_copy(adjusted_mode, mode);
348 		crtc_state->mode_changed = true;
349 	}
350 
351 	return 0;
352 }
353 
354 static int
355 nv50_outp_atomic_check(struct drm_encoder *encoder,
356 		       struct drm_crtc_state *crtc_state,
357 		       struct drm_connector_state *conn_state)
358 {
359 	struct drm_connector *connector = conn_state->connector;
360 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
361 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
362 	int ret;
363 
364 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
365 					  nv_connector->native_mode);
366 	if (ret)
367 		return ret;
368 
369 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
370 		asyh->or.bpc = connector->display_info.bpc;
371 
372 	return 0;
373 }
374 
375 /******************************************************************************
376  * DAC
377  *****************************************************************************/
378 static void
379 nv50_dac_disable(struct drm_encoder *encoder)
380 {
381 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
382 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
383 	if (nv_encoder->crtc)
384 		core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL);
385 	nv_encoder->crtc = NULL;
386 	nv50_outp_release(nv_encoder);
387 }
388 
389 static void
390 nv50_dac_enable(struct drm_encoder *encoder)
391 {
392 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
393 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
394 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
395 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
396 
397 	nv50_outp_acquire(nv_encoder, false);
398 
399 	core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh);
400 	asyh->or.depth = 0;
401 
402 	nv_encoder->crtc = encoder->crtc;
403 }
404 
405 static enum drm_connector_status
406 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
407 {
408 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
409 	struct nv50_disp *disp = nv50_disp(encoder->dev);
410 	struct {
411 		struct nv50_disp_mthd_v1 base;
412 		struct nv50_disp_dac_load_v0 load;
413 	} args = {
414 		.base.version = 1,
415 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
416 		.base.hasht  = nv_encoder->dcb->hasht,
417 		.base.hashm  = nv_encoder->dcb->hashm,
418 	};
419 	int ret;
420 
421 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
422 	if (args.load.data == 0)
423 		args.load.data = 340;
424 
425 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
426 	if (ret || !args.load.load)
427 		return connector_status_disconnected;
428 
429 	return connector_status_connected;
430 }
431 
432 static const struct drm_encoder_helper_funcs
433 nv50_dac_help = {
434 	.atomic_check = nv50_outp_atomic_check,
435 	.enable = nv50_dac_enable,
436 	.disable = nv50_dac_disable,
437 	.detect = nv50_dac_detect
438 };
439 
440 static void
441 nv50_dac_destroy(struct drm_encoder *encoder)
442 {
443 	drm_encoder_cleanup(encoder);
444 	kfree(encoder);
445 }
446 
447 static const struct drm_encoder_funcs
448 nv50_dac_func = {
449 	.destroy = nv50_dac_destroy,
450 };
451 
452 static int
453 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
454 {
455 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
456 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
457 	struct nvkm_i2c_bus *bus;
458 	struct nouveau_encoder *nv_encoder;
459 	struct drm_encoder *encoder;
460 	int type = DRM_MODE_ENCODER_DAC;
461 
462 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
463 	if (!nv_encoder)
464 		return -ENOMEM;
465 	nv_encoder->dcb = dcbe;
466 
467 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
468 	if (bus)
469 		nv_encoder->i2c = &bus->i2c;
470 
471 	encoder = to_drm_encoder(nv_encoder);
472 	encoder->possible_crtcs = dcbe->heads;
473 	encoder->possible_clones = 0;
474 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
475 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
476 	drm_encoder_helper_add(encoder, &nv50_dac_help);
477 
478 	drm_connector_attach_encoder(connector, encoder);
479 	return 0;
480 }
481 
482 /*
483  * audio component binding for ELD notification
484  */
485 static void
486 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
487 				int dev_id)
488 {
489 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
490 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
491 						 port, dev_id);
492 }
493 
494 static int
495 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
496 			     bool *enabled, unsigned char *buf, int max_bytes)
497 {
498 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
499 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
500 	struct drm_encoder *encoder;
501 	struct nouveau_encoder *nv_encoder;
502 	struct nouveau_connector *nv_connector;
503 	struct nouveau_crtc *nv_crtc;
504 	int ret = 0;
505 
506 	*enabled = false;
507 	drm_for_each_encoder(encoder, drm->dev) {
508 		nv_encoder = nouveau_encoder(encoder);
509 		nv_connector = nouveau_encoder_connector_get(nv_encoder);
510 		nv_crtc = nouveau_crtc(encoder->crtc);
511 		if (!nv_connector || !nv_crtc || nv_encoder->or != port ||
512 		    nv_crtc->index != dev_id)
513 			continue;
514 		*enabled = nv_encoder->audio;
515 		if (*enabled) {
516 			ret = drm_eld_size(nv_connector->base.eld);
517 			memcpy(buf, nv_connector->base.eld,
518 			       min(max_bytes, ret));
519 		}
520 		break;
521 	}
522 	return ret;
523 }
524 
525 static const struct drm_audio_component_ops nv50_audio_component_ops = {
526 	.get_eld = nv50_audio_component_get_eld,
527 };
528 
529 static int
530 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
531 			  void *data)
532 {
533 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
534 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
535 	struct drm_audio_component *acomp = data;
536 
537 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
538 		return -ENOMEM;
539 
540 	drm_modeset_lock_all(drm_dev);
541 	acomp->ops = &nv50_audio_component_ops;
542 	acomp->dev = kdev;
543 	drm->audio.component = acomp;
544 	drm_modeset_unlock_all(drm_dev);
545 	return 0;
546 }
547 
548 static void
549 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
550 			    void *data)
551 {
552 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
553 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
554 	struct drm_audio_component *acomp = data;
555 
556 	drm_modeset_lock_all(drm_dev);
557 	drm->audio.component = NULL;
558 	acomp->ops = NULL;
559 	acomp->dev = NULL;
560 	drm_modeset_unlock_all(drm_dev);
561 }
562 
563 static const struct component_ops nv50_audio_component_bind_ops = {
564 	.bind   = nv50_audio_component_bind,
565 	.unbind = nv50_audio_component_unbind,
566 };
567 
568 static void
569 nv50_audio_component_init(struct nouveau_drm *drm)
570 {
571 	if (!component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
572 		drm->audio.component_registered = true;
573 }
574 
575 static void
576 nv50_audio_component_fini(struct nouveau_drm *drm)
577 {
578 	if (drm->audio.component_registered) {
579 		component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
580 		drm->audio.component_registered = false;
581 	}
582 }
583 
584 /******************************************************************************
585  * Audio
586  *****************************************************************************/
587 static void
588 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
589 {
590 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
591 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
592 	struct nv50_disp *disp = nv50_disp(encoder->dev);
593 	struct {
594 		struct nv50_disp_mthd_v1 base;
595 		struct nv50_disp_sor_hda_eld_v0 eld;
596 	} args = {
597 		.base.version = 1,
598 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
599 		.base.hasht   = nv_encoder->dcb->hasht,
600 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
601 				(0x0100 << nv_crtc->index),
602 	};
603 
604 	if (!nv_encoder->audio)
605 		return;
606 
607 	nv_encoder->audio = false;
608 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
609 
610 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
611 					nv_crtc->index);
612 }
613 
614 static void
615 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
616 {
617 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
618 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
619 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
620 	struct nouveau_connector *nv_connector;
621 	struct nv50_disp *disp = nv50_disp(encoder->dev);
622 	struct __packed {
623 		struct {
624 			struct nv50_disp_mthd_v1 mthd;
625 			struct nv50_disp_sor_hda_eld_v0 eld;
626 		} base;
627 		u8 data[sizeof(nv_connector->base.eld)];
628 	} args = {
629 		.base.mthd.version = 1,
630 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
631 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
632 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
633 				     (0x0100 << nv_crtc->index),
634 	};
635 
636 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
637 	if (!drm_detect_monitor_audio(nv_connector->edid))
638 		return;
639 
640 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
641 
642 	nvif_mthd(&disp->disp->object, 0, &args,
643 		  sizeof(args.base) + drm_eld_size(args.data));
644 	nv_encoder->audio = true;
645 
646 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
647 					nv_crtc->index);
648 }
649 
650 /******************************************************************************
651  * HDMI
652  *****************************************************************************/
653 static void
654 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
655 {
656 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
657 	struct nv50_disp *disp = nv50_disp(encoder->dev);
658 	struct {
659 		struct nv50_disp_mthd_v1 base;
660 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
661 	} args = {
662 		.base.version = 1,
663 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
664 		.base.hasht  = nv_encoder->dcb->hasht,
665 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
666 			       (0x0100 << nv_crtc->index),
667 	};
668 
669 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
670 }
671 
672 static void
673 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
674 {
675 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
676 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
677 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
678 	struct nv50_disp *disp = nv50_disp(encoder->dev);
679 	struct {
680 		struct nv50_disp_mthd_v1 base;
681 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
682 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
683 	} args = {
684 		.base.version = 1,
685 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
686 		.base.hasht  = nv_encoder->dcb->hasht,
687 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
688 			       (0x0100 << nv_crtc->index),
689 		.pwr.state = 1,
690 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
691 	};
692 	struct nouveau_connector *nv_connector;
693 	struct drm_hdmi_info *hdmi;
694 	u32 max_ac_packet;
695 	union hdmi_infoframe avi_frame;
696 	union hdmi_infoframe vendor_frame;
697 	bool high_tmds_clock_ratio = false, scrambling = false;
698 	u8 config;
699 	int ret;
700 	int size;
701 
702 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
703 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
704 		return;
705 
706 	hdmi = &nv_connector->base.display_info.hdmi;
707 
708 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
709 						       &nv_connector->base, mode);
710 	if (!ret) {
711 		/* We have an AVI InfoFrame, populate it to the display */
712 		args.pwr.avi_infoframe_length
713 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
714 	}
715 
716 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
717 							  &nv_connector->base, mode);
718 	if (!ret) {
719 		/* We have a Vendor InfoFrame, populate it to the display */
720 		args.pwr.vendor_infoframe_length
721 			= hdmi_infoframe_pack(&vendor_frame,
722 					      args.infoframes
723 					      + args.pwr.avi_infoframe_length,
724 					      17);
725 	}
726 
727 	max_ac_packet  = mode->htotal - mode->hdisplay;
728 	max_ac_packet -= args.pwr.rekey;
729 	max_ac_packet -= 18; /* constant from tegra */
730 	args.pwr.max_ac_packet = max_ac_packet / 32;
731 
732 	if (hdmi->scdc.scrambling.supported) {
733 		high_tmds_clock_ratio = mode->clock > 340000;
734 		scrambling = high_tmds_clock_ratio ||
735 			hdmi->scdc.scrambling.low_rates;
736 	}
737 
738 	args.pwr.scdc =
739 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
740 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
741 
742 	size = sizeof(args.base)
743 		+ sizeof(args.pwr)
744 		+ args.pwr.avi_infoframe_length
745 		+ args.pwr.vendor_infoframe_length;
746 	nvif_mthd(&disp->disp->object, 0, &args, size);
747 
748 	nv50_audio_enable(encoder, mode);
749 
750 	/* If SCDC is supported by the downstream monitor, update
751 	 * divider / scrambling settings to what we programmed above.
752 	 */
753 	if (!hdmi->scdc.scrambling.supported)
754 		return;
755 
756 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
757 	if (ret < 0) {
758 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
759 		return;
760 	}
761 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
762 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
763 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
764 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
765 	if (ret < 0)
766 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
767 			 config, ret);
768 }
769 
770 /******************************************************************************
771  * MST
772  *****************************************************************************/
773 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
774 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
775 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
776 
777 struct nv50_mstm {
778 	struct nouveau_encoder *outp;
779 
780 	struct drm_dp_mst_topology_mgr mgr;
781 
782 	bool modified;
783 	bool disabled;
784 	int links;
785 };
786 
787 struct nv50_mstc {
788 	struct nv50_mstm *mstm;
789 	struct drm_dp_mst_port *port;
790 	struct drm_connector connector;
791 
792 	struct drm_display_mode *native;
793 	struct edid *edid;
794 };
795 
796 struct nv50_msto {
797 	struct drm_encoder encoder;
798 
799 	struct nv50_head *head;
800 	struct nv50_mstc *mstc;
801 	bool disabled;
802 };
803 
804 static struct drm_dp_payload *
805 nv50_msto_payload(struct nv50_msto *msto)
806 {
807 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
808 	struct nv50_mstc *mstc = msto->mstc;
809 	struct nv50_mstm *mstm = mstc->mstm;
810 	int vcpi = mstc->port->vcpi.vcpi, i;
811 
812 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
813 
814 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
815 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
816 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
817 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
818 			  mstm->outp->base.base.name, i, payload->vcpi,
819 			  payload->start_slot, payload->num_slots);
820 	}
821 
822 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
823 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
824 		if (payload->vcpi == vcpi)
825 			return payload;
826 	}
827 
828 	return NULL;
829 }
830 
831 static void
832 nv50_msto_cleanup(struct nv50_msto *msto)
833 {
834 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
835 	struct nv50_mstc *mstc = msto->mstc;
836 	struct nv50_mstm *mstm = mstc->mstm;
837 
838 	if (!msto->disabled)
839 		return;
840 
841 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
842 
843 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
844 
845 	msto->mstc = NULL;
846 	msto->disabled = false;
847 }
848 
849 static void
850 nv50_msto_prepare(struct nv50_msto *msto)
851 {
852 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
853 	struct nv50_mstc *mstc = msto->mstc;
854 	struct nv50_mstm *mstm = mstc->mstm;
855 	struct {
856 		struct nv50_disp_mthd_v1 base;
857 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
858 	} args = {
859 		.base.version = 1,
860 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
861 		.base.hasht  = mstm->outp->dcb->hasht,
862 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
863 			       (0x0100 << msto->head->base.index),
864 	};
865 
866 	mutex_lock(&mstm->mgr.payload_lock);
867 
868 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
869 	if (mstc->port->vcpi.vcpi > 0) {
870 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
871 		if (payload) {
872 			args.vcpi.start_slot = payload->start_slot;
873 			args.vcpi.num_slots = payload->num_slots;
874 			args.vcpi.pbn = mstc->port->vcpi.pbn;
875 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
876 		}
877 	}
878 
879 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
880 		  msto->encoder.name, msto->head->base.base.name,
881 		  args.vcpi.start_slot, args.vcpi.num_slots,
882 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
883 
884 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
885 	mutex_unlock(&mstm->mgr.payload_lock);
886 }
887 
888 static int
889 nv50_msto_atomic_check(struct drm_encoder *encoder,
890 		       struct drm_crtc_state *crtc_state,
891 		       struct drm_connector_state *conn_state)
892 {
893 	struct drm_atomic_state *state = crtc_state->state;
894 	struct drm_connector *connector = conn_state->connector;
895 	struct nv50_mstc *mstc = nv50_mstc(connector);
896 	struct nv50_mstm *mstm = mstc->mstm;
897 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
898 	int slots;
899 	int ret;
900 
901 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
902 					  mstc->native);
903 	if (ret)
904 		return ret;
905 
906 	if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
907 		return 0;
908 
909 	/*
910 	 * When restoring duplicated states, we need to make sure that the bw
911 	 * remains the same and avoid recalculating it, as the connector's bpc
912 	 * may have changed after the state was duplicated
913 	 */
914 	if (!state->duplicated) {
915 		const int clock = crtc_state->adjusted_mode.clock;
916 
917 		asyh->or.bpc = connector->display_info.bpc;
918 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
919 						    false);
920 	}
921 
922 	slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
923 					      asyh->dp.pbn, 0);
924 	if (slots < 0)
925 		return slots;
926 
927 	asyh->dp.tu = slots;
928 
929 	return 0;
930 }
931 
932 static u8
933 nv50_dp_bpc_to_depth(unsigned int bpc)
934 {
935 	switch (bpc) {
936 	case  6: return 0x2;
937 	case  8: return 0x5;
938 	case 10: /* fall-through */
939 	default: return 0x6;
940 	}
941 }
942 
943 static void
944 nv50_msto_enable(struct drm_encoder *encoder)
945 {
946 	struct nv50_head *head = nv50_head(encoder->crtc);
947 	struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state);
948 	struct nv50_msto *msto = nv50_msto(encoder);
949 	struct nv50_mstc *mstc = NULL;
950 	struct nv50_mstm *mstm = NULL;
951 	struct drm_connector *connector;
952 	struct drm_connector_list_iter conn_iter;
953 	u8 proto;
954 	bool r;
955 
956 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
957 	drm_for_each_connector_iter(connector, &conn_iter) {
958 		if (connector->state->best_encoder == &msto->encoder) {
959 			mstc = nv50_mstc(connector);
960 			mstm = mstc->mstm;
961 			break;
962 		}
963 	}
964 	drm_connector_list_iter_end(&conn_iter);
965 
966 	if (WARN_ON(!mstc))
967 		return;
968 
969 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn,
970 				     armh->dp.tu);
971 	if (!r)
972 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
973 
974 	if (!mstm->links++)
975 		nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
976 
977 	if (mstm->outp->link & 1)
978 		proto = 0x8;
979 	else
980 		proto = 0x9;
981 
982 	mstm->outp->update(mstm->outp, head->base.index, armh, proto,
983 			   nv50_dp_bpc_to_depth(armh->or.bpc));
984 
985 	msto->mstc = mstc;
986 	mstm->modified = true;
987 }
988 
989 static void
990 nv50_msto_disable(struct drm_encoder *encoder)
991 {
992 	struct nv50_msto *msto = nv50_msto(encoder);
993 	struct nv50_mstc *mstc = msto->mstc;
994 	struct nv50_mstm *mstm = mstc->mstm;
995 
996 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
997 
998 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
999 	mstm->modified = true;
1000 	if (!--mstm->links)
1001 		mstm->disabled = true;
1002 	msto->disabled = true;
1003 }
1004 
1005 static const struct drm_encoder_helper_funcs
1006 nv50_msto_help = {
1007 	.disable = nv50_msto_disable,
1008 	.enable = nv50_msto_enable,
1009 	.atomic_check = nv50_msto_atomic_check,
1010 };
1011 
1012 static void
1013 nv50_msto_destroy(struct drm_encoder *encoder)
1014 {
1015 	struct nv50_msto *msto = nv50_msto(encoder);
1016 	drm_encoder_cleanup(&msto->encoder);
1017 	kfree(msto);
1018 }
1019 
1020 static const struct drm_encoder_funcs
1021 nv50_msto = {
1022 	.destroy = nv50_msto_destroy,
1023 };
1024 
1025 static struct nv50_msto *
1026 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1027 {
1028 	struct nv50_msto *msto;
1029 	int ret;
1030 
1031 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1032 	if (!msto)
1033 		return ERR_PTR(-ENOMEM);
1034 
1035 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1036 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1037 	if (ret) {
1038 		kfree(msto);
1039 		return ERR_PTR(ret);
1040 	}
1041 
1042 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1043 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1044 	msto->head = head;
1045 	return msto;
1046 }
1047 
1048 static struct drm_encoder *
1049 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1050 			      struct drm_connector_state *connector_state)
1051 {
1052 	struct nv50_mstc *mstc = nv50_mstc(connector);
1053 	struct drm_crtc *crtc = connector_state->crtc;
1054 
1055 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1056 		return NULL;
1057 
1058 	return &nv50_head(crtc)->msto->encoder;
1059 }
1060 
1061 static enum drm_mode_status
1062 nv50_mstc_mode_valid(struct drm_connector *connector,
1063 		     struct drm_display_mode *mode)
1064 {
1065 	struct nv50_mstc *mstc = nv50_mstc(connector);
1066 	struct nouveau_encoder *outp = mstc->mstm->outp;
1067 
1068 	/* TODO: calculate the PBN from the dotclock and validate against the
1069 	 * MSTB's max possible PBN
1070 	 */
1071 
1072 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1073 }
1074 
1075 static int
1076 nv50_mstc_get_modes(struct drm_connector *connector)
1077 {
1078 	struct nv50_mstc *mstc = nv50_mstc(connector);
1079 	int ret = 0;
1080 
1081 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1082 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1083 	if (mstc->edid)
1084 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1085 
1086 	/*
1087 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1088 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1089 	 * to properly fix this by dynamically selecting the highest possible
1090 	 * bpc that would fit in the topology
1091 	 */
1092 	if (connector->display_info.bpc)
1093 		connector->display_info.bpc =
1094 			clamp(connector->display_info.bpc, 6U, 8U);
1095 	else
1096 		connector->display_info.bpc = 8;
1097 
1098 	if (mstc->native)
1099 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1100 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1101 	return ret;
1102 }
1103 
1104 static int
1105 nv50_mstc_atomic_check(struct drm_connector *connector,
1106 		       struct drm_atomic_state *state)
1107 {
1108 	struct nv50_mstc *mstc = nv50_mstc(connector);
1109 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1110 	struct drm_connector_state *new_conn_state =
1111 		drm_atomic_get_new_connector_state(state, connector);
1112 	struct drm_connector_state *old_conn_state =
1113 		drm_atomic_get_old_connector_state(state, connector);
1114 	struct drm_crtc_state *crtc_state;
1115 	struct drm_crtc *new_crtc = new_conn_state->crtc;
1116 
1117 	if (!old_conn_state->crtc)
1118 		return 0;
1119 
1120 	/* We only want to free VCPI if this state disables the CRTC on this
1121 	 * connector
1122 	 */
1123 	if (new_crtc) {
1124 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1125 
1126 		if (!crtc_state ||
1127 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
1128 		    crtc_state->enable)
1129 			return 0;
1130 	}
1131 
1132 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1133 }
1134 
1135 static int
1136 nv50_mstc_detect(struct drm_connector *connector,
1137 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1138 {
1139 	struct nv50_mstc *mstc = nv50_mstc(connector);
1140 	int ret;
1141 
1142 	if (drm_connector_is_unregistered(connector))
1143 		return connector_status_disconnected;
1144 
1145 	ret = pm_runtime_get_sync(connector->dev->dev);
1146 	if (ret < 0 && ret != -EACCES) {
1147 		pm_runtime_put_autosuspend(connector->dev->dev);
1148 		return connector_status_disconnected;
1149 	}
1150 
1151 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1152 				     mstc->port);
1153 
1154 	pm_runtime_mark_last_busy(connector->dev->dev);
1155 	pm_runtime_put_autosuspend(connector->dev->dev);
1156 	return ret;
1157 }
1158 
1159 static const struct drm_connector_helper_funcs
1160 nv50_mstc_help = {
1161 	.get_modes = nv50_mstc_get_modes,
1162 	.mode_valid = nv50_mstc_mode_valid,
1163 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1164 	.atomic_check = nv50_mstc_atomic_check,
1165 	.detect_ctx = nv50_mstc_detect,
1166 };
1167 
1168 static void
1169 nv50_mstc_destroy(struct drm_connector *connector)
1170 {
1171 	struct nv50_mstc *mstc = nv50_mstc(connector);
1172 
1173 	drm_connector_cleanup(&mstc->connector);
1174 	drm_dp_mst_put_port_malloc(mstc->port);
1175 
1176 	kfree(mstc);
1177 }
1178 
1179 static const struct drm_connector_funcs
1180 nv50_mstc = {
1181 	.reset = nouveau_conn_reset,
1182 	.fill_modes = drm_helper_probe_single_connector_modes,
1183 	.destroy = nv50_mstc_destroy,
1184 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1185 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1186 	.atomic_set_property = nouveau_conn_atomic_set_property,
1187 	.atomic_get_property = nouveau_conn_atomic_get_property,
1188 };
1189 
1190 static int
1191 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1192 	      const char *path, struct nv50_mstc **pmstc)
1193 {
1194 	struct drm_device *dev = mstm->outp->base.base.dev;
1195 	struct drm_crtc *crtc;
1196 	struct nv50_mstc *mstc;
1197 	int ret;
1198 
1199 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1200 		return -ENOMEM;
1201 	mstc->mstm = mstm;
1202 	mstc->port = port;
1203 
1204 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1205 				 DRM_MODE_CONNECTOR_DisplayPort);
1206 	if (ret) {
1207 		kfree(*pmstc);
1208 		*pmstc = NULL;
1209 		return ret;
1210 	}
1211 
1212 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1213 
1214 	mstc->connector.funcs->reset(&mstc->connector);
1215 	nouveau_conn_attach_properties(&mstc->connector);
1216 
1217 	drm_for_each_crtc(crtc, dev) {
1218 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1219 			continue;
1220 
1221 		drm_connector_attach_encoder(&mstc->connector,
1222 					     &nv50_head(crtc)->msto->encoder);
1223 	}
1224 
1225 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1226 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1227 	drm_connector_set_path_property(&mstc->connector, path);
1228 	drm_dp_mst_get_port_malloc(port);
1229 	return 0;
1230 }
1231 
1232 static void
1233 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1234 {
1235 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1236 	struct drm_encoder *encoder;
1237 	int ret;
1238 
1239 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1240 	ret = drm_dp_check_act_status(&mstm->mgr);
1241 
1242 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1243 
1244 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1245 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1246 			struct nv50_msto *msto = nv50_msto(encoder);
1247 			struct nv50_mstc *mstc = msto->mstc;
1248 			if (mstc && mstc->mstm == mstm)
1249 				nv50_msto_cleanup(msto);
1250 		}
1251 	}
1252 
1253 	mstm->modified = false;
1254 }
1255 
1256 static void
1257 nv50_mstm_prepare(struct nv50_mstm *mstm)
1258 {
1259 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1260 	struct drm_encoder *encoder;
1261 	int ret;
1262 
1263 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1264 	ret = drm_dp_update_payload_part1(&mstm->mgr);
1265 
1266 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1267 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1268 			struct nv50_msto *msto = nv50_msto(encoder);
1269 			struct nv50_mstc *mstc = msto->mstc;
1270 			if (mstc && mstc->mstm == mstm)
1271 				nv50_msto_prepare(msto);
1272 		}
1273 	}
1274 
1275 	if (mstm->disabled) {
1276 		if (!mstm->links)
1277 			nv50_outp_release(mstm->outp);
1278 		mstm->disabled = false;
1279 	}
1280 }
1281 
1282 static struct drm_connector *
1283 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1284 			struct drm_dp_mst_port *port, const char *path)
1285 {
1286 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1287 	struct nv50_mstc *mstc;
1288 	int ret;
1289 
1290 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1291 	if (ret)
1292 		return NULL;
1293 
1294 	return &mstc->connector;
1295 }
1296 
1297 static const struct drm_dp_mst_topology_cbs
1298 nv50_mstm = {
1299 	.add_connector = nv50_mstm_add_connector,
1300 };
1301 
1302 void
1303 nv50_mstm_service(struct nv50_mstm *mstm)
1304 {
1305 	struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
1306 	bool handled = true;
1307 	int ret;
1308 	u8 esi[8] = {};
1309 
1310 	if (!aux)
1311 		return;
1312 
1313 	while (handled) {
1314 		ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1315 		if (ret != 8) {
1316 			drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1317 			return;
1318 		}
1319 
1320 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1321 		if (!handled)
1322 			break;
1323 
1324 		drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
1325 	}
1326 }
1327 
1328 void
1329 nv50_mstm_remove(struct nv50_mstm *mstm)
1330 {
1331 	if (mstm)
1332 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1333 }
1334 
1335 static int
1336 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
1337 {
1338 	struct nouveau_encoder *outp = mstm->outp;
1339 	struct {
1340 		struct nv50_disp_mthd_v1 base;
1341 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1342 	} args = {
1343 		.base.version = 1,
1344 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1345 		.base.hasht = outp->dcb->hasht,
1346 		.base.hashm = outp->dcb->hashm,
1347 		.mst.state = state,
1348 	};
1349 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1350 	struct nvif_object *disp = &drm->display->disp.object;
1351 	int ret;
1352 
1353 	if (dpcd >= 0x12) {
1354 		/* Even if we're enabling MST, start with disabling the
1355 		 * branching unit to clear any sink-side MST topology state
1356 		 * that wasn't set by us
1357 		 */
1358 		ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
1359 		if (ret < 0)
1360 			return ret;
1361 
1362 		if (state) {
1363 			/* Now, start initializing */
1364 			ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
1365 						 DP_MST_EN);
1366 			if (ret < 0)
1367 				return ret;
1368 		}
1369 	}
1370 
1371 	return nvif_mthd(disp, 0, &args, sizeof(args));
1372 }
1373 
1374 int
1375 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
1376 {
1377 	struct drm_dp_aux *aux;
1378 	int ret;
1379 	bool old_state, new_state;
1380 	u8 mstm_ctrl;
1381 
1382 	if (!mstm)
1383 		return 0;
1384 
1385 	mutex_lock(&mstm->mgr.lock);
1386 
1387 	old_state = mstm->mgr.mst_state;
1388 	new_state = old_state;
1389 	aux = mstm->mgr.aux;
1390 
1391 	if (old_state) {
1392 		/* Just check that the MST hub is still as we expect it */
1393 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
1394 		if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
1395 			DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
1396 			new_state = false;
1397 		}
1398 	} else if (dpcd[0] >= 0x12) {
1399 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
1400 		if (ret < 0)
1401 			goto probe_error;
1402 
1403 		if (!(dpcd[1] & DP_MST_CAP))
1404 			dpcd[0] = 0x11;
1405 		else
1406 			new_state = allow;
1407 	}
1408 
1409 	if (new_state == old_state) {
1410 		mutex_unlock(&mstm->mgr.lock);
1411 		return new_state;
1412 	}
1413 
1414 	ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
1415 	if (ret)
1416 		goto probe_error;
1417 
1418 	mutex_unlock(&mstm->mgr.lock);
1419 
1420 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
1421 	if (ret)
1422 		return nv50_mstm_enable(mstm, dpcd[0], 0);
1423 
1424 	return new_state;
1425 
1426 probe_error:
1427 	mutex_unlock(&mstm->mgr.lock);
1428 	return ret;
1429 }
1430 
1431 static void
1432 nv50_mstm_fini(struct nv50_mstm *mstm)
1433 {
1434 	if (mstm && mstm->mgr.mst_state)
1435 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1436 }
1437 
1438 static void
1439 nv50_mstm_init(struct nv50_mstm *mstm, bool runtime)
1440 {
1441 	int ret;
1442 
1443 	if (!mstm || !mstm->mgr.mst_state)
1444 		return;
1445 
1446 	ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1447 	if (ret == -1) {
1448 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1449 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1450 	}
1451 }
1452 
1453 static void
1454 nv50_mstm_del(struct nv50_mstm **pmstm)
1455 {
1456 	struct nv50_mstm *mstm = *pmstm;
1457 	if (mstm) {
1458 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1459 		kfree(*pmstm);
1460 		*pmstm = NULL;
1461 	}
1462 }
1463 
1464 static int
1465 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1466 	      int conn_base_id, struct nv50_mstm **pmstm)
1467 {
1468 	const int max_payloads = hweight8(outp->dcb->heads);
1469 	struct drm_device *dev = outp->base.base.dev;
1470 	struct nv50_mstm *mstm;
1471 	int ret;
1472 	u8 dpcd;
1473 
1474 	/* This is a workaround for some monitors not functioning
1475 	 * correctly in MST mode on initial module load.  I think
1476 	 * some bad interaction with the VBIOS may be responsible.
1477 	 *
1478 	 * A good ol' off and on again seems to work here ;)
1479 	 */
1480 	ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
1481 	if (ret >= 0 && dpcd >= 0x12)
1482 		drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1483 
1484 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1485 		return -ENOMEM;
1486 	mstm->outp = outp;
1487 	mstm->mgr.cbs = &nv50_mstm;
1488 
1489 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1490 					   max_payloads, conn_base_id);
1491 	if (ret)
1492 		return ret;
1493 
1494 	return 0;
1495 }
1496 
1497 /******************************************************************************
1498  * SOR
1499  *****************************************************************************/
1500 static void
1501 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1502 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1503 {
1504 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1505 	struct nv50_core *core = disp->core;
1506 
1507 	if (!asyh) {
1508 		nv_encoder->ctrl &= ~BIT(head);
1509 		if (!(nv_encoder->ctrl & 0x0000000f))
1510 			nv_encoder->ctrl = 0;
1511 	} else {
1512 		nv_encoder->ctrl |= proto << 8;
1513 		nv_encoder->ctrl |= BIT(head);
1514 		asyh->or.depth = depth;
1515 	}
1516 
1517 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1518 }
1519 
1520 static void
1521 nv50_sor_disable(struct drm_encoder *encoder)
1522 {
1523 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1524 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1525 
1526 	nv_encoder->crtc = NULL;
1527 
1528 	if (nv_crtc) {
1529 		struct nvkm_i2c_aux *aux = nv_encoder->aux;
1530 		u8 pwr;
1531 
1532 		if (aux) {
1533 			int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
1534 			if (ret == 0) {
1535 				pwr &= ~DP_SET_POWER_MASK;
1536 				pwr |=  DP_SET_POWER_D3;
1537 				nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
1538 			}
1539 		}
1540 
1541 		nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1542 		nv50_audio_disable(encoder, nv_crtc);
1543 		nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1544 		nv50_outp_release(nv_encoder);
1545 	}
1546 }
1547 
1548 static void
1549 nv50_sor_enable(struct drm_encoder *encoder)
1550 {
1551 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1552 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1553 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1554 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1555 	struct {
1556 		struct nv50_disp_mthd_v1 base;
1557 		struct nv50_disp_sor_lvds_script_v0 lvds;
1558 	} lvds = {
1559 		.base.version = 1,
1560 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1561 		.base.hasht   = nv_encoder->dcb->hasht,
1562 		.base.hashm   = nv_encoder->dcb->hashm,
1563 	};
1564 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1565 	struct drm_device *dev = encoder->dev;
1566 	struct nouveau_drm *drm = nouveau_drm(dev);
1567 	struct nouveau_connector *nv_connector;
1568 	struct nvbios *bios = &drm->vbios;
1569 	bool hda = false;
1570 	u8 proto = 0xf;
1571 	u8 depth = 0x0;
1572 
1573 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1574 	nv_encoder->crtc = encoder->crtc;
1575 
1576 	if ((disp->disp->object.oclass == GT214_DISP ||
1577 	     disp->disp->object.oclass >= GF110_DISP) &&
1578 	    drm_detect_monitor_audio(nv_connector->edid))
1579 		hda = true;
1580 	nv50_outp_acquire(nv_encoder, hda);
1581 
1582 	switch (nv_encoder->dcb->type) {
1583 	case DCB_OUTPUT_TMDS:
1584 		if (nv_encoder->link & 1) {
1585 			proto = 0x1;
1586 			/* Only enable dual-link if:
1587 			 *  - Need to (i.e. rate > 165MHz)
1588 			 *  - DCB says we can
1589 			 *  - Not an HDMI monitor, since there's no dual-link
1590 			 *    on HDMI.
1591 			 */
1592 			if (mode->clock >= 165000 &&
1593 			    nv_encoder->dcb->duallink_possible &&
1594 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1595 				proto |= 0x4;
1596 		} else {
1597 			proto = 0x2;
1598 		}
1599 
1600 		nv50_hdmi_enable(&nv_encoder->base.base, mode);
1601 		break;
1602 	case DCB_OUTPUT_LVDS:
1603 		proto = 0x0;
1604 
1605 		if (bios->fp_no_ddc) {
1606 			if (bios->fp.dual_link)
1607 				lvds.lvds.script |= 0x0100;
1608 			if (bios->fp.if_is_24bit)
1609 				lvds.lvds.script |= 0x0200;
1610 		} else {
1611 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1612 				if (((u8 *)nv_connector->edid)[121] == 2)
1613 					lvds.lvds.script |= 0x0100;
1614 			} else
1615 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1616 				lvds.lvds.script |= 0x0100;
1617 			}
1618 
1619 			if (lvds.lvds.script & 0x0100) {
1620 				if (bios->fp.strapless_is_24bit & 2)
1621 					lvds.lvds.script |= 0x0200;
1622 			} else {
1623 				if (bios->fp.strapless_is_24bit & 1)
1624 					lvds.lvds.script |= 0x0200;
1625 			}
1626 
1627 			if (asyh->or.bpc == 8)
1628 				lvds.lvds.script |= 0x0200;
1629 		}
1630 
1631 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1632 		break;
1633 	case DCB_OUTPUT_DP:
1634 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1635 
1636 		if (nv_encoder->link & 1)
1637 			proto = 0x8;
1638 		else
1639 			proto = 0x9;
1640 
1641 		nv50_audio_enable(encoder, mode);
1642 		break;
1643 	default:
1644 		BUG();
1645 		break;
1646 	}
1647 
1648 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1649 }
1650 
1651 static const struct drm_encoder_helper_funcs
1652 nv50_sor_help = {
1653 	.atomic_check = nv50_outp_atomic_check,
1654 	.enable = nv50_sor_enable,
1655 	.disable = nv50_sor_disable,
1656 };
1657 
1658 static void
1659 nv50_sor_destroy(struct drm_encoder *encoder)
1660 {
1661 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1662 	nv50_mstm_del(&nv_encoder->dp.mstm);
1663 	drm_encoder_cleanup(encoder);
1664 	kfree(encoder);
1665 }
1666 
1667 static const struct drm_encoder_funcs
1668 nv50_sor_func = {
1669 	.destroy = nv50_sor_destroy,
1670 };
1671 
1672 static bool nv50_has_mst(struct nouveau_drm *drm)
1673 {
1674 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1675 	u32 data;
1676 	u8 ver, hdr, cnt, len;
1677 
1678 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1679 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1680 }
1681 
1682 static int
1683 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1684 {
1685 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1686 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1687 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1688 	struct nouveau_encoder *nv_encoder;
1689 	struct drm_encoder *encoder;
1690 	struct nv50_disp *disp = nv50_disp(connector->dev);
1691 	int type, ret;
1692 
1693 	switch (dcbe->type) {
1694 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1695 	case DCB_OUTPUT_TMDS:
1696 	case DCB_OUTPUT_DP:
1697 	default:
1698 		type = DRM_MODE_ENCODER_TMDS;
1699 		break;
1700 	}
1701 
1702 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1703 	if (!nv_encoder)
1704 		return -ENOMEM;
1705 	nv_encoder->dcb = dcbe;
1706 	nv_encoder->update = nv50_sor_update;
1707 
1708 	encoder = to_drm_encoder(nv_encoder);
1709 	encoder->possible_crtcs = dcbe->heads;
1710 	encoder->possible_clones = 0;
1711 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1712 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1713 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1714 
1715 	drm_connector_attach_encoder(connector, encoder);
1716 
1717 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1718 
1719 	if (dcbe->type == DCB_OUTPUT_DP) {
1720 		struct nvkm_i2c_aux *aux =
1721 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1722 
1723 		if (aux) {
1724 			if (disp->disp->object.oclass < GF110_DISP) {
1725 				/* HW has no support for address-only
1726 				 * transactions, so we're required to
1727 				 * use custom I2C-over-AUX code.
1728 				 */
1729 				nv_encoder->i2c = &aux->i2c;
1730 			} else {
1731 				nv_encoder->i2c = &nv_connector->aux.ddc;
1732 			}
1733 			nv_encoder->aux = aux;
1734 		}
1735 
1736 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1737 		    nv50_has_mst(drm)) {
1738 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1739 					    16, nv_connector->base.base.id,
1740 					    &nv_encoder->dp.mstm);
1741 			if (ret)
1742 				return ret;
1743 		}
1744 	} else {
1745 		struct nvkm_i2c_bus *bus =
1746 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1747 		if (bus)
1748 			nv_encoder->i2c = &bus->i2c;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /******************************************************************************
1755  * PIOR
1756  *****************************************************************************/
1757 static int
1758 nv50_pior_atomic_check(struct drm_encoder *encoder,
1759 		       struct drm_crtc_state *crtc_state,
1760 		       struct drm_connector_state *conn_state)
1761 {
1762 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1763 	if (ret)
1764 		return ret;
1765 	crtc_state->adjusted_mode.clock *= 2;
1766 	return 0;
1767 }
1768 
1769 static void
1770 nv50_pior_disable(struct drm_encoder *encoder)
1771 {
1772 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1773 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1774 	if (nv_encoder->crtc)
1775 		core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL);
1776 	nv_encoder->crtc = NULL;
1777 	nv50_outp_release(nv_encoder);
1778 }
1779 
1780 static void
1781 nv50_pior_enable(struct drm_encoder *encoder)
1782 {
1783 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1784 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1785 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1786 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1787 	u8 owner = 1 << nv_crtc->index;
1788 	u8 proto;
1789 
1790 	nv50_outp_acquire(nv_encoder, false);
1791 
1792 	switch (asyh->or.bpc) {
1793 	case 10: asyh->or.depth = 0x6; break;
1794 	case  8: asyh->or.depth = 0x5; break;
1795 	case  6: asyh->or.depth = 0x2; break;
1796 	default: asyh->or.depth = 0x0; break;
1797 	}
1798 
1799 	switch (nv_encoder->dcb->type) {
1800 	case DCB_OUTPUT_TMDS:
1801 	case DCB_OUTPUT_DP:
1802 		proto = 0x0;
1803 		break;
1804 	default:
1805 		BUG();
1806 		break;
1807 	}
1808 
1809 	core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh);
1810 	nv_encoder->crtc = encoder->crtc;
1811 }
1812 
1813 static const struct drm_encoder_helper_funcs
1814 nv50_pior_help = {
1815 	.atomic_check = nv50_pior_atomic_check,
1816 	.enable = nv50_pior_enable,
1817 	.disable = nv50_pior_disable,
1818 };
1819 
1820 static void
1821 nv50_pior_destroy(struct drm_encoder *encoder)
1822 {
1823 	drm_encoder_cleanup(encoder);
1824 	kfree(encoder);
1825 }
1826 
1827 static const struct drm_encoder_funcs
1828 nv50_pior_func = {
1829 	.destroy = nv50_pior_destroy,
1830 };
1831 
1832 static int
1833 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1834 {
1835 	struct drm_device *dev = connector->dev;
1836 	struct nouveau_drm *drm = nouveau_drm(dev);
1837 	struct nv50_disp *disp = nv50_disp(dev);
1838 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1839 	struct nvkm_i2c_bus *bus = NULL;
1840 	struct nvkm_i2c_aux *aux = NULL;
1841 	struct i2c_adapter *ddc;
1842 	struct nouveau_encoder *nv_encoder;
1843 	struct drm_encoder *encoder;
1844 	int type;
1845 
1846 	switch (dcbe->type) {
1847 	case DCB_OUTPUT_TMDS:
1848 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1849 		ddc  = bus ? &bus->i2c : NULL;
1850 		type = DRM_MODE_ENCODER_TMDS;
1851 		break;
1852 	case DCB_OUTPUT_DP:
1853 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1854 		ddc  = aux ? &aux->i2c : NULL;
1855 		type = DRM_MODE_ENCODER_TMDS;
1856 		break;
1857 	default:
1858 		return -ENODEV;
1859 	}
1860 
1861 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1862 	if (!nv_encoder)
1863 		return -ENOMEM;
1864 	nv_encoder->dcb = dcbe;
1865 	nv_encoder->i2c = ddc;
1866 	nv_encoder->aux = aux;
1867 
1868 	encoder = to_drm_encoder(nv_encoder);
1869 	encoder->possible_crtcs = dcbe->heads;
1870 	encoder->possible_clones = 0;
1871 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1872 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1873 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1874 
1875 	drm_connector_attach_encoder(connector, encoder);
1876 
1877 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1878 
1879 	return 0;
1880 }
1881 
1882 /******************************************************************************
1883  * Atomic
1884  *****************************************************************************/
1885 
1886 static void
1887 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1888 {
1889 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1890 	struct nv50_disp *disp = nv50_disp(drm->dev);
1891 	struct nv50_core *core = disp->core;
1892 	struct nv50_mstm *mstm;
1893 	struct drm_encoder *encoder;
1894 
1895 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1896 
1897 	drm_for_each_encoder(encoder, drm->dev) {
1898 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1899 			mstm = nouveau_encoder(encoder)->dp.mstm;
1900 			if (mstm && mstm->modified)
1901 				nv50_mstm_prepare(mstm);
1902 		}
1903 	}
1904 
1905 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1906 	core->func->update(core, interlock, true);
1907 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1908 				       disp->core->chan.base.device))
1909 		NV_ERROR(drm, "core notifier timeout\n");
1910 
1911 	drm_for_each_encoder(encoder, drm->dev) {
1912 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1913 			mstm = nouveau_encoder(encoder)->dp.mstm;
1914 			if (mstm && mstm->modified)
1915 				nv50_mstm_cleanup(mstm);
1916 		}
1917 	}
1918 }
1919 
1920 static void
1921 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1922 {
1923 	struct drm_plane_state *new_plane_state;
1924 	struct drm_plane *plane;
1925 	int i;
1926 
1927 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1928 		struct nv50_wndw *wndw = nv50_wndw(plane);
1929 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1930 			if (wndw->func->update)
1931 				wndw->func->update(wndw, interlock);
1932 		}
1933 	}
1934 }
1935 
1936 static void
1937 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1938 {
1939 	struct drm_device *dev = state->dev;
1940 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1941 	struct drm_crtc *crtc;
1942 	struct drm_plane_state *new_plane_state;
1943 	struct drm_plane *plane;
1944 	struct nouveau_drm *drm = nouveau_drm(dev);
1945 	struct nv50_disp *disp = nv50_disp(dev);
1946 	struct nv50_atom *atom = nv50_atom(state);
1947 	struct nv50_core *core = disp->core;
1948 	struct nv50_outp_atom *outp, *outt;
1949 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1950 	int i;
1951 
1952 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
1953 	drm_atomic_helper_wait_for_fences(dev, state, false);
1954 	drm_atomic_helper_wait_for_dependencies(state);
1955 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
1956 
1957 	if (atom->lock_core)
1958 		mutex_lock(&disp->mutex);
1959 
1960 	/* Disable head(s). */
1961 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1962 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1963 		struct nv50_head *head = nv50_head(crtc);
1964 
1965 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
1966 			  asyh->clr.mask, asyh->set.mask);
1967 
1968 		if (old_crtc_state->active && !new_crtc_state->active) {
1969 			pm_runtime_put_noidle(dev->dev);
1970 			drm_crtc_vblank_off(crtc);
1971 		}
1972 
1973 		if (asyh->clr.mask) {
1974 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
1975 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1976 		}
1977 	}
1978 
1979 	/* Disable plane(s). */
1980 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1981 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1982 		struct nv50_wndw *wndw = nv50_wndw(plane);
1983 
1984 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
1985 			  asyw->clr.mask, asyw->set.mask);
1986 		if (!asyw->clr.mask)
1987 			continue;
1988 
1989 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
1990 	}
1991 
1992 	/* Disable output path(s). */
1993 	list_for_each_entry(outp, &atom->outp, head) {
1994 		const struct drm_encoder_helper_funcs *help;
1995 		struct drm_encoder *encoder;
1996 
1997 		encoder = outp->encoder;
1998 		help = encoder->helper_private;
1999 
2000 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2001 			  outp->clr.mask, outp->set.mask);
2002 
2003 		if (outp->clr.mask) {
2004 			help->disable(encoder);
2005 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2006 			if (outp->flush_disable) {
2007 				nv50_disp_atomic_commit_wndw(state, interlock);
2008 				nv50_disp_atomic_commit_core(state, interlock);
2009 				memset(interlock, 0x00, sizeof(interlock));
2010 			}
2011 		}
2012 	}
2013 
2014 	/* Flush disable. */
2015 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2016 		if (atom->flush_disable) {
2017 			nv50_disp_atomic_commit_wndw(state, interlock);
2018 			nv50_disp_atomic_commit_core(state, interlock);
2019 			memset(interlock, 0x00, sizeof(interlock));
2020 		}
2021 	}
2022 
2023 	/* Update output path(s). */
2024 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2025 		const struct drm_encoder_helper_funcs *help;
2026 		struct drm_encoder *encoder;
2027 
2028 		encoder = outp->encoder;
2029 		help = encoder->helper_private;
2030 
2031 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2032 			  outp->set.mask, outp->clr.mask);
2033 
2034 		if (outp->set.mask) {
2035 			help->enable(encoder);
2036 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2037 		}
2038 
2039 		list_del(&outp->head);
2040 		kfree(outp);
2041 	}
2042 
2043 	/* Update head(s). */
2044 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2045 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2046 		struct nv50_head *head = nv50_head(crtc);
2047 
2048 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2049 			  asyh->set.mask, asyh->clr.mask);
2050 
2051 		if (asyh->set.mask) {
2052 			nv50_head_flush_set(head, asyh);
2053 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2054 		}
2055 
2056 		if (new_crtc_state->active) {
2057 			if (!old_crtc_state->active) {
2058 				drm_crtc_vblank_on(crtc);
2059 				pm_runtime_get_noresume(dev->dev);
2060 			}
2061 			if (new_crtc_state->event)
2062 				drm_crtc_vblank_get(crtc);
2063 		}
2064 	}
2065 
2066 	/* Update window->head assignment.
2067 	 *
2068 	 * This has to happen in an update that's not interlocked with
2069 	 * any window channels to avoid hitting HW error checks.
2070 	 *
2071 	 *TODO: Proper handling of window ownership (Turing apparently
2072 	 *      supports non-fixed mappings).
2073 	 */
2074 	if (core->assign_windows) {
2075 		core->func->wndw.owner(core);
2076 		core->func->update(core, interlock, false);
2077 		core->assign_windows = false;
2078 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2079 	}
2080 
2081 	/* Update plane(s). */
2082 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2083 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2084 		struct nv50_wndw *wndw = nv50_wndw(plane);
2085 
2086 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2087 			  asyw->set.mask, asyw->clr.mask);
2088 		if ( !asyw->set.mask &&
2089 		    (!asyw->clr.mask || atom->flush_disable))
2090 			continue;
2091 
2092 		nv50_wndw_flush_set(wndw, interlock, asyw);
2093 	}
2094 
2095 	/* Flush update. */
2096 	nv50_disp_atomic_commit_wndw(state, interlock);
2097 
2098 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2099 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2100 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2101 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2102 		    !atom->state.legacy_cursor_update)
2103 			nv50_disp_atomic_commit_core(state, interlock);
2104 		else
2105 			disp->core->func->update(disp->core, interlock, false);
2106 	}
2107 
2108 	if (atom->lock_core)
2109 		mutex_unlock(&disp->mutex);
2110 
2111 	/* Wait for HW to signal completion. */
2112 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2113 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2114 		struct nv50_wndw *wndw = nv50_wndw(plane);
2115 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2116 		if (ret)
2117 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2118 	}
2119 
2120 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2121 		if (new_crtc_state->event) {
2122 			unsigned long flags;
2123 			/* Get correct count/ts if racing with vblank irq */
2124 			if (new_crtc_state->active)
2125 				drm_crtc_accurate_vblank_count(crtc);
2126 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2127 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2128 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2129 
2130 			new_crtc_state->event = NULL;
2131 			if (new_crtc_state->active)
2132 				drm_crtc_vblank_put(crtc);
2133 		}
2134 	}
2135 
2136 	drm_atomic_helper_commit_hw_done(state);
2137 	drm_atomic_helper_cleanup_planes(dev, state);
2138 	drm_atomic_helper_commit_cleanup_done(state);
2139 	drm_atomic_state_put(state);
2140 
2141 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2142 	pm_runtime_mark_last_busy(dev->dev);
2143 	pm_runtime_put_autosuspend(dev->dev);
2144 }
2145 
2146 static void
2147 nv50_disp_atomic_commit_work(struct work_struct *work)
2148 {
2149 	struct drm_atomic_state *state =
2150 		container_of(work, typeof(*state), commit_work);
2151 	nv50_disp_atomic_commit_tail(state);
2152 }
2153 
2154 static int
2155 nv50_disp_atomic_commit(struct drm_device *dev,
2156 			struct drm_atomic_state *state, bool nonblock)
2157 {
2158 	struct drm_plane_state *new_plane_state;
2159 	struct drm_plane *plane;
2160 	int ret, i;
2161 
2162 	ret = pm_runtime_get_sync(dev->dev);
2163 	if (ret < 0 && ret != -EACCES)
2164 		return ret;
2165 
2166 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2167 	if (ret)
2168 		goto done;
2169 
2170 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2171 
2172 	ret = drm_atomic_helper_prepare_planes(dev, state);
2173 	if (ret)
2174 		goto done;
2175 
2176 	if (!nonblock) {
2177 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2178 		if (ret)
2179 			goto err_cleanup;
2180 	}
2181 
2182 	ret = drm_atomic_helper_swap_state(state, true);
2183 	if (ret)
2184 		goto err_cleanup;
2185 
2186 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2187 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2188 		struct nv50_wndw *wndw = nv50_wndw(plane);
2189 
2190 		if (asyw->set.image)
2191 			nv50_wndw_ntfy_enable(wndw, asyw);
2192 	}
2193 
2194 	drm_atomic_state_get(state);
2195 
2196 	/*
2197 	 * Grab another RPM ref for the commit tail, which will release the
2198 	 * ref when it's finished
2199 	 */
2200 	pm_runtime_get_noresume(dev->dev);
2201 
2202 	if (nonblock)
2203 		queue_work(system_unbound_wq, &state->commit_work);
2204 	else
2205 		nv50_disp_atomic_commit_tail(state);
2206 
2207 err_cleanup:
2208 	if (ret)
2209 		drm_atomic_helper_cleanup_planes(dev, state);
2210 done:
2211 	pm_runtime_put_autosuspend(dev->dev);
2212 	return ret;
2213 }
2214 
2215 static struct nv50_outp_atom *
2216 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2217 {
2218 	struct nv50_outp_atom *outp;
2219 
2220 	list_for_each_entry(outp, &atom->outp, head) {
2221 		if (outp->encoder == encoder)
2222 			return outp;
2223 	}
2224 
2225 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2226 	if (!outp)
2227 		return ERR_PTR(-ENOMEM);
2228 
2229 	list_add(&outp->head, &atom->outp);
2230 	outp->encoder = encoder;
2231 	return outp;
2232 }
2233 
2234 static int
2235 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2236 				struct drm_connector_state *old_connector_state)
2237 {
2238 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2239 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2240 	struct drm_crtc *crtc;
2241 	struct nv50_outp_atom *outp;
2242 
2243 	if (!(crtc = old_connector_state->crtc))
2244 		return 0;
2245 
2246 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2247 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2248 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2249 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2250 		if (IS_ERR(outp))
2251 			return PTR_ERR(outp);
2252 
2253 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2254 			outp->flush_disable = true;
2255 			atom->flush_disable = true;
2256 		}
2257 		outp->clr.ctrl = true;
2258 		atom->lock_core = true;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2266 				struct drm_connector_state *connector_state)
2267 {
2268 	struct drm_encoder *encoder = connector_state->best_encoder;
2269 	struct drm_crtc_state *new_crtc_state;
2270 	struct drm_crtc *crtc;
2271 	struct nv50_outp_atom *outp;
2272 
2273 	if (!(crtc = connector_state->crtc))
2274 		return 0;
2275 
2276 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2277 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2278 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2279 		if (IS_ERR(outp))
2280 			return PTR_ERR(outp);
2281 
2282 		outp->set.ctrl = true;
2283 		atom->lock_core = true;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int
2290 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2291 {
2292 	struct nv50_atom *atom = nv50_atom(state);
2293 	struct drm_connector_state *old_connector_state, *new_connector_state;
2294 	struct drm_connector *connector;
2295 	struct drm_crtc_state *new_crtc_state;
2296 	struct drm_crtc *crtc;
2297 	int ret, i;
2298 
2299 	/* We need to handle colour management on a per-plane basis. */
2300 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2301 		if (new_crtc_state->color_mgmt_changed) {
2302 			ret = drm_atomic_add_affected_planes(state, crtc);
2303 			if (ret)
2304 				return ret;
2305 		}
2306 	}
2307 
2308 	ret = drm_atomic_helper_check(dev, state);
2309 	if (ret)
2310 		return ret;
2311 
2312 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2313 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2314 		if (ret)
2315 			return ret;
2316 
2317 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2318 		if (ret)
2319 			return ret;
2320 	}
2321 
2322 	ret = drm_dp_mst_atomic_check(state);
2323 	if (ret)
2324 		return ret;
2325 
2326 	return 0;
2327 }
2328 
2329 static void
2330 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2331 {
2332 	struct nv50_atom *atom = nv50_atom(state);
2333 	struct nv50_outp_atom *outp, *outt;
2334 
2335 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2336 		list_del(&outp->head);
2337 		kfree(outp);
2338 	}
2339 
2340 	drm_atomic_state_default_clear(state);
2341 }
2342 
2343 static void
2344 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2345 {
2346 	struct nv50_atom *atom = nv50_atom(state);
2347 	drm_atomic_state_default_release(&atom->state);
2348 	kfree(atom);
2349 }
2350 
2351 static struct drm_atomic_state *
2352 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2353 {
2354 	struct nv50_atom *atom;
2355 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2356 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2357 		kfree(atom);
2358 		return NULL;
2359 	}
2360 	INIT_LIST_HEAD(&atom->outp);
2361 	return &atom->state;
2362 }
2363 
2364 static const struct drm_mode_config_funcs
2365 nv50_disp_func = {
2366 	.fb_create = nouveau_user_framebuffer_create,
2367 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2368 	.atomic_check = nv50_disp_atomic_check,
2369 	.atomic_commit = nv50_disp_atomic_commit,
2370 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2371 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2372 	.atomic_state_free = nv50_disp_atomic_state_free,
2373 };
2374 
2375 /******************************************************************************
2376  * Init
2377  *****************************************************************************/
2378 
2379 static void
2380 nv50_display_fini(struct drm_device *dev, bool suspend)
2381 {
2382 	struct nouveau_encoder *nv_encoder;
2383 	struct drm_encoder *encoder;
2384 	struct drm_plane *plane;
2385 
2386 	drm_for_each_plane(plane, dev) {
2387 		struct nv50_wndw *wndw = nv50_wndw(plane);
2388 		if (plane->funcs != &nv50_wndw)
2389 			continue;
2390 		nv50_wndw_fini(wndw);
2391 	}
2392 
2393 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2394 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2395 			nv_encoder = nouveau_encoder(encoder);
2396 			nv50_mstm_fini(nv_encoder->dp.mstm);
2397 		}
2398 	}
2399 }
2400 
2401 static int
2402 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2403 {
2404 	struct nv50_core *core = nv50_disp(dev)->core;
2405 	struct drm_encoder *encoder;
2406 	struct drm_plane *plane;
2407 
2408 	if (resume || runtime)
2409 		core->func->init(core);
2410 
2411 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2412 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2413 			struct nouveau_encoder *nv_encoder =
2414 				nouveau_encoder(encoder);
2415 			nv50_mstm_init(nv_encoder->dp.mstm, runtime);
2416 		}
2417 	}
2418 
2419 	drm_for_each_plane(plane, dev) {
2420 		struct nv50_wndw *wndw = nv50_wndw(plane);
2421 		if (plane->funcs != &nv50_wndw)
2422 			continue;
2423 		nv50_wndw_init(wndw);
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 static void
2430 nv50_display_destroy(struct drm_device *dev)
2431 {
2432 	struct nv50_disp *disp = nv50_disp(dev);
2433 
2434 	nv50_audio_component_fini(nouveau_drm(dev));
2435 
2436 	nvif_object_unmap(&disp->caps);
2437 	nvif_object_fini(&disp->caps);
2438 	nv50_core_del(&disp->core);
2439 
2440 	nouveau_bo_unmap(disp->sync);
2441 	if (disp->sync)
2442 		nouveau_bo_unpin(disp->sync);
2443 	nouveau_bo_ref(NULL, &disp->sync);
2444 
2445 	nouveau_display(dev)->priv = NULL;
2446 	kfree(disp);
2447 }
2448 
2449 int
2450 nv50_display_create(struct drm_device *dev)
2451 {
2452 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2453 	struct nouveau_drm *drm = nouveau_drm(dev);
2454 	struct dcb_table *dcb = &drm->vbios.dcb;
2455 	struct drm_connector *connector, *tmp;
2456 	struct nv50_disp *disp;
2457 	struct dcb_output *dcbe;
2458 	int crtcs, ret, i;
2459 	bool has_mst = nv50_has_mst(drm);
2460 
2461 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2462 	if (!disp)
2463 		return -ENOMEM;
2464 
2465 	mutex_init(&disp->mutex);
2466 
2467 	nouveau_display(dev)->priv = disp;
2468 	nouveau_display(dev)->dtor = nv50_display_destroy;
2469 	nouveau_display(dev)->init = nv50_display_init;
2470 	nouveau_display(dev)->fini = nv50_display_fini;
2471 	disp->disp = &nouveau_display(dev)->disp;
2472 	dev->mode_config.funcs = &nv50_disp_func;
2473 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2474 	dev->mode_config.normalize_zpos = true;
2475 
2476 	/* small shared memory area we use for notifiers and semaphores */
2477 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2478 			     0, 0x0000, NULL, NULL, &disp->sync);
2479 	if (!ret) {
2480 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2481 		if (!ret) {
2482 			ret = nouveau_bo_map(disp->sync);
2483 			if (ret)
2484 				nouveau_bo_unpin(disp->sync);
2485 		}
2486 		if (ret)
2487 			nouveau_bo_ref(NULL, &disp->sync);
2488 	}
2489 
2490 	if (ret)
2491 		goto out;
2492 
2493 	/* allocate master evo channel */
2494 	ret = nv50_core_new(drm, &disp->core);
2495 	if (ret)
2496 		goto out;
2497 
2498 	disp->core->func->init(disp->core);
2499 	if (disp->core->func->caps_init) {
2500 		ret = disp->core->func->caps_init(drm, disp);
2501 		if (ret)
2502 			goto out;
2503 	}
2504 
2505 	/* Assign the correct format modifiers */
2506 	if (disp->disp->object.oclass >= TU102_DISP)
2507 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2508 	else
2509 	if (disp->disp->object.oclass >= GF110_DISP)
2510 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2511 	else
2512 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2513 
2514 	/* create crtc objects to represent the hw heads */
2515 	if (disp->disp->object.oclass >= GV100_DISP)
2516 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2517 	else
2518 	if (disp->disp->object.oclass >= GF110_DISP)
2519 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2520 	else
2521 		crtcs = 0x3;
2522 
2523 	for (i = 0; i < fls(crtcs); i++) {
2524 		struct nv50_head *head;
2525 
2526 		if (!(crtcs & (1 << i)))
2527 			continue;
2528 
2529 		head = nv50_head_create(dev, i);
2530 		if (IS_ERR(head)) {
2531 			ret = PTR_ERR(head);
2532 			goto out;
2533 		}
2534 
2535 		if (has_mst) {
2536 			head->msto = nv50_msto_new(dev, head, i);
2537 			if (IS_ERR(head->msto)) {
2538 				ret = PTR_ERR(head->msto);
2539 				head->msto = NULL;
2540 				goto out;
2541 			}
2542 
2543 			/*
2544 			 * FIXME: This is a hack to workaround the following
2545 			 * issues:
2546 			 *
2547 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2548 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2549 			 *
2550 			 * Once these issues are closed, this should be
2551 			 * removed
2552 			 */
2553 			head->msto->encoder.possible_crtcs = crtcs;
2554 		}
2555 	}
2556 
2557 	/* create encoder/connector objects based on VBIOS DCB table */
2558 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2559 		connector = nouveau_connector_create(dev, dcbe);
2560 		if (IS_ERR(connector))
2561 			continue;
2562 
2563 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2564 			switch (dcbe->type) {
2565 			case DCB_OUTPUT_TMDS:
2566 			case DCB_OUTPUT_LVDS:
2567 			case DCB_OUTPUT_DP:
2568 				ret = nv50_sor_create(connector, dcbe);
2569 				break;
2570 			case DCB_OUTPUT_ANALOG:
2571 				ret = nv50_dac_create(connector, dcbe);
2572 				break;
2573 			default:
2574 				ret = -ENODEV;
2575 				break;
2576 			}
2577 		} else {
2578 			ret = nv50_pior_create(connector, dcbe);
2579 		}
2580 
2581 		if (ret) {
2582 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2583 				     dcbe->location, dcbe->type,
2584 				     ffs(dcbe->or) - 1, ret);
2585 			ret = 0;
2586 		}
2587 	}
2588 
2589 	/* cull any connectors we created that don't have an encoder */
2590 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2591 		if (connector->possible_encoders)
2592 			continue;
2593 
2594 		NV_WARN(drm, "%s has no encoders, removing\n",
2595 			connector->name);
2596 		connector->funcs->destroy(connector);
2597 	}
2598 
2599 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2600 	dev->vblank_disable_immediate = true;
2601 
2602 	nv50_audio_component_init(drm);
2603 
2604 out:
2605 	if (ret)
2606 		nv50_display_destroy(dev);
2607 	return ret;
2608 }
2609 
2610 /******************************************************************************
2611  * Format modifiers
2612  *****************************************************************************/
2613 
2614 /****************************************************************
2615  *            Log2(block height) ----------------------------+  *
2616  *            Page Kind ----------------------------------+  |  *
2617  *            Gob Height/Page Kind Generation ------+     |  |  *
2618  *                          Sector layout -------+  |     |  |  *
2619  *                          Compression ------+  |  |     |  |  */
2620 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2621 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2622 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2623 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2624 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2625 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2626 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2627 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2628 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2629 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2630 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2631 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2632 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2633 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2634 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2635 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2636 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2637 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2638 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2639 	DRM_FORMAT_MOD_LINEAR,
2640 	DRM_FORMAT_MOD_INVALID
2641 };
2642 
2643 /****************************************************************
2644  *            Log2(block height) ----------------------------+  *
2645  *            Page Kind ----------------------------------+  |  *
2646  *            Gob Height/Page Kind Generation ------+     |  |  *
2647  *                          Sector layout -------+  |     |  |  *
2648  *                          Compression ------+  |  |     |  |  */
2649 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2650 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2651 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2652 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2653 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2654 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2655 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2656 	DRM_FORMAT_MOD_LINEAR,
2657 	DRM_FORMAT_MOD_INVALID
2658 };
2659