1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fb_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_vblank.h> 44 45 #include <nvif/push507c.h> 46 47 #include <nvif/class.h> 48 #include <nvif/cl0002.h> 49 #include <nvif/event.h> 50 #include <nvif/if0012.h> 51 #include <nvif/if0014.h> 52 #include <nvif/timer.h> 53 54 #include <nvhw/class/cl507c.h> 55 #include <nvhw/class/cl507d.h> 56 #include <nvhw/class/cl837d.h> 57 #include <nvhw/class/cl887d.h> 58 #include <nvhw/class/cl907d.h> 59 #include <nvhw/class/cl917d.h> 60 61 #include "nouveau_drv.h" 62 #include "nouveau_dma.h" 63 #include "nouveau_gem.h" 64 #include "nouveau_connector.h" 65 #include "nouveau_encoder.h" 66 #include "nouveau_fence.h" 67 68 #include <subdev/bios/dp.h> 69 70 /****************************************************************************** 71 * EVO channel 72 *****************************************************************************/ 73 74 static int 75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 76 const s32 *oclass, u8 head, void *data, u32 size, 77 struct nv50_chan *chan) 78 { 79 struct nvif_sclass *sclass; 80 int ret, i, n; 81 82 chan->device = device; 83 84 ret = n = nvif_object_sclass_get(disp, &sclass); 85 if (ret < 0) 86 return ret; 87 88 while (oclass[0]) { 89 for (i = 0; i < n; i++) { 90 if (sclass[i].oclass == oclass[0]) { 91 ret = nvif_object_ctor(disp, "kmsChan", 0, 92 oclass[0], data, size, 93 &chan->user); 94 if (ret == 0) 95 nvif_object_map(&chan->user, NULL, 0); 96 nvif_object_sclass_put(&sclass); 97 return ret; 98 } 99 } 100 oclass++; 101 } 102 103 nvif_object_sclass_put(&sclass); 104 return -ENOSYS; 105 } 106 107 static void 108 nv50_chan_destroy(struct nv50_chan *chan) 109 { 110 nvif_object_dtor(&chan->user); 111 } 112 113 /****************************************************************************** 114 * DMA EVO channel 115 *****************************************************************************/ 116 117 void 118 nv50_dmac_destroy(struct nv50_dmac *dmac) 119 { 120 nvif_object_dtor(&dmac->vram); 121 nvif_object_dtor(&dmac->sync); 122 123 nv50_chan_destroy(&dmac->base); 124 125 nvif_mem_dtor(&dmac->_push.mem); 126 } 127 128 static void 129 nv50_dmac_kick(struct nvif_push *push) 130 { 131 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 132 133 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 134 if (dmac->put != dmac->cur) { 135 /* Push buffer fetches are not coherent with BAR1, we need to ensure 136 * writes have been flushed right through to VRAM before writing PUT. 137 */ 138 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 139 struct nvif_device *device = dmac->base.device; 140 nvif_wr32(&device->object, 0x070000, 0x00000001); 141 nvif_msec(device, 2000, 142 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 143 break; 144 ); 145 } 146 147 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 148 dmac->put = dmac->cur; 149 } 150 151 push->bgn = push->cur; 152 } 153 154 static int 155 nv50_dmac_free(struct nv50_dmac *dmac) 156 { 157 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 158 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 159 return get - dmac->cur - 5; 160 return dmac->max - dmac->cur; 161 } 162 163 static int 164 nv50_dmac_wind(struct nv50_dmac *dmac) 165 { 166 /* Wait for GET to depart from the beginning of the push buffer to 167 * prevent writing PUT == GET, which would be ignored by HW. 168 */ 169 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 170 if (get == 0) { 171 /* Corner-case, HW idle, but non-committed work pending. */ 172 if (dmac->put == 0) 173 nv50_dmac_kick(dmac->push); 174 175 if (nvif_msec(dmac->base.device, 2000, 176 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 177 break; 178 ) < 0) 179 return -ETIMEDOUT; 180 } 181 182 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 183 dmac->cur = 0; 184 return 0; 185 } 186 187 static int 188 nv50_dmac_wait(struct nvif_push *push, u32 size) 189 { 190 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 191 int free; 192 193 if (WARN_ON(size > dmac->max)) 194 return -EINVAL; 195 196 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 197 if (dmac->cur + size >= dmac->max) { 198 int ret = nv50_dmac_wind(dmac); 199 if (ret) 200 return ret; 201 202 push->cur = dmac->_push.mem.object.map.ptr; 203 push->cur = push->cur + dmac->cur; 204 nv50_dmac_kick(push); 205 } 206 207 if (nvif_msec(dmac->base.device, 2000, 208 if ((free = nv50_dmac_free(dmac)) >= size) 209 break; 210 ) < 0) { 211 WARN_ON(1); 212 return -ETIMEDOUT; 213 } 214 215 push->bgn = dmac->_push.mem.object.map.ptr; 216 push->bgn = push->bgn + dmac->cur; 217 push->cur = push->bgn; 218 push->end = push->cur + free; 219 return 0; 220 } 221 222 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 223 static int nv50_dmac_vram_pushbuf = -1; 224 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 225 226 int 227 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 228 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 229 struct nv50_dmac *dmac) 230 { 231 struct nouveau_cli *cli = (void *)device->object.client; 232 struct nvif_disp_chan_v0 *args = data; 233 u8 type = NVIF_MEM_COHERENT; 234 int ret; 235 236 mutex_init(&dmac->lock); 237 238 /* Pascal added support for 47-bit physical addresses, but some 239 * parts of EVO still only accept 40-bit PAs. 240 * 241 * To avoid issues on systems with large amounts of RAM, and on 242 * systems where an IOMMU maps pages at a high address, we need 243 * to allocate push buffers in VRAM instead. 244 * 245 * This appears to match NVIDIA's behaviour on Pascal. 246 */ 247 if ((nv50_dmac_vram_pushbuf > 0) || 248 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 249 type |= NVIF_MEM_VRAM; 250 251 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 252 &dmac->_push.mem); 253 if (ret) 254 return ret; 255 256 dmac->ptr = dmac->_push.mem.object.map.ptr; 257 dmac->_push.wait = nv50_dmac_wait; 258 dmac->_push.kick = nv50_dmac_kick; 259 dmac->push = &dmac->_push; 260 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 261 dmac->push->cur = dmac->push->bgn; 262 dmac->push->end = dmac->push->bgn; 263 dmac->max = 0x1000/4 - 1; 264 265 /* EVO channels are affected by a HW bug where the last 12 DWORDs 266 * of the push buffer aren't able to be used safely. 267 */ 268 if (disp->oclass < GV100_DISP) 269 dmac->max -= 12; 270 271 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 272 273 ret = nv50_chan_create(device, disp, oclass, head, data, size, 274 &dmac->base); 275 if (ret) 276 return ret; 277 278 if (syncbuf < 0) 279 return 0; 280 281 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 282 NV_DMA_IN_MEMORY, 283 &(struct nv_dma_v0) { 284 .target = NV_DMA_V0_TARGET_VRAM, 285 .access = NV_DMA_V0_ACCESS_RDWR, 286 .start = syncbuf + 0x0000, 287 .limit = syncbuf + 0x0fff, 288 }, sizeof(struct nv_dma_v0), 289 &dmac->sync); 290 if (ret) 291 return ret; 292 293 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 294 NV_DMA_IN_MEMORY, 295 &(struct nv_dma_v0) { 296 .target = NV_DMA_V0_TARGET_VRAM, 297 .access = NV_DMA_V0_ACCESS_RDWR, 298 .start = 0, 299 .limit = device->info.ram_user - 1, 300 }, sizeof(struct nv_dma_v0), 301 &dmac->vram); 302 if (ret) 303 return ret; 304 305 return ret; 306 } 307 308 /****************************************************************************** 309 * Output path helpers 310 *****************************************************************************/ 311 static void 312 nv50_outp_dump_caps(struct nouveau_drm *drm, 313 struct nouveau_encoder *outp) 314 { 315 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 316 outp->base.base.name, outp->caps.dp_interlace); 317 } 318 319 static int 320 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 321 struct drm_crtc_state *crtc_state, 322 struct drm_connector_state *conn_state, 323 struct drm_display_mode *native_mode) 324 { 325 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 326 struct drm_display_mode *mode = &crtc_state->mode; 327 struct drm_connector *connector = conn_state->connector; 328 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 329 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 330 331 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 332 asyc->scaler.full = false; 333 if (!native_mode) 334 return 0; 335 336 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 337 switch (connector->connector_type) { 338 case DRM_MODE_CONNECTOR_LVDS: 339 case DRM_MODE_CONNECTOR_eDP: 340 /* Don't force scaler for EDID modes with 341 * same size as the native one (e.g. different 342 * refresh rate) 343 */ 344 if (mode->hdisplay == native_mode->hdisplay && 345 mode->vdisplay == native_mode->vdisplay && 346 mode->type & DRM_MODE_TYPE_DRIVER) 347 break; 348 mode = native_mode; 349 asyc->scaler.full = true; 350 break; 351 default: 352 break; 353 } 354 } else { 355 mode = native_mode; 356 } 357 358 if (!drm_mode_equal(adjusted_mode, mode)) { 359 drm_mode_copy(adjusted_mode, mode); 360 crtc_state->mode_changed = true; 361 } 362 363 return 0; 364 } 365 366 static int 367 nv50_outp_atomic_check(struct drm_encoder *encoder, 368 struct drm_crtc_state *crtc_state, 369 struct drm_connector_state *conn_state) 370 { 371 struct drm_connector *connector = conn_state->connector; 372 struct nouveau_connector *nv_connector = nouveau_connector(connector); 373 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 374 int ret; 375 376 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 377 nv_connector->native_mode); 378 if (ret) 379 return ret; 380 381 if (crtc_state->mode_changed || crtc_state->connectors_changed) 382 asyh->or.bpc = connector->display_info.bpc; 383 384 return 0; 385 } 386 387 struct nouveau_connector * 388 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 389 { 390 struct drm_connector *connector; 391 struct drm_connector_state *connector_state; 392 struct drm_encoder *encoder = to_drm_encoder(outp); 393 int i; 394 395 for_each_new_connector_in_state(state, connector, connector_state, i) { 396 if (connector_state->best_encoder == encoder) 397 return nouveau_connector(connector); 398 } 399 400 return NULL; 401 } 402 403 struct nouveau_connector * 404 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 405 { 406 struct drm_connector *connector; 407 struct drm_connector_state *connector_state; 408 struct drm_encoder *encoder = to_drm_encoder(outp); 409 int i; 410 411 for_each_old_connector_in_state(state, connector, connector_state, i) { 412 if (connector_state->best_encoder == encoder) 413 return nouveau_connector(connector); 414 } 415 416 return NULL; 417 } 418 419 static struct nouveau_crtc * 420 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 421 { 422 struct drm_crtc *crtc; 423 struct drm_crtc_state *crtc_state; 424 const u32 mask = drm_encoder_mask(&outp->base.base); 425 int i; 426 427 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 428 if (crtc_state->encoder_mask & mask) 429 return nouveau_crtc(crtc); 430 } 431 432 return NULL; 433 } 434 435 /****************************************************************************** 436 * DAC 437 *****************************************************************************/ 438 static void 439 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 440 { 441 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 442 struct nv50_core *core = nv50_disp(encoder->dev)->core; 443 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 444 445 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 446 nv_encoder->crtc = NULL; 447 nvif_outp_release(&nv_encoder->outp); 448 } 449 450 static void 451 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 452 { 453 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 454 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 455 struct nv50_head_atom *asyh = 456 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 457 struct nv50_core *core = nv50_disp(encoder->dev)->core; 458 u32 ctrl = 0; 459 460 switch (nv_crtc->index) { 461 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 462 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 463 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 464 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 465 default: 466 WARN_ON(1); 467 break; 468 } 469 470 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 471 472 nvif_outp_acquire_rgb_crt(&nv_encoder->outp); 473 474 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 475 asyh->or.depth = 0; 476 477 nv_encoder->crtc = &nv_crtc->base; 478 } 479 480 static enum drm_connector_status 481 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 482 { 483 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 484 u32 loadval; 485 int ret; 486 487 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 488 if (loadval == 0) 489 loadval = 340; 490 491 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 492 if (ret <= 0) 493 return connector_status_disconnected; 494 495 return connector_status_connected; 496 } 497 498 static const struct drm_encoder_helper_funcs 499 nv50_dac_help = { 500 .atomic_check = nv50_outp_atomic_check, 501 .atomic_enable = nv50_dac_atomic_enable, 502 .atomic_disable = nv50_dac_atomic_disable, 503 .detect = nv50_dac_detect 504 }; 505 506 static void 507 nv50_dac_destroy(struct drm_encoder *encoder) 508 { 509 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 510 511 nvif_outp_dtor(&nv_encoder->outp); 512 513 drm_encoder_cleanup(encoder); 514 kfree(encoder); 515 } 516 517 static const struct drm_encoder_funcs 518 nv50_dac_func = { 519 .destroy = nv50_dac_destroy, 520 }; 521 522 static int 523 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) 524 { 525 struct nouveau_drm *drm = nouveau_drm(connector->dev); 526 struct nv50_disp *disp = nv50_disp(connector->dev); 527 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 528 struct nvkm_i2c_bus *bus; 529 struct nouveau_encoder *nv_encoder; 530 struct drm_encoder *encoder; 531 int type = DRM_MODE_ENCODER_DAC; 532 533 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 534 if (!nv_encoder) 535 return -ENOMEM; 536 nv_encoder->dcb = dcbe; 537 538 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 539 if (bus) 540 nv_encoder->i2c = &bus->i2c; 541 542 encoder = to_drm_encoder(nv_encoder); 543 encoder->possible_crtcs = dcbe->heads; 544 encoder->possible_clones = 0; 545 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 546 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 547 drm_encoder_helper_add(encoder, &nv50_dac_help); 548 549 drm_connector_attach_encoder(connector, encoder); 550 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 551 } 552 553 /* 554 * audio component binding for ELD notification 555 */ 556 static void 557 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 558 int dev_id) 559 { 560 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 561 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 562 port, dev_id); 563 } 564 565 static int 566 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 567 bool *enabled, unsigned char *buf, int max_bytes) 568 { 569 struct drm_device *drm_dev = dev_get_drvdata(kdev); 570 struct nouveau_drm *drm = nouveau_drm(drm_dev); 571 struct drm_encoder *encoder; 572 struct nouveau_encoder *nv_encoder; 573 struct nouveau_crtc *nv_crtc; 574 int ret = 0; 575 576 *enabled = false; 577 578 mutex_lock(&drm->audio.lock); 579 580 drm_for_each_encoder(encoder, drm->dev) { 581 struct nouveau_connector *nv_connector = NULL; 582 583 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 584 continue; /* TODO */ 585 586 nv_encoder = nouveau_encoder(encoder); 587 nv_connector = nouveau_connector(nv_encoder->audio.connector); 588 nv_crtc = nouveau_crtc(nv_encoder->crtc); 589 590 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 591 continue; 592 593 *enabled = nv_encoder->audio.enabled; 594 if (*enabled) { 595 ret = drm_eld_size(nv_connector->base.eld); 596 memcpy(buf, nv_connector->base.eld, 597 min(max_bytes, ret)); 598 } 599 break; 600 } 601 602 mutex_unlock(&drm->audio.lock); 603 604 return ret; 605 } 606 607 static const struct drm_audio_component_ops nv50_audio_component_ops = { 608 .get_eld = nv50_audio_component_get_eld, 609 }; 610 611 static int 612 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 613 void *data) 614 { 615 struct drm_device *drm_dev = dev_get_drvdata(kdev); 616 struct nouveau_drm *drm = nouveau_drm(drm_dev); 617 struct drm_audio_component *acomp = data; 618 619 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 620 return -ENOMEM; 621 622 drm_modeset_lock_all(drm_dev); 623 acomp->ops = &nv50_audio_component_ops; 624 acomp->dev = kdev; 625 drm->audio.component = acomp; 626 drm_modeset_unlock_all(drm_dev); 627 return 0; 628 } 629 630 static void 631 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 632 void *data) 633 { 634 struct drm_device *drm_dev = dev_get_drvdata(kdev); 635 struct nouveau_drm *drm = nouveau_drm(drm_dev); 636 struct drm_audio_component *acomp = data; 637 638 drm_modeset_lock_all(drm_dev); 639 drm->audio.component = NULL; 640 acomp->ops = NULL; 641 acomp->dev = NULL; 642 drm_modeset_unlock_all(drm_dev); 643 } 644 645 static const struct component_ops nv50_audio_component_bind_ops = { 646 .bind = nv50_audio_component_bind, 647 .unbind = nv50_audio_component_unbind, 648 }; 649 650 static void 651 nv50_audio_component_init(struct nouveau_drm *drm) 652 { 653 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 654 return; 655 656 drm->audio.component_registered = true; 657 mutex_init(&drm->audio.lock); 658 } 659 660 static void 661 nv50_audio_component_fini(struct nouveau_drm *drm) 662 { 663 if (!drm->audio.component_registered) 664 return; 665 666 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 667 drm->audio.component_registered = false; 668 mutex_destroy(&drm->audio.lock); 669 } 670 671 /****************************************************************************** 672 * Audio 673 *****************************************************************************/ 674 static bool 675 nv50_audio_supported(struct drm_encoder *encoder) 676 { 677 struct nv50_disp *disp = nv50_disp(encoder->dev); 678 679 if (disp->disp->object.oclass <= GT200_DISP || 680 disp->disp->object.oclass == GT206_DISP) 681 return false; 682 683 return true; 684 } 685 686 static void 687 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 688 { 689 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 690 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 691 struct nvif_outp *outp = &nv_encoder->outp; 692 693 if (!nv50_audio_supported(encoder)) 694 return; 695 696 mutex_lock(&drm->audio.lock); 697 if (nv_encoder->audio.enabled) { 698 nv_encoder->audio.enabled = false; 699 nv_encoder->audio.connector = NULL; 700 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 701 } 702 mutex_unlock(&drm->audio.lock); 703 704 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 705 } 706 707 static void 708 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 709 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 710 struct drm_display_mode *mode) 711 { 712 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 713 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 714 struct nvif_outp *outp = &nv_encoder->outp; 715 716 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 717 return; 718 719 mutex_lock(&drm->audio.lock); 720 721 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 722 drm_eld_size(nv_connector->base.eld)); 723 nv_encoder->audio.enabled = true; 724 nv_encoder->audio.connector = &nv_connector->base; 725 726 mutex_unlock(&drm->audio.lock); 727 728 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 729 } 730 731 /****************************************************************************** 732 * HDMI 733 *****************************************************************************/ 734 static void 735 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 736 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 737 struct drm_display_mode *mode, bool hda) 738 { 739 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 740 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 741 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 742 union hdmi_infoframe infoframe; 743 const u8 rekey = 56; /* binary driver, and tegra, constant */ 744 u8 config, scdc = 0; 745 u32 max_ac_packet; 746 struct { 747 struct nvif_outp_infoframe_v0 infoframe; 748 u8 data[17]; 749 } args; 750 int ret, size; 751 752 max_ac_packet = mode->htotal - mode->hdisplay; 753 max_ac_packet -= rekey; 754 max_ac_packet -= 18; /* constant from tegra */ 755 max_ac_packet /= 32; 756 757 if (hdmi->scdc.scrambling.supported) { 758 const bool high_tmds_clock_ratio = mode->clock > 340000; 759 760 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config); 761 if (ret < 0) { 762 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 763 return; 764 } 765 766 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 767 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 768 config |= SCDC_SCRAMBLING_ENABLE; 769 if (high_tmds_clock_ratio) 770 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 771 772 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config); 773 if (ret < 0) 774 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 775 config, ret); 776 777 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 778 scdc |= NVIF_OUTP_ACQUIRE_V0_TMDS_HDMI_SCDC_SCRAMBLE; 779 if (high_tmds_clock_ratio) 780 scdc |= NVIF_OUTP_ACQUIRE_V0_TMDS_HDMI_SCDC_DIV_BY_4; 781 } 782 783 ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true, 784 max_ac_packet, rekey, scdc, hda); 785 if (ret) 786 return; 787 788 /* AVI InfoFrame. */ 789 args.infoframe.version = 0; 790 args.infoframe.head = nv_crtc->index; 791 792 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 793 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 794 HDMI_QUANTIZATION_RANGE_FULL); 795 796 size = hdmi_infoframe_pack(&infoframe, args.data, 17); 797 } else { 798 size = 0; 799 } 800 801 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 802 803 /* Vendor InfoFrame. */ 804 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 805 &nv_connector->base, mode)) 806 size = hdmi_infoframe_pack(&infoframe, args.data, 17); 807 else 808 size = 0; 809 810 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 811 812 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 813 } 814 815 /****************************************************************************** 816 * MST 817 *****************************************************************************/ 818 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 819 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 820 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 821 822 struct nv50_mstc { 823 struct nv50_mstm *mstm; 824 struct drm_dp_mst_port *port; 825 struct drm_connector connector; 826 827 struct drm_display_mode *native; 828 struct edid *edid; 829 }; 830 831 struct nv50_msto { 832 struct drm_encoder encoder; 833 834 /* head is statically assigned on msto creation */ 835 struct nv50_head *head; 836 struct nv50_mstc *mstc; 837 bool disabled; 838 bool enabled; 839 }; 840 841 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 842 { 843 struct nv50_msto *msto; 844 845 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 846 return nouveau_encoder(encoder); 847 848 msto = nv50_msto(encoder); 849 if (!msto->mstc) 850 return NULL; 851 return msto->mstc->mstm->outp; 852 } 853 854 static void 855 nv50_msto_cleanup(struct drm_atomic_state *state, 856 struct drm_dp_mst_topology_state *mst_state, 857 struct drm_dp_mst_topology_mgr *mgr, 858 struct nv50_msto *msto) 859 { 860 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 861 struct drm_dp_mst_atomic_payload *payload = 862 drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port); 863 864 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 865 866 if (msto->disabled) { 867 msto->mstc = NULL; 868 msto->disabled = false; 869 } else if (msto->enabled) { 870 drm_dp_add_payload_part2(mgr, state, payload); 871 msto->enabled = false; 872 } 873 } 874 875 static void 876 nv50_msto_prepare(struct drm_atomic_state *state, 877 struct drm_dp_mst_topology_state *mst_state, 878 struct drm_dp_mst_topology_mgr *mgr, 879 struct nv50_msto *msto) 880 { 881 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 882 struct nv50_mstc *mstc = msto->mstc; 883 struct nv50_mstm *mstm = mstc->mstm; 884 struct drm_dp_mst_atomic_payload *payload; 885 886 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 887 888 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 889 890 // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here? 891 if (msto->disabled) { 892 drm_dp_remove_payload(mgr, mst_state, payload); 893 894 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 895 } else { 896 if (msto->enabled) 897 drm_dp_add_payload_part1(mgr, mst_state, payload); 898 899 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 900 payload->vc_start_slot, payload->time_slots, 901 payload->pbn, payload->time_slots * mst_state->pbn_div); 902 } 903 } 904 905 static int 906 nv50_msto_atomic_check(struct drm_encoder *encoder, 907 struct drm_crtc_state *crtc_state, 908 struct drm_connector_state *conn_state) 909 { 910 struct drm_atomic_state *state = crtc_state->state; 911 struct drm_connector *connector = conn_state->connector; 912 struct drm_dp_mst_topology_state *mst_state; 913 struct nv50_mstc *mstc = nv50_mstc(connector); 914 struct nv50_mstm *mstm = mstc->mstm; 915 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 916 int slots; 917 int ret; 918 919 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 920 mstc->native); 921 if (ret) 922 return ret; 923 924 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 925 return 0; 926 927 /* 928 * When restoring duplicated states, we need to make sure that the bw 929 * remains the same and avoid recalculating it, as the connector's bpc 930 * may have changed after the state was duplicated 931 */ 932 if (!state->duplicated) { 933 const int clock = crtc_state->adjusted_mode.clock; 934 935 asyh->or.bpc = connector->display_info.bpc; 936 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 937 false); 938 } 939 940 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 941 if (IS_ERR(mst_state)) 942 return PTR_ERR(mst_state); 943 944 if (!mst_state->pbn_div) { 945 struct nouveau_encoder *outp = mstc->mstm->outp; 946 947 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 948 outp->dp.link_bw, outp->dp.link_nr); 949 } 950 951 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 952 if (slots < 0) 953 return slots; 954 955 asyh->dp.tu = slots; 956 957 return 0; 958 } 959 960 static u8 961 nv50_dp_bpc_to_depth(unsigned int bpc) 962 { 963 switch (bpc) { 964 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 965 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 966 case 10: 967 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 968 } 969 } 970 971 static void 972 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 973 { 974 struct nv50_msto *msto = nv50_msto(encoder); 975 struct nv50_head *head = msto->head; 976 struct nv50_head_atom *asyh = 977 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 978 struct nv50_mstc *mstc = NULL; 979 struct nv50_mstm *mstm = NULL; 980 struct drm_connector *connector; 981 struct drm_connector_list_iter conn_iter; 982 u8 proto; 983 984 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 985 drm_for_each_connector_iter(connector, &conn_iter) { 986 if (connector->state->best_encoder == &msto->encoder) { 987 mstc = nv50_mstc(connector); 988 mstm = mstc->mstm; 989 break; 990 } 991 } 992 drm_connector_list_iter_end(&conn_iter); 993 994 if (WARN_ON(!mstc)) 995 return; 996 997 if (!mstm->links++) { 998 /*XXX: MST audio. */ 999 nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true); 1000 } 1001 1002 if (mstm->outp->outp.or.link & 1) 1003 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1004 else 1005 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1006 1007 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1008 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1009 1010 msto->mstc = mstc; 1011 msto->enabled = true; 1012 mstm->modified = true; 1013 } 1014 1015 static void 1016 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1017 { 1018 struct nv50_msto *msto = nv50_msto(encoder); 1019 struct nv50_mstc *mstc = msto->mstc; 1020 struct nv50_mstm *mstm = mstc->mstm; 1021 1022 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1023 mstm->modified = true; 1024 if (!--mstm->links) 1025 mstm->disabled = true; 1026 msto->disabled = true; 1027 } 1028 1029 static const struct drm_encoder_helper_funcs 1030 nv50_msto_help = { 1031 .atomic_disable = nv50_msto_atomic_disable, 1032 .atomic_enable = nv50_msto_atomic_enable, 1033 .atomic_check = nv50_msto_atomic_check, 1034 }; 1035 1036 static void 1037 nv50_msto_destroy(struct drm_encoder *encoder) 1038 { 1039 struct nv50_msto *msto = nv50_msto(encoder); 1040 drm_encoder_cleanup(&msto->encoder); 1041 kfree(msto); 1042 } 1043 1044 static const struct drm_encoder_funcs 1045 nv50_msto = { 1046 .destroy = nv50_msto_destroy, 1047 }; 1048 1049 static struct nv50_msto * 1050 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1051 { 1052 struct nv50_msto *msto; 1053 int ret; 1054 1055 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1056 if (!msto) 1057 return ERR_PTR(-ENOMEM); 1058 1059 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1060 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1061 if (ret) { 1062 kfree(msto); 1063 return ERR_PTR(ret); 1064 } 1065 1066 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1067 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1068 msto->head = head; 1069 return msto; 1070 } 1071 1072 static struct drm_encoder * 1073 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1074 struct drm_atomic_state *state) 1075 { 1076 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1077 connector); 1078 struct nv50_mstc *mstc = nv50_mstc(connector); 1079 struct drm_crtc *crtc = connector_state->crtc; 1080 1081 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1082 return NULL; 1083 1084 return &nv50_head(crtc)->msto->encoder; 1085 } 1086 1087 static enum drm_mode_status 1088 nv50_mstc_mode_valid(struct drm_connector *connector, 1089 struct drm_display_mode *mode) 1090 { 1091 struct nv50_mstc *mstc = nv50_mstc(connector); 1092 struct nouveau_encoder *outp = mstc->mstm->outp; 1093 1094 /* TODO: calculate the PBN from the dotclock and validate against the 1095 * MSTB's max possible PBN 1096 */ 1097 1098 return nv50_dp_mode_valid(connector, outp, mode, NULL); 1099 } 1100 1101 static int 1102 nv50_mstc_get_modes(struct drm_connector *connector) 1103 { 1104 struct nv50_mstc *mstc = nv50_mstc(connector); 1105 int ret = 0; 1106 1107 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1108 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1109 if (mstc->edid) 1110 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1111 1112 /* 1113 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1114 * to 8 to save bandwidth on the topology. In the future, we'll want 1115 * to properly fix this by dynamically selecting the highest possible 1116 * bpc that would fit in the topology 1117 */ 1118 if (connector->display_info.bpc) 1119 connector->display_info.bpc = 1120 clamp(connector->display_info.bpc, 6U, 8U); 1121 else 1122 connector->display_info.bpc = 8; 1123 1124 if (mstc->native) 1125 drm_mode_destroy(mstc->connector.dev, mstc->native); 1126 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1127 return ret; 1128 } 1129 1130 static int 1131 nv50_mstc_atomic_check(struct drm_connector *connector, 1132 struct drm_atomic_state *state) 1133 { 1134 struct nv50_mstc *mstc = nv50_mstc(connector); 1135 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1136 1137 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1138 } 1139 1140 static int 1141 nv50_mstc_detect(struct drm_connector *connector, 1142 struct drm_modeset_acquire_ctx *ctx, bool force) 1143 { 1144 struct nv50_mstc *mstc = nv50_mstc(connector); 1145 int ret; 1146 1147 if (drm_connector_is_unregistered(connector)) 1148 return connector_status_disconnected; 1149 1150 ret = pm_runtime_get_sync(connector->dev->dev); 1151 if (ret < 0 && ret != -EACCES) { 1152 pm_runtime_put_autosuspend(connector->dev->dev); 1153 return connector_status_disconnected; 1154 } 1155 1156 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1157 mstc->port); 1158 if (ret != connector_status_connected) 1159 goto out; 1160 1161 out: 1162 pm_runtime_mark_last_busy(connector->dev->dev); 1163 pm_runtime_put_autosuspend(connector->dev->dev); 1164 return ret; 1165 } 1166 1167 static const struct drm_connector_helper_funcs 1168 nv50_mstc_help = { 1169 .get_modes = nv50_mstc_get_modes, 1170 .mode_valid = nv50_mstc_mode_valid, 1171 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1172 .atomic_check = nv50_mstc_atomic_check, 1173 .detect_ctx = nv50_mstc_detect, 1174 }; 1175 1176 static void 1177 nv50_mstc_destroy(struct drm_connector *connector) 1178 { 1179 struct nv50_mstc *mstc = nv50_mstc(connector); 1180 1181 drm_connector_cleanup(&mstc->connector); 1182 drm_dp_mst_put_port_malloc(mstc->port); 1183 1184 kfree(mstc); 1185 } 1186 1187 static const struct drm_connector_funcs 1188 nv50_mstc = { 1189 .reset = nouveau_conn_reset, 1190 .fill_modes = drm_helper_probe_single_connector_modes, 1191 .destroy = nv50_mstc_destroy, 1192 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1193 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1194 .atomic_set_property = nouveau_conn_atomic_set_property, 1195 .atomic_get_property = nouveau_conn_atomic_get_property, 1196 }; 1197 1198 static int 1199 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1200 const char *path, struct nv50_mstc **pmstc) 1201 { 1202 struct drm_device *dev = mstm->outp->base.base.dev; 1203 struct drm_crtc *crtc; 1204 struct nv50_mstc *mstc; 1205 int ret; 1206 1207 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1208 return -ENOMEM; 1209 mstc->mstm = mstm; 1210 mstc->port = port; 1211 1212 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1213 DRM_MODE_CONNECTOR_DisplayPort); 1214 if (ret) { 1215 kfree(*pmstc); 1216 *pmstc = NULL; 1217 return ret; 1218 } 1219 1220 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1221 1222 mstc->connector.funcs->reset(&mstc->connector); 1223 nouveau_conn_attach_properties(&mstc->connector); 1224 1225 drm_for_each_crtc(crtc, dev) { 1226 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1227 continue; 1228 1229 drm_connector_attach_encoder(&mstc->connector, 1230 &nv50_head(crtc)->msto->encoder); 1231 } 1232 1233 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1234 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1235 drm_connector_set_path_property(&mstc->connector, path); 1236 drm_dp_mst_get_port_malloc(port); 1237 return 0; 1238 } 1239 1240 static void 1241 nv50_mstm_cleanup(struct drm_atomic_state *state, 1242 struct drm_dp_mst_topology_state *mst_state, 1243 struct nv50_mstm *mstm) 1244 { 1245 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1246 struct drm_encoder *encoder; 1247 1248 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1249 drm_dp_check_act_status(&mstm->mgr); 1250 1251 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1252 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1253 struct nv50_msto *msto = nv50_msto(encoder); 1254 struct nv50_mstc *mstc = msto->mstc; 1255 if (mstc && mstc->mstm == mstm) 1256 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1257 } 1258 } 1259 1260 mstm->modified = false; 1261 } 1262 1263 static void 1264 nv50_mstm_prepare(struct drm_atomic_state *state, 1265 struct drm_dp_mst_topology_state *mst_state, 1266 struct nv50_mstm *mstm) 1267 { 1268 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1269 struct drm_encoder *encoder; 1270 1271 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1272 1273 /* Disable payloads first */ 1274 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1275 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1276 struct nv50_msto *msto = nv50_msto(encoder); 1277 struct nv50_mstc *mstc = msto->mstc; 1278 if (mstc && mstc->mstm == mstm && msto->disabled) 1279 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1280 } 1281 } 1282 1283 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1284 * active) heads that may have had their VC slots shifted left after the previous step 1285 */ 1286 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1287 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1288 struct nv50_msto *msto = nv50_msto(encoder); 1289 struct nv50_mstc *mstc = msto->mstc; 1290 if (mstc && mstc->mstm == mstm && !msto->disabled) 1291 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1292 } 1293 } 1294 1295 if (mstm->disabled) { 1296 if (!mstm->links) 1297 nvif_outp_release(&mstm->outp->outp); 1298 mstm->disabled = false; 1299 } 1300 } 1301 1302 static struct drm_connector * 1303 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1304 struct drm_dp_mst_port *port, const char *path) 1305 { 1306 struct nv50_mstm *mstm = nv50_mstm(mgr); 1307 struct nv50_mstc *mstc; 1308 int ret; 1309 1310 ret = nv50_mstc_new(mstm, port, path, &mstc); 1311 if (ret) 1312 return NULL; 1313 1314 return &mstc->connector; 1315 } 1316 1317 static const struct drm_dp_mst_topology_cbs 1318 nv50_mstm = { 1319 .add_connector = nv50_mstm_add_connector, 1320 }; 1321 1322 bool 1323 nv50_mstm_service(struct nouveau_drm *drm, 1324 struct nouveau_connector *nv_connector, 1325 struct nv50_mstm *mstm) 1326 { 1327 struct drm_dp_aux *aux = &nv_connector->aux; 1328 bool handled = true, ret = true; 1329 int rc; 1330 u8 esi[8] = {}; 1331 1332 while (handled) { 1333 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1334 if (rc != 8) { 1335 ret = false; 1336 break; 1337 } 1338 1339 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); 1340 if (!handled) 1341 break; 1342 1343 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 1344 3); 1345 if (rc != 3) { 1346 ret = false; 1347 break; 1348 } 1349 } 1350 1351 if (!ret) 1352 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1353 nv_connector->base.name, rc); 1354 1355 return ret; 1356 } 1357 1358 void 1359 nv50_mstm_remove(struct nv50_mstm *mstm) 1360 { 1361 mstm->is_mst = false; 1362 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1363 } 1364 1365 int 1366 nv50_mstm_detect(struct nouveau_encoder *outp) 1367 { 1368 struct nv50_mstm *mstm = outp->dp.mstm; 1369 struct drm_dp_aux *aux; 1370 int ret; 1371 1372 if (!mstm || !mstm->can_mst) 1373 return 0; 1374 1375 aux = mstm->mgr.aux; 1376 1377 /* Clear any leftover MST state we didn't set ourselves by first 1378 * disabling MST if it was already enabled 1379 */ 1380 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1381 if (ret < 0) 1382 return ret; 1383 1384 /* And start enabling */ 1385 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1386 if (ret) 1387 return ret; 1388 1389 mstm->is_mst = true; 1390 return 1; 1391 } 1392 1393 static void 1394 nv50_mstm_fini(struct nouveau_encoder *outp) 1395 { 1396 struct nv50_mstm *mstm = outp->dp.mstm; 1397 1398 if (!mstm) 1399 return; 1400 1401 /* Don't change the MST state of this connector until we've finished 1402 * resuming, since we can't safely grab hpd_irq_lock in our resume 1403 * path to protect mstm->is_mst without potentially deadlocking 1404 */ 1405 mutex_lock(&outp->dp.hpd_irq_lock); 1406 mstm->suspended = true; 1407 mutex_unlock(&outp->dp.hpd_irq_lock); 1408 1409 if (mstm->is_mst) 1410 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1411 } 1412 1413 static void 1414 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1415 { 1416 struct nv50_mstm *mstm = outp->dp.mstm; 1417 int ret = 0; 1418 1419 if (!mstm) 1420 return; 1421 1422 if (mstm->is_mst) { 1423 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1424 if (ret == -1) 1425 nv50_mstm_remove(mstm); 1426 } 1427 1428 mutex_lock(&outp->dp.hpd_irq_lock); 1429 mstm->suspended = false; 1430 mutex_unlock(&outp->dp.hpd_irq_lock); 1431 1432 if (ret == -1) 1433 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1434 } 1435 1436 static void 1437 nv50_mstm_del(struct nv50_mstm **pmstm) 1438 { 1439 struct nv50_mstm *mstm = *pmstm; 1440 if (mstm) { 1441 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1442 kfree(*pmstm); 1443 *pmstm = NULL; 1444 } 1445 } 1446 1447 static int 1448 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1449 int conn_base_id, struct nv50_mstm **pmstm) 1450 { 1451 const int max_payloads = hweight8(outp->dcb->heads); 1452 struct drm_device *dev = outp->base.base.dev; 1453 struct nv50_mstm *mstm; 1454 int ret; 1455 1456 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1457 return -ENOMEM; 1458 mstm->outp = outp; 1459 mstm->mgr.cbs = &nv50_mstm; 1460 1461 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1462 max_payloads, conn_base_id); 1463 if (ret) 1464 return ret; 1465 1466 return 0; 1467 } 1468 1469 /****************************************************************************** 1470 * SOR 1471 *****************************************************************************/ 1472 static void 1473 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1474 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1475 { 1476 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1477 struct nv50_core *core = disp->core; 1478 1479 if (!asyh) { 1480 nv_encoder->ctrl &= ~BIT(head); 1481 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1482 nv_encoder->ctrl = 0; 1483 } else { 1484 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1485 nv_encoder->ctrl |= BIT(head); 1486 asyh->or.depth = depth; 1487 } 1488 1489 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1490 } 1491 1492 /* TODO: Should we extend this to PWM-only backlights? 1493 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1494 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1495 * fixed time delay from the vbios… 1496 */ 1497 static void 1498 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1499 { 1500 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1501 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); 1502 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1503 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1504 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1505 struct nouveau_backlight *backlight = nv_connector->backlight; 1506 #endif 1507 struct drm_dp_aux *aux = &nv_connector->aux; 1508 int ret; 1509 u8 pwr; 1510 1511 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1512 if (backlight && backlight->uses_dpcd) { 1513 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1514 if (ret < 0) 1515 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1516 nv_connector->base.base.id, nv_connector->base.name, ret); 1517 } 1518 #endif 1519 1520 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { 1521 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr); 1522 1523 if (ret == 0) { 1524 pwr &= ~DP_SET_POWER_MASK; 1525 pwr |= DP_SET_POWER_D3; 1526 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr); 1527 } 1528 } 1529 1530 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); 1531 nv50_audio_disable(encoder, nv_crtc); 1532 nvif_outp_release(&nv_encoder->outp); 1533 nv_encoder->crtc = NULL; 1534 } 1535 1536 static void 1537 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1538 { 1539 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1540 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1541 struct nv50_head_atom *asyh = 1542 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1543 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1544 struct nv50_disp *disp = nv50_disp(encoder->dev); 1545 struct nvif_outp *outp = &nv_encoder->outp; 1546 struct drm_device *dev = encoder->dev; 1547 struct nouveau_drm *drm = nouveau_drm(dev); 1548 struct nouveau_connector *nv_connector; 1549 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1550 struct nouveau_backlight *backlight; 1551 #endif 1552 struct nvbios *bios = &drm->vbios; 1553 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1554 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1555 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1556 1557 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1558 nv_encoder->crtc = &nv_crtc->base; 1559 1560 if ((disp->disp->object.oclass == GT214_DISP || 1561 disp->disp->object.oclass >= GF110_DISP) && 1562 drm_detect_monitor_audio(nv_connector->edid)) 1563 hda = true; 1564 1565 switch (nv_encoder->dcb->type) { 1566 case DCB_OUTPUT_TMDS: 1567 if (disp->disp->object.oclass == NV50_DISP || 1568 !drm_detect_hdmi_monitor(nv_connector->edid)) 1569 nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false); 1570 else 1571 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1572 1573 if (nv_encoder->outp.or.link & 1) { 1574 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1575 /* Only enable dual-link if: 1576 * - Need to (i.e. rate > 165MHz) 1577 * - DCB says we can 1578 * - Not an HDMI monitor, since there's no dual-link 1579 * on HDMI. 1580 */ 1581 if (mode->clock >= 165000 && 1582 nv_encoder->dcb->duallink_possible && 1583 !drm_detect_hdmi_monitor(nv_connector->edid)) 1584 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1585 } else { 1586 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1587 } 1588 break; 1589 case DCB_OUTPUT_LVDS: 1590 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1591 1592 if (bios->fp_no_ddc) { 1593 lvds_dual = bios->fp.dual_link; 1594 lvds_8bpc = bios->fp.if_is_24bit; 1595 } else { 1596 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1597 if (((u8 *)nv_connector->edid)[121] == 2) 1598 lvds_dual = true; 1599 } else 1600 if (mode->clock >= bios->fp.duallink_transition_clk) { 1601 lvds_dual = true; 1602 } 1603 1604 if (lvds_dual) { 1605 if (bios->fp.strapless_is_24bit & 2) 1606 lvds_8bpc = true; 1607 } else { 1608 if (bios->fp.strapless_is_24bit & 1) 1609 lvds_8bpc = true; 1610 } 1611 1612 if (asyh->or.bpc == 8) 1613 lvds_8bpc = true; 1614 } 1615 1616 nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1617 break; 1618 case DCB_OUTPUT_DP: 1619 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false); 1620 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1621 1622 if (nv_encoder->outp.or.link & 1) 1623 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1624 else 1625 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1626 1627 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 1628 1629 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1630 backlight = nv_connector->backlight; 1631 if (backlight && backlight->uses_dpcd) 1632 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1633 (u16)backlight->dev->props.brightness); 1634 #endif 1635 1636 break; 1637 default: 1638 BUG(); 1639 break; 1640 } 1641 1642 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1643 } 1644 1645 static const struct drm_encoder_helper_funcs 1646 nv50_sor_help = { 1647 .atomic_check = nv50_outp_atomic_check, 1648 .atomic_enable = nv50_sor_atomic_enable, 1649 .atomic_disable = nv50_sor_atomic_disable, 1650 }; 1651 1652 static void 1653 nv50_sor_destroy(struct drm_encoder *encoder) 1654 { 1655 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1656 1657 nvif_outp_dtor(&nv_encoder->outp); 1658 1659 nv50_mstm_del(&nv_encoder->dp.mstm); 1660 drm_encoder_cleanup(encoder); 1661 1662 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1663 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1664 1665 kfree(encoder); 1666 } 1667 1668 static const struct drm_encoder_funcs 1669 nv50_sor_func = { 1670 .destroy = nv50_sor_destroy, 1671 }; 1672 1673 bool nv50_has_mst(struct nouveau_drm *drm) 1674 { 1675 struct nvkm_bios *bios = nvxx_bios(&drm->client.device); 1676 u32 data; 1677 u8 ver, hdr, cnt, len; 1678 1679 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len); 1680 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04); 1681 } 1682 1683 static int 1684 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) 1685 { 1686 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1687 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1688 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1689 struct nouveau_encoder *nv_encoder; 1690 struct drm_encoder *encoder; 1691 struct nv50_disp *disp = nv50_disp(connector->dev); 1692 int type, ret; 1693 1694 switch (dcbe->type) { 1695 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1696 case DCB_OUTPUT_TMDS: 1697 case DCB_OUTPUT_DP: 1698 default: 1699 type = DRM_MODE_ENCODER_TMDS; 1700 break; 1701 } 1702 1703 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1704 if (!nv_encoder) 1705 return -ENOMEM; 1706 nv_encoder->dcb = dcbe; 1707 nv_encoder->update = nv50_sor_update; 1708 1709 encoder = to_drm_encoder(nv_encoder); 1710 encoder->possible_crtcs = dcbe->heads; 1711 encoder->possible_clones = 0; 1712 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1713 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1714 drm_encoder_helper_add(encoder, &nv50_sor_help); 1715 1716 drm_connector_attach_encoder(connector, encoder); 1717 1718 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1719 nv50_outp_dump_caps(drm, nv_encoder); 1720 1721 if (dcbe->type == DCB_OUTPUT_DP) { 1722 struct nvkm_i2c_aux *aux = 1723 nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1724 1725 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1726 1727 if (aux) { 1728 if (disp->disp->object.oclass < GF110_DISP) { 1729 /* HW has no support for address-only 1730 * transactions, so we're required to 1731 * use custom I2C-over-AUX code. 1732 */ 1733 nv_encoder->i2c = &aux->i2c; 1734 } else { 1735 nv_encoder->i2c = &nv_connector->aux.ddc; 1736 } 1737 nv_encoder->aux = aux; 1738 } 1739 1740 if (nv_connector->type != DCB_CONNECTOR_eDP && 1741 nv50_has_mst(drm)) { 1742 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1743 16, nv_connector->base.base.id, 1744 &nv_encoder->dp.mstm); 1745 if (ret) 1746 return ret; 1747 } 1748 } else { 1749 struct nvkm_i2c_bus *bus = 1750 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1751 if (bus) 1752 nv_encoder->i2c = &bus->i2c; 1753 } 1754 1755 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 1756 } 1757 1758 /****************************************************************************** 1759 * PIOR 1760 *****************************************************************************/ 1761 static int 1762 nv50_pior_atomic_check(struct drm_encoder *encoder, 1763 struct drm_crtc_state *crtc_state, 1764 struct drm_connector_state *conn_state) 1765 { 1766 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1767 if (ret) 1768 return ret; 1769 crtc_state->adjusted_mode.clock *= 2; 1770 return 0; 1771 } 1772 1773 static void 1774 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1775 { 1776 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1777 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1778 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1779 1780 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1781 nv_encoder->crtc = NULL; 1782 nvif_outp_release(&nv_encoder->outp); 1783 } 1784 1785 static void 1786 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1787 { 1788 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1789 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1790 struct nv50_head_atom *asyh = 1791 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1792 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1793 u32 ctrl = 0; 1794 1795 switch (nv_crtc->index) { 1796 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1797 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1798 default: 1799 WARN_ON(1); 1800 break; 1801 } 1802 1803 switch (asyh->or.bpc) { 1804 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1805 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1806 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1807 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1808 } 1809 1810 switch (nv_encoder->dcb->type) { 1811 case DCB_OUTPUT_TMDS: 1812 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1813 nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false); 1814 break; 1815 case DCB_OUTPUT_DP: 1816 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1817 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false); 1818 break; 1819 default: 1820 BUG(); 1821 break; 1822 } 1823 1824 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 1825 nv_encoder->crtc = &nv_crtc->base; 1826 } 1827 1828 static const struct drm_encoder_helper_funcs 1829 nv50_pior_help = { 1830 .atomic_check = nv50_pior_atomic_check, 1831 .atomic_enable = nv50_pior_atomic_enable, 1832 .atomic_disable = nv50_pior_atomic_disable, 1833 }; 1834 1835 static void 1836 nv50_pior_destroy(struct drm_encoder *encoder) 1837 { 1838 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1839 1840 nvif_outp_dtor(&nv_encoder->outp); 1841 1842 drm_encoder_cleanup(encoder); 1843 kfree(encoder); 1844 } 1845 1846 static const struct drm_encoder_funcs 1847 nv50_pior_func = { 1848 .destroy = nv50_pior_destroy, 1849 }; 1850 1851 static int 1852 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) 1853 { 1854 struct drm_device *dev = connector->dev; 1855 struct nouveau_drm *drm = nouveau_drm(dev); 1856 struct nv50_disp *disp = nv50_disp(dev); 1857 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1858 struct nvkm_i2c_bus *bus = NULL; 1859 struct nvkm_i2c_aux *aux = NULL; 1860 struct i2c_adapter *ddc; 1861 struct nouveau_encoder *nv_encoder; 1862 struct drm_encoder *encoder; 1863 int type; 1864 1865 switch (dcbe->type) { 1866 case DCB_OUTPUT_TMDS: 1867 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); 1868 ddc = bus ? &bus->i2c : NULL; 1869 type = DRM_MODE_ENCODER_TMDS; 1870 break; 1871 case DCB_OUTPUT_DP: 1872 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); 1873 ddc = aux ? &aux->i2c : NULL; 1874 type = DRM_MODE_ENCODER_TMDS; 1875 break; 1876 default: 1877 return -ENODEV; 1878 } 1879 1880 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1881 if (!nv_encoder) 1882 return -ENOMEM; 1883 nv_encoder->dcb = dcbe; 1884 nv_encoder->i2c = ddc; 1885 nv_encoder->aux = aux; 1886 1887 encoder = to_drm_encoder(nv_encoder); 1888 encoder->possible_crtcs = dcbe->heads; 1889 encoder->possible_clones = 0; 1890 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 1891 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 1892 drm_encoder_helper_add(encoder, &nv50_pior_help); 1893 1894 drm_connector_attach_encoder(connector, encoder); 1895 1896 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1897 nv50_outp_dump_caps(drm, nv_encoder); 1898 1899 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 1900 } 1901 1902 /****************************************************************************** 1903 * Atomic 1904 *****************************************************************************/ 1905 1906 static void 1907 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 1908 { 1909 struct drm_dp_mst_topology_mgr *mgr; 1910 struct drm_dp_mst_topology_state *mst_state; 1911 struct nouveau_drm *drm = nouveau_drm(state->dev); 1912 struct nv50_disp *disp = nv50_disp(drm->dev); 1913 struct nv50_core *core = disp->core; 1914 struct nv50_mstm *mstm; 1915 int i; 1916 1917 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 1918 1919 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1920 mstm = nv50_mstm(mgr); 1921 if (mstm->modified) 1922 nv50_mstm_prepare(state, mst_state, mstm); 1923 } 1924 1925 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 1926 core->func->update(core, interlock, true); 1927 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 1928 disp->core->chan.base.device)) 1929 NV_ERROR(drm, "core notifier timeout\n"); 1930 1931 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1932 mstm = nv50_mstm(mgr); 1933 if (mstm->modified) 1934 nv50_mstm_cleanup(state, mst_state, mstm); 1935 } 1936 } 1937 1938 static void 1939 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 1940 { 1941 struct drm_plane_state *new_plane_state; 1942 struct drm_plane *plane; 1943 int i; 1944 1945 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1946 struct nv50_wndw *wndw = nv50_wndw(plane); 1947 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 1948 if (wndw->func->update) 1949 wndw->func->update(wndw, interlock); 1950 } 1951 } 1952 } 1953 1954 static void 1955 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 1956 { 1957 struct drm_device *dev = state->dev; 1958 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 1959 struct drm_crtc *crtc; 1960 struct drm_plane_state *new_plane_state; 1961 struct drm_plane *plane; 1962 struct nouveau_drm *drm = nouveau_drm(dev); 1963 struct nv50_disp *disp = nv50_disp(dev); 1964 struct nv50_atom *atom = nv50_atom(state); 1965 struct nv50_core *core = disp->core; 1966 struct nv50_outp_atom *outp, *outt; 1967 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 1968 int i; 1969 bool flushed = false; 1970 1971 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 1972 nv50_crc_atomic_stop_reporting(state); 1973 drm_atomic_helper_wait_for_fences(dev, state, false); 1974 drm_atomic_helper_wait_for_dependencies(state); 1975 drm_dp_mst_atomic_wait_for_dependencies(state); 1976 drm_atomic_helper_update_legacy_modeset_state(dev, state); 1977 drm_atomic_helper_calc_timestamping_constants(state); 1978 1979 if (atom->lock_core) 1980 mutex_lock(&disp->mutex); 1981 1982 /* Disable head(s). */ 1983 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 1984 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 1985 struct nv50_head *head = nv50_head(crtc); 1986 1987 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 1988 asyh->clr.mask, asyh->set.mask); 1989 1990 if (old_crtc_state->active && !new_crtc_state->active) { 1991 pm_runtime_put_noidle(dev->dev); 1992 drm_crtc_vblank_off(crtc); 1993 } 1994 1995 if (asyh->clr.mask) { 1996 nv50_head_flush_clr(head, asyh, atom->flush_disable); 1997 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 1998 } 1999 } 2000 2001 /* Disable plane(s). */ 2002 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2003 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2004 struct nv50_wndw *wndw = nv50_wndw(plane); 2005 2006 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2007 asyw->clr.mask, asyw->set.mask); 2008 if (!asyw->clr.mask) 2009 continue; 2010 2011 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2012 } 2013 2014 /* Disable output path(s). */ 2015 list_for_each_entry(outp, &atom->outp, head) { 2016 const struct drm_encoder_helper_funcs *help; 2017 struct drm_encoder *encoder; 2018 2019 encoder = outp->encoder; 2020 help = encoder->helper_private; 2021 2022 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2023 outp->clr.mask, outp->set.mask); 2024 2025 if (outp->clr.mask) { 2026 help->atomic_disable(encoder, state); 2027 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2028 if (outp->flush_disable) { 2029 nv50_disp_atomic_commit_wndw(state, interlock); 2030 nv50_disp_atomic_commit_core(state, interlock); 2031 memset(interlock, 0x00, sizeof(interlock)); 2032 2033 flushed = true; 2034 } 2035 } 2036 } 2037 2038 /* Flush disable. */ 2039 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2040 if (atom->flush_disable) { 2041 nv50_disp_atomic_commit_wndw(state, interlock); 2042 nv50_disp_atomic_commit_core(state, interlock); 2043 memset(interlock, 0x00, sizeof(interlock)); 2044 2045 flushed = true; 2046 } 2047 } 2048 2049 if (flushed) 2050 nv50_crc_atomic_release_notifier_contexts(state); 2051 nv50_crc_atomic_init_notifier_contexts(state); 2052 2053 /* Update output path(s). */ 2054 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2055 const struct drm_encoder_helper_funcs *help; 2056 struct drm_encoder *encoder; 2057 2058 encoder = outp->encoder; 2059 help = encoder->helper_private; 2060 2061 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2062 outp->set.mask, outp->clr.mask); 2063 2064 if (outp->set.mask) { 2065 help->atomic_enable(encoder, state); 2066 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2067 } 2068 2069 list_del(&outp->head); 2070 kfree(outp); 2071 } 2072 2073 /* Update head(s). */ 2074 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2075 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2076 struct nv50_head *head = nv50_head(crtc); 2077 2078 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2079 asyh->set.mask, asyh->clr.mask); 2080 2081 if (asyh->set.mask) { 2082 nv50_head_flush_set(head, asyh); 2083 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2084 } 2085 2086 if (new_crtc_state->active) { 2087 if (!old_crtc_state->active) { 2088 drm_crtc_vblank_on(crtc); 2089 pm_runtime_get_noresume(dev->dev); 2090 } 2091 if (new_crtc_state->event) 2092 drm_crtc_vblank_get(crtc); 2093 } 2094 } 2095 2096 /* Update window->head assignment. 2097 * 2098 * This has to happen in an update that's not interlocked with 2099 * any window channels to avoid hitting HW error checks. 2100 * 2101 *TODO: Proper handling of window ownership (Turing apparently 2102 * supports non-fixed mappings). 2103 */ 2104 if (core->assign_windows) { 2105 core->func->wndw.owner(core); 2106 nv50_disp_atomic_commit_core(state, interlock); 2107 core->assign_windows = false; 2108 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2109 } 2110 2111 /* Finish updating head(s)... 2112 * 2113 * NVD is rather picky about both where window assignments can change, 2114 * *and* about certain core and window channel states matching. 2115 * 2116 * The EFI GOP driver on newer GPUs configures window channels with a 2117 * different output format to what we do, and the core channel update 2118 * in the assign_windows case above would result in a state mismatch. 2119 * 2120 * Delay some of the head update until after that point to workaround 2121 * the issue. This only affects the initial modeset. 2122 * 2123 * TODO: handle this better when adding flexible window mapping 2124 */ 2125 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2126 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2127 struct nv50_head *head = nv50_head(crtc); 2128 2129 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2130 asyh->set.mask, asyh->clr.mask); 2131 2132 if (asyh->set.mask) { 2133 nv50_head_flush_set_wndw(head, asyh); 2134 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2135 } 2136 } 2137 2138 /* Update plane(s). */ 2139 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2140 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2141 struct nv50_wndw *wndw = nv50_wndw(plane); 2142 2143 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2144 asyw->set.mask, asyw->clr.mask); 2145 if ( !asyw->set.mask && 2146 (!asyw->clr.mask || atom->flush_disable)) 2147 continue; 2148 2149 nv50_wndw_flush_set(wndw, interlock, asyw); 2150 } 2151 2152 /* Flush update. */ 2153 nv50_disp_atomic_commit_wndw(state, interlock); 2154 2155 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2156 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2157 interlock[NV50_DISP_INTERLOCK_OVLY] || 2158 interlock[NV50_DISP_INTERLOCK_WNDW] || 2159 !atom->state.legacy_cursor_update) 2160 nv50_disp_atomic_commit_core(state, interlock); 2161 else 2162 disp->core->func->update(disp->core, interlock, false); 2163 } 2164 2165 if (atom->lock_core) 2166 mutex_unlock(&disp->mutex); 2167 2168 /* Wait for HW to signal completion. */ 2169 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2170 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2171 struct nv50_wndw *wndw = nv50_wndw(plane); 2172 int ret = nv50_wndw_wait_armed(wndw, asyw); 2173 if (ret) 2174 NV_ERROR(drm, "%s: timeout\n", plane->name); 2175 } 2176 2177 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2178 if (new_crtc_state->event) { 2179 unsigned long flags; 2180 /* Get correct count/ts if racing with vblank irq */ 2181 if (new_crtc_state->active) 2182 drm_crtc_accurate_vblank_count(crtc); 2183 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2184 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2185 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2186 2187 new_crtc_state->event = NULL; 2188 if (new_crtc_state->active) 2189 drm_crtc_vblank_put(crtc); 2190 } 2191 } 2192 2193 nv50_crc_atomic_start_reporting(state); 2194 if (!flushed) 2195 nv50_crc_atomic_release_notifier_contexts(state); 2196 2197 drm_atomic_helper_commit_hw_done(state); 2198 drm_atomic_helper_cleanup_planes(dev, state); 2199 drm_atomic_helper_commit_cleanup_done(state); 2200 drm_atomic_state_put(state); 2201 2202 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2203 pm_runtime_mark_last_busy(dev->dev); 2204 pm_runtime_put_autosuspend(dev->dev); 2205 } 2206 2207 static void 2208 nv50_disp_atomic_commit_work(struct work_struct *work) 2209 { 2210 struct drm_atomic_state *state = 2211 container_of(work, typeof(*state), commit_work); 2212 nv50_disp_atomic_commit_tail(state); 2213 } 2214 2215 static int 2216 nv50_disp_atomic_commit(struct drm_device *dev, 2217 struct drm_atomic_state *state, bool nonblock) 2218 { 2219 struct drm_plane_state *new_plane_state; 2220 struct drm_plane *plane; 2221 int ret, i; 2222 2223 ret = pm_runtime_get_sync(dev->dev); 2224 if (ret < 0 && ret != -EACCES) { 2225 pm_runtime_put_autosuspend(dev->dev); 2226 return ret; 2227 } 2228 2229 ret = drm_atomic_helper_setup_commit(state, nonblock); 2230 if (ret) 2231 goto done; 2232 2233 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2234 2235 ret = drm_atomic_helper_prepare_planes(dev, state); 2236 if (ret) 2237 goto done; 2238 2239 if (!nonblock) { 2240 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2241 if (ret) 2242 goto err_cleanup; 2243 } 2244 2245 ret = drm_atomic_helper_swap_state(state, true); 2246 if (ret) 2247 goto err_cleanup; 2248 2249 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2250 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2251 struct nv50_wndw *wndw = nv50_wndw(plane); 2252 2253 if (asyw->set.image) 2254 nv50_wndw_ntfy_enable(wndw, asyw); 2255 } 2256 2257 drm_atomic_state_get(state); 2258 2259 /* 2260 * Grab another RPM ref for the commit tail, which will release the 2261 * ref when it's finished 2262 */ 2263 pm_runtime_get_noresume(dev->dev); 2264 2265 if (nonblock) 2266 queue_work(system_unbound_wq, &state->commit_work); 2267 else 2268 nv50_disp_atomic_commit_tail(state); 2269 2270 err_cleanup: 2271 if (ret) 2272 drm_atomic_helper_cleanup_planes(dev, state); 2273 done: 2274 pm_runtime_put_autosuspend(dev->dev); 2275 return ret; 2276 } 2277 2278 static struct nv50_outp_atom * 2279 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2280 { 2281 struct nv50_outp_atom *outp; 2282 2283 list_for_each_entry(outp, &atom->outp, head) { 2284 if (outp->encoder == encoder) 2285 return outp; 2286 } 2287 2288 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2289 if (!outp) 2290 return ERR_PTR(-ENOMEM); 2291 2292 list_add(&outp->head, &atom->outp); 2293 outp->encoder = encoder; 2294 return outp; 2295 } 2296 2297 static int 2298 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2299 struct drm_connector_state *old_connector_state) 2300 { 2301 struct drm_encoder *encoder = old_connector_state->best_encoder; 2302 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2303 struct drm_crtc *crtc; 2304 struct nv50_outp_atom *outp; 2305 2306 if (!(crtc = old_connector_state->crtc)) 2307 return 0; 2308 2309 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2310 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2311 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2312 outp = nv50_disp_outp_atomic_add(atom, encoder); 2313 if (IS_ERR(outp)) 2314 return PTR_ERR(outp); 2315 2316 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 2317 outp->flush_disable = true; 2318 atom->flush_disable = true; 2319 } 2320 outp->clr.ctrl = true; 2321 atom->lock_core = true; 2322 } 2323 2324 return 0; 2325 } 2326 2327 static int 2328 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2329 struct drm_connector_state *connector_state) 2330 { 2331 struct drm_encoder *encoder = connector_state->best_encoder; 2332 struct drm_crtc_state *new_crtc_state; 2333 struct drm_crtc *crtc; 2334 struct nv50_outp_atom *outp; 2335 2336 if (!(crtc = connector_state->crtc)) 2337 return 0; 2338 2339 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2340 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2341 outp = nv50_disp_outp_atomic_add(atom, encoder); 2342 if (IS_ERR(outp)) 2343 return PTR_ERR(outp); 2344 2345 outp->set.ctrl = true; 2346 atom->lock_core = true; 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int 2353 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2354 { 2355 struct nv50_atom *atom = nv50_atom(state); 2356 struct nv50_core *core = nv50_disp(dev)->core; 2357 struct drm_connector_state *old_connector_state, *new_connector_state; 2358 struct drm_connector *connector; 2359 struct drm_crtc_state *new_crtc_state; 2360 struct drm_crtc *crtc; 2361 struct nv50_head *head; 2362 struct nv50_head_atom *asyh; 2363 int ret, i; 2364 2365 if (core->assign_windows && core->func->head->static_wndw_map) { 2366 drm_for_each_crtc(crtc, dev) { 2367 new_crtc_state = drm_atomic_get_crtc_state(state, 2368 crtc); 2369 if (IS_ERR(new_crtc_state)) 2370 return PTR_ERR(new_crtc_state); 2371 2372 head = nv50_head(crtc); 2373 asyh = nv50_head_atom(new_crtc_state); 2374 core->func->head->static_wndw_map(head, asyh); 2375 } 2376 } 2377 2378 /* We need to handle colour management on a per-plane basis. */ 2379 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2380 if (new_crtc_state->color_mgmt_changed) { 2381 ret = drm_atomic_add_affected_planes(state, crtc); 2382 if (ret) 2383 return ret; 2384 } 2385 } 2386 2387 ret = drm_atomic_helper_check(dev, state); 2388 if (ret) 2389 return ret; 2390 2391 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2392 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2393 if (ret) 2394 return ret; 2395 2396 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2397 if (ret) 2398 return ret; 2399 } 2400 2401 ret = drm_dp_mst_atomic_check(state); 2402 if (ret) 2403 return ret; 2404 2405 nv50_crc_atomic_check_outp(atom); 2406 2407 return 0; 2408 } 2409 2410 static void 2411 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2412 { 2413 struct nv50_atom *atom = nv50_atom(state); 2414 struct nv50_outp_atom *outp, *outt; 2415 2416 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2417 list_del(&outp->head); 2418 kfree(outp); 2419 } 2420 2421 drm_atomic_state_default_clear(state); 2422 } 2423 2424 static void 2425 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2426 { 2427 struct nv50_atom *atom = nv50_atom(state); 2428 drm_atomic_state_default_release(&atom->state); 2429 kfree(atom); 2430 } 2431 2432 static struct drm_atomic_state * 2433 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2434 { 2435 struct nv50_atom *atom; 2436 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2437 drm_atomic_state_init(dev, &atom->state) < 0) { 2438 kfree(atom); 2439 return NULL; 2440 } 2441 INIT_LIST_HEAD(&atom->outp); 2442 return &atom->state; 2443 } 2444 2445 static const struct drm_mode_config_funcs 2446 nv50_disp_func = { 2447 .fb_create = nouveau_user_framebuffer_create, 2448 .output_poll_changed = drm_fb_helper_output_poll_changed, 2449 .atomic_check = nv50_disp_atomic_check, 2450 .atomic_commit = nv50_disp_atomic_commit, 2451 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2452 .atomic_state_clear = nv50_disp_atomic_state_clear, 2453 .atomic_state_free = nv50_disp_atomic_state_free, 2454 }; 2455 2456 static const struct drm_mode_config_helper_funcs 2457 nv50_disp_helper_func = { 2458 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2459 }; 2460 2461 /****************************************************************************** 2462 * Init 2463 *****************************************************************************/ 2464 2465 static void 2466 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2467 { 2468 struct nouveau_drm *drm = nouveau_drm(dev); 2469 struct drm_encoder *encoder; 2470 2471 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2472 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2473 nv50_mstm_fini(nouveau_encoder(encoder)); 2474 } 2475 2476 if (!runtime) 2477 cancel_work_sync(&drm->hpd_work); 2478 } 2479 2480 static int 2481 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2482 { 2483 struct nv50_core *core = nv50_disp(dev)->core; 2484 struct drm_encoder *encoder; 2485 2486 if (resume || runtime) 2487 core->func->init(core); 2488 2489 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2490 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2491 struct nouveau_encoder *nv_encoder = 2492 nouveau_encoder(encoder); 2493 nv50_mstm_init(nv_encoder, runtime); 2494 } 2495 } 2496 2497 return 0; 2498 } 2499 2500 static void 2501 nv50_display_destroy(struct drm_device *dev) 2502 { 2503 struct nv50_disp *disp = nv50_disp(dev); 2504 2505 nv50_audio_component_fini(nouveau_drm(dev)); 2506 2507 nvif_object_unmap(&disp->caps); 2508 nvif_object_dtor(&disp->caps); 2509 nv50_core_del(&disp->core); 2510 2511 nouveau_bo_unmap(disp->sync); 2512 if (disp->sync) 2513 nouveau_bo_unpin(disp->sync); 2514 nouveau_bo_ref(NULL, &disp->sync); 2515 2516 nouveau_display(dev)->priv = NULL; 2517 kfree(disp); 2518 } 2519 2520 int 2521 nv50_display_create(struct drm_device *dev) 2522 { 2523 struct nvif_device *device = &nouveau_drm(dev)->client.device; 2524 struct nouveau_drm *drm = nouveau_drm(dev); 2525 struct dcb_table *dcb = &drm->vbios.dcb; 2526 struct drm_connector *connector, *tmp; 2527 struct nv50_disp *disp; 2528 struct dcb_output *dcbe; 2529 int crtcs, ret, i; 2530 bool has_mst = nv50_has_mst(drm); 2531 2532 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2533 if (!disp) 2534 return -ENOMEM; 2535 2536 mutex_init(&disp->mutex); 2537 2538 nouveau_display(dev)->priv = disp; 2539 nouveau_display(dev)->dtor = nv50_display_destroy; 2540 nouveau_display(dev)->init = nv50_display_init; 2541 nouveau_display(dev)->fini = nv50_display_fini; 2542 disp->disp = &nouveau_display(dev)->disp; 2543 dev->mode_config.funcs = &nv50_disp_func; 2544 dev->mode_config.helper_private = &nv50_disp_helper_func; 2545 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2546 dev->mode_config.normalize_zpos = true; 2547 2548 /* small shared memory area we use for notifiers and semaphores */ 2549 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2550 NOUVEAU_GEM_DOMAIN_VRAM, 2551 0, 0x0000, NULL, NULL, &disp->sync); 2552 if (!ret) { 2553 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2554 if (!ret) { 2555 ret = nouveau_bo_map(disp->sync); 2556 if (ret) 2557 nouveau_bo_unpin(disp->sync); 2558 } 2559 if (ret) 2560 nouveau_bo_ref(NULL, &disp->sync); 2561 } 2562 2563 if (ret) 2564 goto out; 2565 2566 /* allocate master evo channel */ 2567 ret = nv50_core_new(drm, &disp->core); 2568 if (ret) 2569 goto out; 2570 2571 disp->core->func->init(disp->core); 2572 if (disp->core->func->caps_init) { 2573 ret = disp->core->func->caps_init(drm, disp); 2574 if (ret) 2575 goto out; 2576 } 2577 2578 /* Assign the correct format modifiers */ 2579 if (disp->disp->object.oclass >= TU102_DISP) 2580 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2581 else 2582 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2583 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2584 else 2585 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2586 2587 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2588 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2589 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2590 * small page allocations in prepare_fb(). When this is implemented, we should also force 2591 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2592 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2593 * large pages. 2594 */ 2595 if (disp->disp->object.oclass >= GM107_DISP) { 2596 dev->mode_config.cursor_width = 256; 2597 dev->mode_config.cursor_height = 256; 2598 } else if (disp->disp->object.oclass >= GK104_DISP) { 2599 dev->mode_config.cursor_width = 128; 2600 dev->mode_config.cursor_height = 128; 2601 } else { 2602 dev->mode_config.cursor_width = 64; 2603 dev->mode_config.cursor_height = 64; 2604 } 2605 2606 /* create crtc objects to represent the hw heads */ 2607 if (disp->disp->object.oclass >= GV100_DISP) 2608 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; 2609 else 2610 if (disp->disp->object.oclass >= GF110_DISP) 2611 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; 2612 else 2613 crtcs = 0x3; 2614 2615 for (i = 0; i < fls(crtcs); i++) { 2616 struct nv50_head *head; 2617 2618 if (!(crtcs & (1 << i))) 2619 continue; 2620 2621 head = nv50_head_create(dev, i); 2622 if (IS_ERR(head)) { 2623 ret = PTR_ERR(head); 2624 goto out; 2625 } 2626 2627 if (has_mst) { 2628 head->msto = nv50_msto_new(dev, head, i); 2629 if (IS_ERR(head->msto)) { 2630 ret = PTR_ERR(head->msto); 2631 head->msto = NULL; 2632 goto out; 2633 } 2634 2635 /* 2636 * FIXME: This is a hack to workaround the following 2637 * issues: 2638 * 2639 * https://gitlab.gnome.org/GNOME/mutter/issues/759 2640 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 2641 * 2642 * Once these issues are closed, this should be 2643 * removed 2644 */ 2645 head->msto->encoder.possible_crtcs = crtcs; 2646 } 2647 } 2648 2649 /* create encoder/connector objects based on VBIOS DCB table */ 2650 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { 2651 connector = nouveau_connector_create(dev, dcbe); 2652 if (IS_ERR(connector)) 2653 continue; 2654 2655 if (dcbe->location == DCB_LOC_ON_CHIP) { 2656 switch (dcbe->type) { 2657 case DCB_OUTPUT_TMDS: 2658 case DCB_OUTPUT_LVDS: 2659 case DCB_OUTPUT_DP: 2660 ret = nv50_sor_create(connector, dcbe); 2661 break; 2662 case DCB_OUTPUT_ANALOG: 2663 ret = nv50_dac_create(connector, dcbe); 2664 break; 2665 default: 2666 ret = -ENODEV; 2667 break; 2668 } 2669 } else { 2670 ret = nv50_pior_create(connector, dcbe); 2671 } 2672 2673 if (ret) { 2674 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2675 dcbe->location, dcbe->type, 2676 ffs(dcbe->or) - 1, ret); 2677 ret = 0; 2678 } 2679 } 2680 2681 /* cull any connectors we created that don't have an encoder */ 2682 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2683 if (connector->possible_encoders) 2684 continue; 2685 2686 NV_WARN(drm, "%s has no encoders, removing\n", 2687 connector->name); 2688 connector->funcs->destroy(connector); 2689 } 2690 2691 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2692 dev->vblank_disable_immediate = true; 2693 2694 nv50_audio_component_init(drm); 2695 2696 out: 2697 if (ret) 2698 nv50_display_destroy(dev); 2699 return ret; 2700 } 2701 2702 /****************************************************************************** 2703 * Format modifiers 2704 *****************************************************************************/ 2705 2706 /**************************************************************** 2707 * Log2(block height) ----------------------------+ * 2708 * Page Kind ----------------------------------+ | * 2709 * Gob Height/Page Kind Generation ------+ | | * 2710 * Sector layout -------+ | | | * 2711 * Compression ------+ | | | | */ 2712 const u64 disp50xx_modifiers[] = { /* | | | | | */ 2713 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 2714 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 2715 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 2716 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 2717 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 2718 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 2719 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 2720 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 2721 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 2722 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 2723 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 2724 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 2725 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 2726 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 2727 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 2728 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 2729 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 2730 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 2731 DRM_FORMAT_MOD_LINEAR, 2732 DRM_FORMAT_MOD_INVALID 2733 }; 2734 2735 /**************************************************************** 2736 * Log2(block height) ----------------------------+ * 2737 * Page Kind ----------------------------------+ | * 2738 * Gob Height/Page Kind Generation ------+ | | * 2739 * Sector layout -------+ | | | * 2740 * Compression ------+ | | | | */ 2741 const u64 disp90xx_modifiers[] = { /* | | | | | */ 2742 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 2743 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 2744 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 2745 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 2746 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 2747 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 2748 DRM_FORMAT_MOD_LINEAR, 2749 DRM_FORMAT_MOD_INVALID 2750 }; 2751