1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_dp_helper.h> 38 #include <drm/drm_edid.h> 39 #include <drm/drm_fb_helper.h> 40 #include <drm/drm_plane_helper.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_scdc_helper.h> 43 #include <drm/drm_vblank.h> 44 45 #include <nvif/push507c.h> 46 47 #include <nvif/class.h> 48 #include <nvif/cl0002.h> 49 #include <nvif/cl5070.h> 50 #include <nvif/cl507d.h> 51 #include <nvif/event.h> 52 #include <nvif/timer.h> 53 54 #include <nvhw/class/cl507c.h> 55 #include <nvhw/class/cl507d.h> 56 #include <nvhw/class/cl837d.h> 57 #include <nvhw/class/cl887d.h> 58 #include <nvhw/class/cl907d.h> 59 #include <nvhw/class/cl917d.h> 60 61 #include "nouveau_drv.h" 62 #include "nouveau_dma.h" 63 #include "nouveau_gem.h" 64 #include "nouveau_connector.h" 65 #include "nouveau_encoder.h" 66 #include "nouveau_fence.h" 67 #include "nouveau_fbcon.h" 68 69 #include <subdev/bios/dp.h> 70 71 /****************************************************************************** 72 * EVO channel 73 *****************************************************************************/ 74 75 static int 76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 77 const s32 *oclass, u8 head, void *data, u32 size, 78 struct nv50_chan *chan) 79 { 80 struct nvif_sclass *sclass; 81 int ret, i, n; 82 83 chan->device = device; 84 85 ret = n = nvif_object_sclass_get(disp, &sclass); 86 if (ret < 0) 87 return ret; 88 89 while (oclass[0]) { 90 for (i = 0; i < n; i++) { 91 if (sclass[i].oclass == oclass[0]) { 92 ret = nvif_object_ctor(disp, "kmsChan", 0, 93 oclass[0], data, size, 94 &chan->user); 95 if (ret == 0) 96 nvif_object_map(&chan->user, NULL, 0); 97 nvif_object_sclass_put(&sclass); 98 return ret; 99 } 100 } 101 oclass++; 102 } 103 104 nvif_object_sclass_put(&sclass); 105 return -ENOSYS; 106 } 107 108 static void 109 nv50_chan_destroy(struct nv50_chan *chan) 110 { 111 nvif_object_dtor(&chan->user); 112 } 113 114 /****************************************************************************** 115 * DMA EVO channel 116 *****************************************************************************/ 117 118 void 119 nv50_dmac_destroy(struct nv50_dmac *dmac) 120 { 121 nvif_object_dtor(&dmac->vram); 122 nvif_object_dtor(&dmac->sync); 123 124 nv50_chan_destroy(&dmac->base); 125 126 nvif_mem_dtor(&dmac->_push.mem); 127 } 128 129 static void 130 nv50_dmac_kick(struct nvif_push *push) 131 { 132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 133 134 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr; 135 if (dmac->put != dmac->cur) { 136 /* Push buffer fetches are not coherent with BAR1, we need to ensure 137 * writes have been flushed right through to VRAM before writing PUT. 138 */ 139 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 140 struct nvif_device *device = dmac->base.device; 141 nvif_wr32(&device->object, 0x070000, 0x00000001); 142 nvif_msec(device, 2000, 143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 144 break; 145 ); 146 } 147 148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 149 dmac->put = dmac->cur; 150 } 151 152 push->bgn = push->cur; 153 } 154 155 static int 156 nv50_dmac_free(struct nv50_dmac *dmac) 157 { 158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 160 return get - dmac->cur - 5; 161 return dmac->max - dmac->cur; 162 } 163 164 static int 165 nv50_dmac_wind(struct nv50_dmac *dmac) 166 { 167 /* Wait for GET to depart from the beginning of the push buffer to 168 * prevent writing PUT == GET, which would be ignored by HW. 169 */ 170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 171 if (get == 0) { 172 /* Corner-case, HW idle, but non-committed work pending. */ 173 if (dmac->put == 0) 174 nv50_dmac_kick(dmac->push); 175 176 if (nvif_msec(dmac->base.device, 2000, 177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 178 break; 179 ) < 0) 180 return -ETIMEDOUT; 181 } 182 183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 184 dmac->cur = 0; 185 return 0; 186 } 187 188 static int 189 nv50_dmac_wait(struct nvif_push *push, u32 size) 190 { 191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 192 int free; 193 194 if (WARN_ON(size > dmac->max)) 195 return -EINVAL; 196 197 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr; 198 if (dmac->cur + size >= dmac->max) { 199 int ret = nv50_dmac_wind(dmac); 200 if (ret) 201 return ret; 202 203 push->cur = dmac->_push.mem.object.map.ptr; 204 push->cur = push->cur + dmac->cur; 205 nv50_dmac_kick(push); 206 } 207 208 if (nvif_msec(dmac->base.device, 2000, 209 if ((free = nv50_dmac_free(dmac)) >= size) 210 break; 211 ) < 0) { 212 WARN_ON(1); 213 return -ETIMEDOUT; 214 } 215 216 push->bgn = dmac->_push.mem.object.map.ptr; 217 push->bgn = push->bgn + dmac->cur; 218 push->cur = push->bgn; 219 push->end = push->cur + free; 220 return 0; 221 } 222 223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 224 static int nv50_dmac_vram_pushbuf = -1; 225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 226 227 int 228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 230 struct nv50_dmac *dmac) 231 { 232 struct nouveau_cli *cli = (void *)device->object.client; 233 struct nv50_disp_core_channel_dma_v0 *args = data; 234 u8 type = NVIF_MEM_COHERENT; 235 int ret; 236 237 mutex_init(&dmac->lock); 238 239 /* Pascal added support for 47-bit physical addresses, but some 240 * parts of EVO still only accept 40-bit PAs. 241 * 242 * To avoid issues on systems with large amounts of RAM, and on 243 * systems where an IOMMU maps pages at a high address, we need 244 * to allocate push buffers in VRAM instead. 245 * 246 * This appears to match NVIDIA's behaviour on Pascal. 247 */ 248 if ((nv50_dmac_vram_pushbuf > 0) || 249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 250 type |= NVIF_MEM_VRAM; 251 252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 253 &dmac->_push.mem); 254 if (ret) 255 return ret; 256 257 dmac->ptr = dmac->_push.mem.object.map.ptr; 258 dmac->_push.wait = nv50_dmac_wait; 259 dmac->_push.kick = nv50_dmac_kick; 260 dmac->push = &dmac->_push; 261 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 262 dmac->push->cur = dmac->push->bgn; 263 dmac->push->end = dmac->push->bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static void 321 nv50_outp_release(struct nouveau_encoder *nv_encoder) 322 { 323 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 324 struct { 325 struct nv50_disp_mthd_v1 base; 326 } args = { 327 .base.version = 1, 328 .base.method = NV50_DISP_MTHD_V1_RELEASE, 329 .base.hasht = nv_encoder->dcb->hasht, 330 .base.hashm = nv_encoder->dcb->hashm, 331 }; 332 333 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 334 nv_encoder->or = -1; 335 nv_encoder->link = 0; 336 } 337 338 static int 339 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda) 340 { 341 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 342 struct nv50_disp *disp = nv50_disp(drm->dev); 343 struct { 344 struct nv50_disp_mthd_v1 base; 345 struct nv50_disp_acquire_v0 info; 346 } args = { 347 .base.version = 1, 348 .base.method = NV50_DISP_MTHD_V1_ACQUIRE, 349 .base.hasht = nv_encoder->dcb->hasht, 350 .base.hashm = nv_encoder->dcb->hashm, 351 .info.hda = hda, 352 }; 353 int ret; 354 355 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 356 if (ret) { 357 NV_ERROR(drm, "error acquiring output path: %d\n", ret); 358 return ret; 359 } 360 361 nv_encoder->or = args.info.or; 362 nv_encoder->link = args.info.link; 363 return 0; 364 } 365 366 static int 367 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 368 struct drm_crtc_state *crtc_state, 369 struct drm_connector_state *conn_state, 370 struct drm_display_mode *native_mode) 371 { 372 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 373 struct drm_display_mode *mode = &crtc_state->mode; 374 struct drm_connector *connector = conn_state->connector; 375 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 376 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 377 378 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 379 asyc->scaler.full = false; 380 if (!native_mode) 381 return 0; 382 383 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 384 switch (connector->connector_type) { 385 case DRM_MODE_CONNECTOR_LVDS: 386 case DRM_MODE_CONNECTOR_eDP: 387 /* Don't force scaler for EDID modes with 388 * same size as the native one (e.g. different 389 * refresh rate) 390 */ 391 if (mode->hdisplay == native_mode->hdisplay && 392 mode->vdisplay == native_mode->vdisplay && 393 mode->type & DRM_MODE_TYPE_DRIVER) 394 break; 395 mode = native_mode; 396 asyc->scaler.full = true; 397 break; 398 default: 399 break; 400 } 401 } else { 402 mode = native_mode; 403 } 404 405 if (!drm_mode_equal(adjusted_mode, mode)) { 406 drm_mode_copy(adjusted_mode, mode); 407 crtc_state->mode_changed = true; 408 } 409 410 return 0; 411 } 412 413 static int 414 nv50_outp_atomic_check(struct drm_encoder *encoder, 415 struct drm_crtc_state *crtc_state, 416 struct drm_connector_state *conn_state) 417 { 418 struct drm_connector *connector = conn_state->connector; 419 struct nouveau_connector *nv_connector = nouveau_connector(connector); 420 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 421 int ret; 422 423 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 424 nv_connector->native_mode); 425 if (ret) 426 return ret; 427 428 if (crtc_state->mode_changed || crtc_state->connectors_changed) 429 asyh->or.bpc = connector->display_info.bpc; 430 431 return 0; 432 } 433 434 struct nouveau_connector * 435 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 436 { 437 struct drm_connector *connector; 438 struct drm_connector_state *connector_state; 439 struct drm_encoder *encoder = to_drm_encoder(outp); 440 int i; 441 442 for_each_new_connector_in_state(state, connector, connector_state, i) { 443 if (connector_state->best_encoder == encoder) 444 return nouveau_connector(connector); 445 } 446 447 return NULL; 448 } 449 450 struct nouveau_connector * 451 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 452 { 453 struct drm_connector *connector; 454 struct drm_connector_state *connector_state; 455 struct drm_encoder *encoder = to_drm_encoder(outp); 456 int i; 457 458 for_each_old_connector_in_state(state, connector, connector_state, i) { 459 if (connector_state->best_encoder == encoder) 460 return nouveau_connector(connector); 461 } 462 463 return NULL; 464 } 465 466 static struct nouveau_crtc * 467 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 468 { 469 struct drm_crtc *crtc; 470 struct drm_crtc_state *crtc_state; 471 const u32 mask = drm_encoder_mask(&outp->base.base); 472 int i; 473 474 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 475 if (crtc_state->encoder_mask & mask) 476 return nouveau_crtc(crtc); 477 } 478 479 return NULL; 480 } 481 482 /****************************************************************************** 483 * DAC 484 *****************************************************************************/ 485 static void 486 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 487 { 488 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 489 struct nv50_core *core = nv50_disp(encoder->dev)->core; 490 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 491 492 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL); 493 nv_encoder->crtc = NULL; 494 nv50_outp_release(nv_encoder); 495 } 496 497 static void 498 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 499 { 500 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 501 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 502 struct nv50_head_atom *asyh = 503 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 504 struct nv50_core *core = nv50_disp(encoder->dev)->core; 505 u32 ctrl = 0; 506 507 switch (nv_crtc->index) { 508 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 509 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 510 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 511 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 512 default: 513 WARN_ON(1); 514 break; 515 } 516 517 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 518 519 nv50_outp_acquire(nv_encoder, false); 520 521 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh); 522 asyh->or.depth = 0; 523 524 nv_encoder->crtc = &nv_crtc->base; 525 } 526 527 static enum drm_connector_status 528 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 529 { 530 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 531 struct nv50_disp *disp = nv50_disp(encoder->dev); 532 struct { 533 struct nv50_disp_mthd_v1 base; 534 struct nv50_disp_dac_load_v0 load; 535 } args = { 536 .base.version = 1, 537 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, 538 .base.hasht = nv_encoder->dcb->hasht, 539 .base.hashm = nv_encoder->dcb->hashm, 540 }; 541 int ret; 542 543 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; 544 if (args.load.data == 0) 545 args.load.data = 340; 546 547 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 548 if (ret || !args.load.load) 549 return connector_status_disconnected; 550 551 return connector_status_connected; 552 } 553 554 static const struct drm_encoder_helper_funcs 555 nv50_dac_help = { 556 .atomic_check = nv50_outp_atomic_check, 557 .atomic_enable = nv50_dac_atomic_enable, 558 .atomic_disable = nv50_dac_atomic_disable, 559 .detect = nv50_dac_detect 560 }; 561 562 static void 563 nv50_dac_destroy(struct drm_encoder *encoder) 564 { 565 drm_encoder_cleanup(encoder); 566 kfree(encoder); 567 } 568 569 static const struct drm_encoder_funcs 570 nv50_dac_func = { 571 .destroy = nv50_dac_destroy, 572 }; 573 574 static int 575 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) 576 { 577 struct nouveau_drm *drm = nouveau_drm(connector->dev); 578 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 579 struct nvkm_i2c_bus *bus; 580 struct nouveau_encoder *nv_encoder; 581 struct drm_encoder *encoder; 582 int type = DRM_MODE_ENCODER_DAC; 583 584 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 585 if (!nv_encoder) 586 return -ENOMEM; 587 nv_encoder->dcb = dcbe; 588 589 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 590 if (bus) 591 nv_encoder->i2c = &bus->i2c; 592 593 encoder = to_drm_encoder(nv_encoder); 594 encoder->possible_crtcs = dcbe->heads; 595 encoder->possible_clones = 0; 596 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 597 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 598 drm_encoder_helper_add(encoder, &nv50_dac_help); 599 600 drm_connector_attach_encoder(connector, encoder); 601 return 0; 602 } 603 604 /* 605 * audio component binding for ELD notification 606 */ 607 static void 608 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 609 int dev_id) 610 { 611 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 612 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 613 port, dev_id); 614 } 615 616 static int 617 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 618 bool *enabled, unsigned char *buf, int max_bytes) 619 { 620 struct drm_device *drm_dev = dev_get_drvdata(kdev); 621 struct nouveau_drm *drm = nouveau_drm(drm_dev); 622 struct drm_encoder *encoder; 623 struct nouveau_encoder *nv_encoder; 624 struct nouveau_crtc *nv_crtc; 625 int ret = 0; 626 627 *enabled = false; 628 629 mutex_lock(&drm->audio.lock); 630 631 drm_for_each_encoder(encoder, drm->dev) { 632 struct nouveau_connector *nv_connector = NULL; 633 634 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 635 continue; /* TODO */ 636 637 nv_encoder = nouveau_encoder(encoder); 638 nv_connector = nouveau_connector(nv_encoder->audio.connector); 639 nv_crtc = nouveau_crtc(nv_encoder->crtc); 640 641 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id) 642 continue; 643 644 *enabled = nv_encoder->audio.enabled; 645 if (*enabled) { 646 ret = drm_eld_size(nv_connector->base.eld); 647 memcpy(buf, nv_connector->base.eld, 648 min(max_bytes, ret)); 649 } 650 break; 651 } 652 653 mutex_unlock(&drm->audio.lock); 654 655 return ret; 656 } 657 658 static const struct drm_audio_component_ops nv50_audio_component_ops = { 659 .get_eld = nv50_audio_component_get_eld, 660 }; 661 662 static int 663 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 664 void *data) 665 { 666 struct drm_device *drm_dev = dev_get_drvdata(kdev); 667 struct nouveau_drm *drm = nouveau_drm(drm_dev); 668 struct drm_audio_component *acomp = data; 669 670 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 671 return -ENOMEM; 672 673 drm_modeset_lock_all(drm_dev); 674 acomp->ops = &nv50_audio_component_ops; 675 acomp->dev = kdev; 676 drm->audio.component = acomp; 677 drm_modeset_unlock_all(drm_dev); 678 return 0; 679 } 680 681 static void 682 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 683 void *data) 684 { 685 struct drm_device *drm_dev = dev_get_drvdata(kdev); 686 struct nouveau_drm *drm = nouveau_drm(drm_dev); 687 struct drm_audio_component *acomp = data; 688 689 drm_modeset_lock_all(drm_dev); 690 drm->audio.component = NULL; 691 acomp->ops = NULL; 692 acomp->dev = NULL; 693 drm_modeset_unlock_all(drm_dev); 694 } 695 696 static const struct component_ops nv50_audio_component_bind_ops = { 697 .bind = nv50_audio_component_bind, 698 .unbind = nv50_audio_component_unbind, 699 }; 700 701 static void 702 nv50_audio_component_init(struct nouveau_drm *drm) 703 { 704 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 705 return; 706 707 drm->audio.component_registered = true; 708 mutex_init(&drm->audio.lock); 709 } 710 711 static void 712 nv50_audio_component_fini(struct nouveau_drm *drm) 713 { 714 if (!drm->audio.component_registered) 715 return; 716 717 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 718 drm->audio.component_registered = false; 719 mutex_destroy(&drm->audio.lock); 720 } 721 722 /****************************************************************************** 723 * Audio 724 *****************************************************************************/ 725 static void 726 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 727 { 728 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 729 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 730 struct nv50_disp *disp = nv50_disp(encoder->dev); 731 struct { 732 struct nv50_disp_mthd_v1 base; 733 struct nv50_disp_sor_hda_eld_v0 eld; 734 } args = { 735 .base.version = 1, 736 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 737 .base.hasht = nv_encoder->dcb->hasht, 738 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 739 (0x0100 << nv_crtc->index), 740 }; 741 742 mutex_lock(&drm->audio.lock); 743 if (nv_encoder->audio.enabled) { 744 nv_encoder->audio.enabled = false; 745 nv_encoder->audio.connector = NULL; 746 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 747 } 748 mutex_unlock(&drm->audio.lock); 749 750 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or, 751 nv_crtc->index); 752 } 753 754 static void 755 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 756 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 757 struct drm_display_mode *mode) 758 { 759 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 760 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 761 struct nv50_disp *disp = nv50_disp(encoder->dev); 762 struct __packed { 763 struct { 764 struct nv50_disp_mthd_v1 mthd; 765 struct nv50_disp_sor_hda_eld_v0 eld; 766 } base; 767 u8 data[sizeof(nv_connector->base.eld)]; 768 } args = { 769 .base.mthd.version = 1, 770 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 771 .base.mthd.hasht = nv_encoder->dcb->hasht, 772 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 773 (0x0100 << nv_crtc->index), 774 }; 775 776 if (!drm_detect_monitor_audio(nv_connector->edid)) 777 return; 778 779 mutex_lock(&drm->audio.lock); 780 781 memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); 782 783 nvif_mthd(&disp->disp->object, 0, &args, 784 sizeof(args.base) + drm_eld_size(args.data)); 785 nv_encoder->audio.enabled = true; 786 nv_encoder->audio.connector = &nv_connector->base; 787 788 mutex_unlock(&drm->audio.lock); 789 790 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or, 791 nv_crtc->index); 792 } 793 794 /****************************************************************************** 795 * HDMI 796 *****************************************************************************/ 797 static void 798 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 799 { 800 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 801 struct nv50_disp *disp = nv50_disp(encoder->dev); 802 struct { 803 struct nv50_disp_mthd_v1 base; 804 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 805 } args = { 806 .base.version = 1, 807 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 808 .base.hasht = nv_encoder->dcb->hasht, 809 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 810 (0x0100 << nv_crtc->index), 811 }; 812 813 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 814 } 815 816 static void 817 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 818 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 819 struct drm_display_mode *mode) 820 { 821 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 822 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 823 struct nv50_disp *disp = nv50_disp(encoder->dev); 824 struct { 825 struct nv50_disp_mthd_v1 base; 826 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 827 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */ 828 } args = { 829 .base.version = 1, 830 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 831 .base.hasht = nv_encoder->dcb->hasht, 832 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 833 (0x0100 << nv_crtc->index), 834 .pwr.state = 1, 835 .pwr.rekey = 56, /* binary driver, and tegra, constant */ 836 }; 837 struct drm_hdmi_info *hdmi; 838 u32 max_ac_packet; 839 union hdmi_infoframe avi_frame; 840 union hdmi_infoframe vendor_frame; 841 bool high_tmds_clock_ratio = false, scrambling = false; 842 u8 config; 843 int ret; 844 int size; 845 846 if (!drm_detect_hdmi_monitor(nv_connector->edid)) 847 return; 848 849 hdmi = &nv_connector->base.display_info.hdmi; 850 851 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, 852 &nv_connector->base, mode); 853 if (!ret) { 854 /* We have an AVI InfoFrame, populate it to the display */ 855 args.pwr.avi_infoframe_length 856 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17); 857 } 858 859 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi, 860 &nv_connector->base, mode); 861 if (!ret) { 862 /* We have a Vendor InfoFrame, populate it to the display */ 863 args.pwr.vendor_infoframe_length 864 = hdmi_infoframe_pack(&vendor_frame, 865 args.infoframes 866 + args.pwr.avi_infoframe_length, 867 17); 868 } 869 870 max_ac_packet = mode->htotal - mode->hdisplay; 871 max_ac_packet -= args.pwr.rekey; 872 max_ac_packet -= 18; /* constant from tegra */ 873 args.pwr.max_ac_packet = max_ac_packet / 32; 874 875 if (hdmi->scdc.scrambling.supported) { 876 high_tmds_clock_ratio = mode->clock > 340000; 877 scrambling = high_tmds_clock_ratio || 878 hdmi->scdc.scrambling.low_rates; 879 } 880 881 args.pwr.scdc = 882 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling | 883 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio; 884 885 size = sizeof(args.base) 886 + sizeof(args.pwr) 887 + args.pwr.avi_infoframe_length 888 + args.pwr.vendor_infoframe_length; 889 nvif_mthd(&disp->disp->object, 0, &args, size); 890 891 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 892 893 /* If SCDC is supported by the downstream monitor, update 894 * divider / scrambling settings to what we programmed above. 895 */ 896 if (!hdmi->scdc.scrambling.supported) 897 return; 898 899 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config); 900 if (ret < 0) { 901 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 902 return; 903 } 904 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 905 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio; 906 config |= SCDC_SCRAMBLING_ENABLE * scrambling; 907 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config); 908 if (ret < 0) 909 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 910 config, ret); 911 } 912 913 /****************************************************************************** 914 * MST 915 *****************************************************************************/ 916 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 917 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 918 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 919 920 struct nv50_mstc { 921 struct nv50_mstm *mstm; 922 struct drm_dp_mst_port *port; 923 struct drm_connector connector; 924 925 struct drm_display_mode *native; 926 struct edid *edid; 927 }; 928 929 struct nv50_msto { 930 struct drm_encoder encoder; 931 932 /* head is statically assigned on msto creation */ 933 struct nv50_head *head; 934 struct nv50_mstc *mstc; 935 bool disabled; 936 }; 937 938 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 939 { 940 struct nv50_msto *msto; 941 942 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 943 return nouveau_encoder(encoder); 944 945 msto = nv50_msto(encoder); 946 if (!msto->mstc) 947 return NULL; 948 return msto->mstc->mstm->outp; 949 } 950 951 static struct drm_dp_payload * 952 nv50_msto_payload(struct nv50_msto *msto) 953 { 954 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 955 struct nv50_mstc *mstc = msto->mstc; 956 struct nv50_mstm *mstm = mstc->mstm; 957 int vcpi = mstc->port->vcpi.vcpi, i; 958 959 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock)); 960 961 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi); 962 for (i = 0; i < mstm->mgr.max_payloads; i++) { 963 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 964 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n", 965 mstm->outp->base.base.name, i, payload->vcpi, 966 payload->start_slot, payload->num_slots); 967 } 968 969 for (i = 0; i < mstm->mgr.max_payloads; i++) { 970 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 971 if (payload->vcpi == vcpi) 972 return payload; 973 } 974 975 return NULL; 976 } 977 978 static void 979 nv50_msto_cleanup(struct nv50_msto *msto) 980 { 981 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 982 struct nv50_mstc *mstc = msto->mstc; 983 struct nv50_mstm *mstm = mstc->mstm; 984 985 if (!msto->disabled) 986 return; 987 988 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 989 990 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port); 991 992 msto->mstc = NULL; 993 msto->disabled = false; 994 } 995 996 static void 997 nv50_msto_prepare(struct nv50_msto *msto) 998 { 999 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 1000 struct nv50_mstc *mstc = msto->mstc; 1001 struct nv50_mstm *mstm = mstc->mstm; 1002 struct { 1003 struct nv50_disp_mthd_v1 base; 1004 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi; 1005 } args = { 1006 .base.version = 1, 1007 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI, 1008 .base.hasht = mstm->outp->dcb->hasht, 1009 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) | 1010 (0x0100 << msto->head->base.index), 1011 }; 1012 1013 mutex_lock(&mstm->mgr.payload_lock); 1014 1015 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 1016 if (mstc->port->vcpi.vcpi > 0) { 1017 struct drm_dp_payload *payload = nv50_msto_payload(msto); 1018 if (payload) { 1019 args.vcpi.start_slot = payload->start_slot; 1020 args.vcpi.num_slots = payload->num_slots; 1021 args.vcpi.pbn = mstc->port->vcpi.pbn; 1022 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn; 1023 } 1024 } 1025 1026 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n", 1027 msto->encoder.name, msto->head->base.base.name, 1028 args.vcpi.start_slot, args.vcpi.num_slots, 1029 args.vcpi.pbn, args.vcpi.aligned_pbn); 1030 1031 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args)); 1032 mutex_unlock(&mstm->mgr.payload_lock); 1033 } 1034 1035 static int 1036 nv50_msto_atomic_check(struct drm_encoder *encoder, 1037 struct drm_crtc_state *crtc_state, 1038 struct drm_connector_state *conn_state) 1039 { 1040 struct drm_atomic_state *state = crtc_state->state; 1041 struct drm_connector *connector = conn_state->connector; 1042 struct nv50_mstc *mstc = nv50_mstc(connector); 1043 struct nv50_mstm *mstm = mstc->mstm; 1044 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 1045 int slots; 1046 int ret; 1047 1048 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 1049 mstc->native); 1050 if (ret) 1051 return ret; 1052 1053 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 1054 return 0; 1055 1056 /* 1057 * When restoring duplicated states, we need to make sure that the bw 1058 * remains the same and avoid recalculating it, as the connector's bpc 1059 * may have changed after the state was duplicated 1060 */ 1061 if (!state->duplicated) { 1062 const int clock = crtc_state->adjusted_mode.clock; 1063 1064 asyh->or.bpc = connector->display_info.bpc; 1065 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 1066 false); 1067 } 1068 1069 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port, 1070 asyh->dp.pbn, 0); 1071 if (slots < 0) 1072 return slots; 1073 1074 asyh->dp.tu = slots; 1075 1076 return 0; 1077 } 1078 1079 static u8 1080 nv50_dp_bpc_to_depth(unsigned int bpc) 1081 { 1082 switch (bpc) { 1083 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1084 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1085 case 10: 1086 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1087 } 1088 } 1089 1090 static void 1091 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1092 { 1093 struct nv50_msto *msto = nv50_msto(encoder); 1094 struct nv50_head *head = msto->head; 1095 struct nv50_head_atom *asyh = 1096 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1097 struct nv50_mstc *mstc = NULL; 1098 struct nv50_mstm *mstm = NULL; 1099 struct drm_connector *connector; 1100 struct drm_connector_list_iter conn_iter; 1101 u8 proto; 1102 bool r; 1103 1104 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1105 drm_for_each_connector_iter(connector, &conn_iter) { 1106 if (connector->state->best_encoder == &msto->encoder) { 1107 mstc = nv50_mstc(connector); 1108 mstm = mstc->mstm; 1109 break; 1110 } 1111 } 1112 drm_connector_list_iter_end(&conn_iter); 1113 1114 if (WARN_ON(!mstc)) 1115 return; 1116 1117 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, asyh->dp.pbn, asyh->dp.tu); 1118 if (!r) 1119 DRM_DEBUG_KMS("Failed to allocate VCPI\n"); 1120 1121 if (!mstm->links++) 1122 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/); 1123 1124 if (mstm->outp->link & 1) 1125 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1126 else 1127 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1128 1129 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1130 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1131 1132 msto->mstc = mstc; 1133 mstm->modified = true; 1134 } 1135 1136 static void 1137 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1138 { 1139 struct nv50_msto *msto = nv50_msto(encoder); 1140 struct nv50_mstc *mstc = msto->mstc; 1141 struct nv50_mstm *mstm = mstc->mstm; 1142 1143 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port); 1144 1145 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1146 mstm->modified = true; 1147 if (!--mstm->links) 1148 mstm->disabled = true; 1149 msto->disabled = true; 1150 } 1151 1152 static const struct drm_encoder_helper_funcs 1153 nv50_msto_help = { 1154 .atomic_disable = nv50_msto_atomic_disable, 1155 .atomic_enable = nv50_msto_atomic_enable, 1156 .atomic_check = nv50_msto_atomic_check, 1157 }; 1158 1159 static void 1160 nv50_msto_destroy(struct drm_encoder *encoder) 1161 { 1162 struct nv50_msto *msto = nv50_msto(encoder); 1163 drm_encoder_cleanup(&msto->encoder); 1164 kfree(msto); 1165 } 1166 1167 static const struct drm_encoder_funcs 1168 nv50_msto = { 1169 .destroy = nv50_msto_destroy, 1170 }; 1171 1172 static struct nv50_msto * 1173 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1174 { 1175 struct nv50_msto *msto; 1176 int ret; 1177 1178 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1179 if (!msto) 1180 return ERR_PTR(-ENOMEM); 1181 1182 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1183 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1184 if (ret) { 1185 kfree(msto); 1186 return ERR_PTR(ret); 1187 } 1188 1189 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1190 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1191 msto->head = head; 1192 return msto; 1193 } 1194 1195 static struct drm_encoder * 1196 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1197 struct drm_atomic_state *state) 1198 { 1199 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1200 connector); 1201 struct nv50_mstc *mstc = nv50_mstc(connector); 1202 struct drm_crtc *crtc = connector_state->crtc; 1203 1204 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1205 return NULL; 1206 1207 return &nv50_head(crtc)->msto->encoder; 1208 } 1209 1210 static enum drm_mode_status 1211 nv50_mstc_mode_valid(struct drm_connector *connector, 1212 struct drm_display_mode *mode) 1213 { 1214 struct nv50_mstc *mstc = nv50_mstc(connector); 1215 struct nouveau_encoder *outp = mstc->mstm->outp; 1216 1217 /* TODO: calculate the PBN from the dotclock and validate against the 1218 * MSTB's max possible PBN 1219 */ 1220 1221 return nv50_dp_mode_valid(connector, outp, mode, NULL); 1222 } 1223 1224 static int 1225 nv50_mstc_get_modes(struct drm_connector *connector) 1226 { 1227 struct nv50_mstc *mstc = nv50_mstc(connector); 1228 int ret = 0; 1229 1230 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1231 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1232 if (mstc->edid) 1233 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1234 1235 /* 1236 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1237 * to 8 to save bandwidth on the topology. In the future, we'll want 1238 * to properly fix this by dynamically selecting the highest possible 1239 * bpc that would fit in the topology 1240 */ 1241 if (connector->display_info.bpc) 1242 connector->display_info.bpc = 1243 clamp(connector->display_info.bpc, 6U, 8U); 1244 else 1245 connector->display_info.bpc = 8; 1246 1247 if (mstc->native) 1248 drm_mode_destroy(mstc->connector.dev, mstc->native); 1249 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1250 return ret; 1251 } 1252 1253 static int 1254 nv50_mstc_atomic_check(struct drm_connector *connector, 1255 struct drm_atomic_state *state) 1256 { 1257 struct nv50_mstc *mstc = nv50_mstc(connector); 1258 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1259 struct drm_connector_state *new_conn_state = 1260 drm_atomic_get_new_connector_state(state, connector); 1261 struct drm_connector_state *old_conn_state = 1262 drm_atomic_get_old_connector_state(state, connector); 1263 struct drm_crtc_state *crtc_state; 1264 struct drm_crtc *new_crtc = new_conn_state->crtc; 1265 1266 if (!old_conn_state->crtc) 1267 return 0; 1268 1269 /* We only want to free VCPI if this state disables the CRTC on this 1270 * connector 1271 */ 1272 if (new_crtc) { 1273 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc); 1274 1275 if (!crtc_state || 1276 !drm_atomic_crtc_needs_modeset(crtc_state) || 1277 crtc_state->enable) 1278 return 0; 1279 } 1280 1281 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port); 1282 } 1283 1284 static int 1285 nv50_mstc_detect(struct drm_connector *connector, 1286 struct drm_modeset_acquire_ctx *ctx, bool force) 1287 { 1288 struct nv50_mstc *mstc = nv50_mstc(connector); 1289 int ret; 1290 1291 if (drm_connector_is_unregistered(connector)) 1292 return connector_status_disconnected; 1293 1294 ret = pm_runtime_get_sync(connector->dev->dev); 1295 if (ret < 0 && ret != -EACCES) { 1296 pm_runtime_put_autosuspend(connector->dev->dev); 1297 return connector_status_disconnected; 1298 } 1299 1300 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1301 mstc->port); 1302 if (ret != connector_status_connected) 1303 goto out; 1304 1305 out: 1306 pm_runtime_mark_last_busy(connector->dev->dev); 1307 pm_runtime_put_autosuspend(connector->dev->dev); 1308 return ret; 1309 } 1310 1311 static const struct drm_connector_helper_funcs 1312 nv50_mstc_help = { 1313 .get_modes = nv50_mstc_get_modes, 1314 .mode_valid = nv50_mstc_mode_valid, 1315 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1316 .atomic_check = nv50_mstc_atomic_check, 1317 .detect_ctx = nv50_mstc_detect, 1318 }; 1319 1320 static void 1321 nv50_mstc_destroy(struct drm_connector *connector) 1322 { 1323 struct nv50_mstc *mstc = nv50_mstc(connector); 1324 1325 drm_connector_cleanup(&mstc->connector); 1326 drm_dp_mst_put_port_malloc(mstc->port); 1327 1328 kfree(mstc); 1329 } 1330 1331 static const struct drm_connector_funcs 1332 nv50_mstc = { 1333 .reset = nouveau_conn_reset, 1334 .fill_modes = drm_helper_probe_single_connector_modes, 1335 .destroy = nv50_mstc_destroy, 1336 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1337 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1338 .atomic_set_property = nouveau_conn_atomic_set_property, 1339 .atomic_get_property = nouveau_conn_atomic_get_property, 1340 }; 1341 1342 static int 1343 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1344 const char *path, struct nv50_mstc **pmstc) 1345 { 1346 struct drm_device *dev = mstm->outp->base.base.dev; 1347 struct drm_crtc *crtc; 1348 struct nv50_mstc *mstc; 1349 int ret; 1350 1351 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1352 return -ENOMEM; 1353 mstc->mstm = mstm; 1354 mstc->port = port; 1355 1356 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1357 DRM_MODE_CONNECTOR_DisplayPort); 1358 if (ret) { 1359 kfree(*pmstc); 1360 *pmstc = NULL; 1361 return ret; 1362 } 1363 1364 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1365 1366 mstc->connector.funcs->reset(&mstc->connector); 1367 nouveau_conn_attach_properties(&mstc->connector); 1368 1369 drm_for_each_crtc(crtc, dev) { 1370 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1371 continue; 1372 1373 drm_connector_attach_encoder(&mstc->connector, 1374 &nv50_head(crtc)->msto->encoder); 1375 } 1376 1377 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1378 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1379 drm_connector_set_path_property(&mstc->connector, path); 1380 drm_dp_mst_get_port_malloc(port); 1381 return 0; 1382 } 1383 1384 static void 1385 nv50_mstm_cleanup(struct nv50_mstm *mstm) 1386 { 1387 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1388 struct drm_encoder *encoder; 1389 int ret; 1390 1391 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1392 ret = drm_dp_check_act_status(&mstm->mgr); 1393 1394 ret = drm_dp_update_payload_part2(&mstm->mgr); 1395 1396 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1397 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1398 struct nv50_msto *msto = nv50_msto(encoder); 1399 struct nv50_mstc *mstc = msto->mstc; 1400 if (mstc && mstc->mstm == mstm) 1401 nv50_msto_cleanup(msto); 1402 } 1403 } 1404 1405 mstm->modified = false; 1406 } 1407 1408 static void 1409 nv50_mstm_prepare(struct nv50_mstm *mstm) 1410 { 1411 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1412 struct drm_encoder *encoder; 1413 int ret; 1414 1415 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1416 ret = drm_dp_update_payload_part1(&mstm->mgr); 1417 1418 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1419 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1420 struct nv50_msto *msto = nv50_msto(encoder); 1421 struct nv50_mstc *mstc = msto->mstc; 1422 if (mstc && mstc->mstm == mstm) 1423 nv50_msto_prepare(msto); 1424 } 1425 } 1426 1427 if (mstm->disabled) { 1428 if (!mstm->links) 1429 nv50_outp_release(mstm->outp); 1430 mstm->disabled = false; 1431 } 1432 } 1433 1434 static struct drm_connector * 1435 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1436 struct drm_dp_mst_port *port, const char *path) 1437 { 1438 struct nv50_mstm *mstm = nv50_mstm(mgr); 1439 struct nv50_mstc *mstc; 1440 int ret; 1441 1442 ret = nv50_mstc_new(mstm, port, path, &mstc); 1443 if (ret) 1444 return NULL; 1445 1446 return &mstc->connector; 1447 } 1448 1449 static const struct drm_dp_mst_topology_cbs 1450 nv50_mstm = { 1451 .add_connector = nv50_mstm_add_connector, 1452 }; 1453 1454 bool 1455 nv50_mstm_service(struct nouveau_drm *drm, 1456 struct nouveau_connector *nv_connector, 1457 struct nv50_mstm *mstm) 1458 { 1459 struct drm_dp_aux *aux = &nv_connector->aux; 1460 bool handled = true, ret = true; 1461 int rc; 1462 u8 esi[8] = {}; 1463 1464 while (handled) { 1465 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1466 if (rc != 8) { 1467 ret = false; 1468 break; 1469 } 1470 1471 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); 1472 if (!handled) 1473 break; 1474 1475 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 1476 3); 1477 if (rc != 3) { 1478 ret = false; 1479 break; 1480 } 1481 } 1482 1483 if (!ret) 1484 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1485 nv_connector->base.name, rc); 1486 1487 return ret; 1488 } 1489 1490 void 1491 nv50_mstm_remove(struct nv50_mstm *mstm) 1492 { 1493 mstm->is_mst = false; 1494 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1495 } 1496 1497 static int 1498 nv50_mstm_enable(struct nv50_mstm *mstm, int state) 1499 { 1500 struct nouveau_encoder *outp = mstm->outp; 1501 struct { 1502 struct nv50_disp_mthd_v1 base; 1503 struct nv50_disp_sor_dp_mst_link_v0 mst; 1504 } args = { 1505 .base.version = 1, 1506 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK, 1507 .base.hasht = outp->dcb->hasht, 1508 .base.hashm = outp->dcb->hashm, 1509 .mst.state = state, 1510 }; 1511 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev); 1512 struct nvif_object *disp = &drm->display->disp.object; 1513 1514 return nvif_mthd(disp, 0, &args, sizeof(args)); 1515 } 1516 1517 int 1518 nv50_mstm_detect(struct nouveau_encoder *outp) 1519 { 1520 struct nv50_mstm *mstm = outp->dp.mstm; 1521 struct drm_dp_aux *aux; 1522 int ret; 1523 1524 if (!mstm || !mstm->can_mst) 1525 return 0; 1526 1527 aux = mstm->mgr.aux; 1528 1529 /* Clear any leftover MST state we didn't set ourselves by first 1530 * disabling MST if it was already enabled 1531 */ 1532 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1533 if (ret < 0) 1534 return ret; 1535 1536 /* And start enabling */ 1537 ret = nv50_mstm_enable(mstm, true); 1538 if (ret) 1539 return ret; 1540 1541 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1542 if (ret) { 1543 nv50_mstm_enable(mstm, false); 1544 return ret; 1545 } 1546 1547 mstm->is_mst = true; 1548 return 1; 1549 } 1550 1551 static void 1552 nv50_mstm_fini(struct nouveau_encoder *outp) 1553 { 1554 struct nv50_mstm *mstm = outp->dp.mstm; 1555 1556 if (!mstm) 1557 return; 1558 1559 /* Don't change the MST state of this connector until we've finished 1560 * resuming, since we can't safely grab hpd_irq_lock in our resume 1561 * path to protect mstm->is_mst without potentially deadlocking 1562 */ 1563 mutex_lock(&outp->dp.hpd_irq_lock); 1564 mstm->suspended = true; 1565 mutex_unlock(&outp->dp.hpd_irq_lock); 1566 1567 if (mstm->is_mst) 1568 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1569 } 1570 1571 static void 1572 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1573 { 1574 struct nv50_mstm *mstm = outp->dp.mstm; 1575 int ret = 0; 1576 1577 if (!mstm) 1578 return; 1579 1580 if (mstm->is_mst) { 1581 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1582 if (ret == -1) 1583 nv50_mstm_remove(mstm); 1584 } 1585 1586 mutex_lock(&outp->dp.hpd_irq_lock); 1587 mstm->suspended = false; 1588 mutex_unlock(&outp->dp.hpd_irq_lock); 1589 1590 if (ret == -1) 1591 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1592 } 1593 1594 static void 1595 nv50_mstm_del(struct nv50_mstm **pmstm) 1596 { 1597 struct nv50_mstm *mstm = *pmstm; 1598 if (mstm) { 1599 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1600 kfree(*pmstm); 1601 *pmstm = NULL; 1602 } 1603 } 1604 1605 static int 1606 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1607 int conn_base_id, struct nv50_mstm **pmstm) 1608 { 1609 const int max_payloads = hweight8(outp->dcb->heads); 1610 struct drm_device *dev = outp->base.base.dev; 1611 struct nv50_mstm *mstm; 1612 int ret; 1613 1614 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1615 return -ENOMEM; 1616 mstm->outp = outp; 1617 mstm->mgr.cbs = &nv50_mstm; 1618 1619 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1620 max_payloads, outp->dcb->dpconf.link_nr, 1621 drm_dp_bw_code_to_link_rate(outp->dcb->dpconf.link_bw), 1622 conn_base_id); 1623 if (ret) 1624 return ret; 1625 1626 return 0; 1627 } 1628 1629 /****************************************************************************** 1630 * SOR 1631 *****************************************************************************/ 1632 static void 1633 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1634 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1635 { 1636 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1637 struct nv50_core *core = disp->core; 1638 1639 if (!asyh) { 1640 nv_encoder->ctrl &= ~BIT(head); 1641 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1642 nv_encoder->ctrl = 0; 1643 } else { 1644 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1645 nv_encoder->ctrl |= BIT(head); 1646 asyh->or.depth = depth; 1647 } 1648 1649 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh); 1650 } 1651 1652 static void 1653 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1654 { 1655 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1656 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); 1657 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1658 struct drm_dp_aux *aux = &nv_connector->aux; 1659 u8 pwr; 1660 1661 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { 1662 int ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr); 1663 1664 if (ret == 0) { 1665 pwr &= ~DP_SET_POWER_MASK; 1666 pwr |= DP_SET_POWER_D3; 1667 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr); 1668 } 1669 } 1670 1671 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); 1672 nv50_audio_disable(encoder, nv_crtc); 1673 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc); 1674 nv50_outp_release(nv_encoder); 1675 nv_encoder->crtc = NULL; 1676 } 1677 1678 static void 1679 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1680 { 1681 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1682 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1683 struct nv50_head_atom *asyh = 1684 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1685 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1686 struct { 1687 struct nv50_disp_mthd_v1 base; 1688 struct nv50_disp_sor_lvds_script_v0 lvds; 1689 } lvds = { 1690 .base.version = 1, 1691 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT, 1692 .base.hasht = nv_encoder->dcb->hasht, 1693 .base.hashm = nv_encoder->dcb->hashm, 1694 }; 1695 struct nv50_disp *disp = nv50_disp(encoder->dev); 1696 struct drm_device *dev = encoder->dev; 1697 struct nouveau_drm *drm = nouveau_drm(dev); 1698 struct nouveau_connector *nv_connector; 1699 struct nvbios *bios = &drm->vbios; 1700 bool hda = false; 1701 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1702 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1703 1704 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1705 nv_encoder->crtc = &nv_crtc->base; 1706 1707 if ((disp->disp->object.oclass == GT214_DISP || 1708 disp->disp->object.oclass >= GF110_DISP) && 1709 drm_detect_monitor_audio(nv_connector->edid)) 1710 hda = true; 1711 nv50_outp_acquire(nv_encoder, hda); 1712 1713 switch (nv_encoder->dcb->type) { 1714 case DCB_OUTPUT_TMDS: 1715 if (nv_encoder->link & 1) { 1716 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1717 /* Only enable dual-link if: 1718 * - Need to (i.e. rate > 165MHz) 1719 * - DCB says we can 1720 * - Not an HDMI monitor, since there's no dual-link 1721 * on HDMI. 1722 */ 1723 if (mode->clock >= 165000 && 1724 nv_encoder->dcb->duallink_possible && 1725 !drm_detect_hdmi_monitor(nv_connector->edid)) 1726 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1727 } else { 1728 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1729 } 1730 1731 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode); 1732 break; 1733 case DCB_OUTPUT_LVDS: 1734 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1735 1736 if (bios->fp_no_ddc) { 1737 if (bios->fp.dual_link) 1738 lvds.lvds.script |= 0x0100; 1739 if (bios->fp.if_is_24bit) 1740 lvds.lvds.script |= 0x0200; 1741 } else { 1742 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1743 if (((u8 *)nv_connector->edid)[121] == 2) 1744 lvds.lvds.script |= 0x0100; 1745 } else 1746 if (mode->clock >= bios->fp.duallink_transition_clk) { 1747 lvds.lvds.script |= 0x0100; 1748 } 1749 1750 if (lvds.lvds.script & 0x0100) { 1751 if (bios->fp.strapless_is_24bit & 2) 1752 lvds.lvds.script |= 0x0200; 1753 } else { 1754 if (bios->fp.strapless_is_24bit & 1) 1755 lvds.lvds.script |= 0x0200; 1756 } 1757 1758 if (asyh->or.bpc == 8) 1759 lvds.lvds.script |= 0x0200; 1760 } 1761 1762 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds)); 1763 break; 1764 case DCB_OUTPUT_DP: 1765 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1766 1767 if (nv_encoder->link & 1) 1768 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1769 else 1770 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1771 1772 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 1773 break; 1774 default: 1775 BUG(); 1776 break; 1777 } 1778 1779 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1780 } 1781 1782 static const struct drm_encoder_helper_funcs 1783 nv50_sor_help = { 1784 .atomic_check = nv50_outp_atomic_check, 1785 .atomic_enable = nv50_sor_atomic_enable, 1786 .atomic_disable = nv50_sor_atomic_disable, 1787 }; 1788 1789 static void 1790 nv50_sor_destroy(struct drm_encoder *encoder) 1791 { 1792 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1793 nv50_mstm_del(&nv_encoder->dp.mstm); 1794 drm_encoder_cleanup(encoder); 1795 1796 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1797 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1798 1799 kfree(encoder); 1800 } 1801 1802 static const struct drm_encoder_funcs 1803 nv50_sor_func = { 1804 .destroy = nv50_sor_destroy, 1805 }; 1806 1807 static bool nv50_has_mst(struct nouveau_drm *drm) 1808 { 1809 struct nvkm_bios *bios = nvxx_bios(&drm->client.device); 1810 u32 data; 1811 u8 ver, hdr, cnt, len; 1812 1813 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len); 1814 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04); 1815 } 1816 1817 static int 1818 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) 1819 { 1820 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1821 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1822 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1823 struct nouveau_encoder *nv_encoder; 1824 struct drm_encoder *encoder; 1825 struct nv50_disp *disp = nv50_disp(connector->dev); 1826 int type, ret; 1827 1828 switch (dcbe->type) { 1829 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1830 case DCB_OUTPUT_TMDS: 1831 case DCB_OUTPUT_DP: 1832 default: 1833 type = DRM_MODE_ENCODER_TMDS; 1834 break; 1835 } 1836 1837 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1838 if (!nv_encoder) 1839 return -ENOMEM; 1840 nv_encoder->dcb = dcbe; 1841 nv_encoder->update = nv50_sor_update; 1842 1843 encoder = to_drm_encoder(nv_encoder); 1844 encoder->possible_crtcs = dcbe->heads; 1845 encoder->possible_clones = 0; 1846 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1847 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1848 drm_encoder_helper_add(encoder, &nv50_sor_help); 1849 1850 drm_connector_attach_encoder(connector, encoder); 1851 1852 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1853 nv50_outp_dump_caps(drm, nv_encoder); 1854 1855 if (dcbe->type == DCB_OUTPUT_DP) { 1856 struct nvkm_i2c_aux *aux = 1857 nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1858 1859 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1860 1861 if (aux) { 1862 if (disp->disp->object.oclass < GF110_DISP) { 1863 /* HW has no support for address-only 1864 * transactions, so we're required to 1865 * use custom I2C-over-AUX code. 1866 */ 1867 nv_encoder->i2c = &aux->i2c; 1868 } else { 1869 nv_encoder->i2c = &nv_connector->aux.ddc; 1870 } 1871 nv_encoder->aux = aux; 1872 } 1873 1874 if (nv_connector->type != DCB_CONNECTOR_eDP && 1875 nv50_has_mst(drm)) { 1876 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1877 16, nv_connector->base.base.id, 1878 &nv_encoder->dp.mstm); 1879 if (ret) 1880 return ret; 1881 } 1882 } else { 1883 struct nvkm_i2c_bus *bus = 1884 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1885 if (bus) 1886 nv_encoder->i2c = &bus->i2c; 1887 } 1888 1889 return 0; 1890 } 1891 1892 /****************************************************************************** 1893 * PIOR 1894 *****************************************************************************/ 1895 static int 1896 nv50_pior_atomic_check(struct drm_encoder *encoder, 1897 struct drm_crtc_state *crtc_state, 1898 struct drm_connector_state *conn_state) 1899 { 1900 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1901 if (ret) 1902 return ret; 1903 crtc_state->adjusted_mode.clock *= 2; 1904 return 0; 1905 } 1906 1907 static void 1908 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1909 { 1910 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1911 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1912 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1913 1914 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL); 1915 nv_encoder->crtc = NULL; 1916 nv50_outp_release(nv_encoder); 1917 } 1918 1919 static void 1920 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1921 { 1922 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1923 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1924 struct nv50_head_atom *asyh = 1925 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1926 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1927 u32 ctrl = 0; 1928 1929 switch (nv_crtc->index) { 1930 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1931 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1932 default: 1933 WARN_ON(1); 1934 break; 1935 } 1936 1937 nv50_outp_acquire(nv_encoder, false); 1938 1939 switch (asyh->or.bpc) { 1940 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1941 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1942 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1943 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1944 } 1945 1946 switch (nv_encoder->dcb->type) { 1947 case DCB_OUTPUT_TMDS: 1948 case DCB_OUTPUT_DP: 1949 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1950 break; 1951 default: 1952 BUG(); 1953 break; 1954 } 1955 1956 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh); 1957 nv_encoder->crtc = &nv_crtc->base; 1958 } 1959 1960 static const struct drm_encoder_helper_funcs 1961 nv50_pior_help = { 1962 .atomic_check = nv50_pior_atomic_check, 1963 .atomic_enable = nv50_pior_atomic_enable, 1964 .atomic_disable = nv50_pior_atomic_disable, 1965 }; 1966 1967 static void 1968 nv50_pior_destroy(struct drm_encoder *encoder) 1969 { 1970 drm_encoder_cleanup(encoder); 1971 kfree(encoder); 1972 } 1973 1974 static const struct drm_encoder_funcs 1975 nv50_pior_func = { 1976 .destroy = nv50_pior_destroy, 1977 }; 1978 1979 static int 1980 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) 1981 { 1982 struct drm_device *dev = connector->dev; 1983 struct nouveau_drm *drm = nouveau_drm(dev); 1984 struct nv50_disp *disp = nv50_disp(dev); 1985 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1986 struct nvkm_i2c_bus *bus = NULL; 1987 struct nvkm_i2c_aux *aux = NULL; 1988 struct i2c_adapter *ddc; 1989 struct nouveau_encoder *nv_encoder; 1990 struct drm_encoder *encoder; 1991 int type; 1992 1993 switch (dcbe->type) { 1994 case DCB_OUTPUT_TMDS: 1995 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); 1996 ddc = bus ? &bus->i2c : NULL; 1997 type = DRM_MODE_ENCODER_TMDS; 1998 break; 1999 case DCB_OUTPUT_DP: 2000 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); 2001 ddc = aux ? &aux->i2c : NULL; 2002 type = DRM_MODE_ENCODER_TMDS; 2003 break; 2004 default: 2005 return -ENODEV; 2006 } 2007 2008 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 2009 if (!nv_encoder) 2010 return -ENOMEM; 2011 nv_encoder->dcb = dcbe; 2012 nv_encoder->i2c = ddc; 2013 nv_encoder->aux = aux; 2014 2015 encoder = to_drm_encoder(nv_encoder); 2016 encoder->possible_crtcs = dcbe->heads; 2017 encoder->possible_clones = 0; 2018 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2019 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2020 drm_encoder_helper_add(encoder, &nv50_pior_help); 2021 2022 drm_connector_attach_encoder(connector, encoder); 2023 2024 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2025 nv50_outp_dump_caps(drm, nv_encoder); 2026 2027 return 0; 2028 } 2029 2030 /****************************************************************************** 2031 * Atomic 2032 *****************************************************************************/ 2033 2034 static void 2035 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2036 { 2037 struct nouveau_drm *drm = nouveau_drm(state->dev); 2038 struct nv50_disp *disp = nv50_disp(drm->dev); 2039 struct nv50_core *core = disp->core; 2040 struct nv50_mstm *mstm; 2041 struct drm_encoder *encoder; 2042 2043 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2044 2045 drm_for_each_encoder(encoder, drm->dev) { 2046 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2047 mstm = nouveau_encoder(encoder)->dp.mstm; 2048 if (mstm && mstm->modified) 2049 nv50_mstm_prepare(mstm); 2050 } 2051 } 2052 2053 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2054 core->func->update(core, interlock, true); 2055 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2056 disp->core->chan.base.device)) 2057 NV_ERROR(drm, "core notifier timeout\n"); 2058 2059 drm_for_each_encoder(encoder, drm->dev) { 2060 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2061 mstm = nouveau_encoder(encoder)->dp.mstm; 2062 if (mstm && mstm->modified) 2063 nv50_mstm_cleanup(mstm); 2064 } 2065 } 2066 } 2067 2068 static void 2069 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2070 { 2071 struct drm_plane_state *new_plane_state; 2072 struct drm_plane *plane; 2073 int i; 2074 2075 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2076 struct nv50_wndw *wndw = nv50_wndw(plane); 2077 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2078 if (wndw->func->update) 2079 wndw->func->update(wndw, interlock); 2080 } 2081 } 2082 } 2083 2084 static void 2085 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2086 { 2087 struct drm_device *dev = state->dev; 2088 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2089 struct drm_crtc *crtc; 2090 struct drm_plane_state *new_plane_state; 2091 struct drm_plane *plane; 2092 struct nouveau_drm *drm = nouveau_drm(dev); 2093 struct nv50_disp *disp = nv50_disp(dev); 2094 struct nv50_atom *atom = nv50_atom(state); 2095 struct nv50_core *core = disp->core; 2096 struct nv50_outp_atom *outp, *outt; 2097 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2098 int i; 2099 bool flushed = false; 2100 2101 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2102 nv50_crc_atomic_stop_reporting(state); 2103 drm_atomic_helper_wait_for_fences(dev, state, false); 2104 drm_atomic_helper_wait_for_dependencies(state); 2105 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2106 drm_atomic_helper_calc_timestamping_constants(state); 2107 2108 if (atom->lock_core) 2109 mutex_lock(&disp->mutex); 2110 2111 /* Disable head(s). */ 2112 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2113 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2114 struct nv50_head *head = nv50_head(crtc); 2115 2116 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2117 asyh->clr.mask, asyh->set.mask); 2118 2119 if (old_crtc_state->active && !new_crtc_state->active) { 2120 pm_runtime_put_noidle(dev->dev); 2121 drm_crtc_vblank_off(crtc); 2122 } 2123 2124 if (asyh->clr.mask) { 2125 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2126 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2127 } 2128 } 2129 2130 /* Disable plane(s). */ 2131 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2132 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2133 struct nv50_wndw *wndw = nv50_wndw(plane); 2134 2135 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2136 asyw->clr.mask, asyw->set.mask); 2137 if (!asyw->clr.mask) 2138 continue; 2139 2140 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2141 } 2142 2143 /* Disable output path(s). */ 2144 list_for_each_entry(outp, &atom->outp, head) { 2145 const struct drm_encoder_helper_funcs *help; 2146 struct drm_encoder *encoder; 2147 2148 encoder = outp->encoder; 2149 help = encoder->helper_private; 2150 2151 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2152 outp->clr.mask, outp->set.mask); 2153 2154 if (outp->clr.mask) { 2155 help->atomic_disable(encoder, state); 2156 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2157 if (outp->flush_disable) { 2158 nv50_disp_atomic_commit_wndw(state, interlock); 2159 nv50_disp_atomic_commit_core(state, interlock); 2160 memset(interlock, 0x00, sizeof(interlock)); 2161 2162 flushed = true; 2163 } 2164 } 2165 } 2166 2167 /* Flush disable. */ 2168 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2169 if (atom->flush_disable) { 2170 nv50_disp_atomic_commit_wndw(state, interlock); 2171 nv50_disp_atomic_commit_core(state, interlock); 2172 memset(interlock, 0x00, sizeof(interlock)); 2173 2174 flushed = true; 2175 } 2176 } 2177 2178 if (flushed) 2179 nv50_crc_atomic_release_notifier_contexts(state); 2180 nv50_crc_atomic_init_notifier_contexts(state); 2181 2182 /* Update output path(s). */ 2183 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2184 const struct drm_encoder_helper_funcs *help; 2185 struct drm_encoder *encoder; 2186 2187 encoder = outp->encoder; 2188 help = encoder->helper_private; 2189 2190 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2191 outp->set.mask, outp->clr.mask); 2192 2193 if (outp->set.mask) { 2194 help->atomic_enable(encoder, state); 2195 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2196 } 2197 2198 list_del(&outp->head); 2199 kfree(outp); 2200 } 2201 2202 /* Update head(s). */ 2203 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2204 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2205 struct nv50_head *head = nv50_head(crtc); 2206 2207 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2208 asyh->set.mask, asyh->clr.mask); 2209 2210 if (asyh->set.mask) { 2211 nv50_head_flush_set(head, asyh); 2212 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2213 } 2214 2215 if (new_crtc_state->active) { 2216 if (!old_crtc_state->active) { 2217 drm_crtc_vblank_on(crtc); 2218 pm_runtime_get_noresume(dev->dev); 2219 } 2220 if (new_crtc_state->event) 2221 drm_crtc_vblank_get(crtc); 2222 } 2223 } 2224 2225 /* Update window->head assignment. 2226 * 2227 * This has to happen in an update that's not interlocked with 2228 * any window channels to avoid hitting HW error checks. 2229 * 2230 *TODO: Proper handling of window ownership (Turing apparently 2231 * supports non-fixed mappings). 2232 */ 2233 if (core->assign_windows) { 2234 core->func->wndw.owner(core); 2235 nv50_disp_atomic_commit_core(state, interlock); 2236 core->assign_windows = false; 2237 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2238 } 2239 2240 /* Update plane(s). */ 2241 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2242 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2243 struct nv50_wndw *wndw = nv50_wndw(plane); 2244 2245 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2246 asyw->set.mask, asyw->clr.mask); 2247 if ( !asyw->set.mask && 2248 (!asyw->clr.mask || atom->flush_disable)) 2249 continue; 2250 2251 nv50_wndw_flush_set(wndw, interlock, asyw); 2252 } 2253 2254 /* Flush update. */ 2255 nv50_disp_atomic_commit_wndw(state, interlock); 2256 2257 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2258 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2259 interlock[NV50_DISP_INTERLOCK_OVLY] || 2260 interlock[NV50_DISP_INTERLOCK_WNDW] || 2261 !atom->state.legacy_cursor_update) 2262 nv50_disp_atomic_commit_core(state, interlock); 2263 else 2264 disp->core->func->update(disp->core, interlock, false); 2265 } 2266 2267 if (atom->lock_core) 2268 mutex_unlock(&disp->mutex); 2269 2270 /* Wait for HW to signal completion. */ 2271 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2272 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2273 struct nv50_wndw *wndw = nv50_wndw(plane); 2274 int ret = nv50_wndw_wait_armed(wndw, asyw); 2275 if (ret) 2276 NV_ERROR(drm, "%s: timeout\n", plane->name); 2277 } 2278 2279 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2280 if (new_crtc_state->event) { 2281 unsigned long flags; 2282 /* Get correct count/ts if racing with vblank irq */ 2283 if (new_crtc_state->active) 2284 drm_crtc_accurate_vblank_count(crtc); 2285 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2286 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2287 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2288 2289 new_crtc_state->event = NULL; 2290 if (new_crtc_state->active) 2291 drm_crtc_vblank_put(crtc); 2292 } 2293 } 2294 2295 nv50_crc_atomic_start_reporting(state); 2296 if (!flushed) 2297 nv50_crc_atomic_release_notifier_contexts(state); 2298 drm_atomic_helper_commit_hw_done(state); 2299 drm_atomic_helper_cleanup_planes(dev, state); 2300 drm_atomic_helper_commit_cleanup_done(state); 2301 drm_atomic_state_put(state); 2302 2303 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2304 pm_runtime_mark_last_busy(dev->dev); 2305 pm_runtime_put_autosuspend(dev->dev); 2306 } 2307 2308 static void 2309 nv50_disp_atomic_commit_work(struct work_struct *work) 2310 { 2311 struct drm_atomic_state *state = 2312 container_of(work, typeof(*state), commit_work); 2313 nv50_disp_atomic_commit_tail(state); 2314 } 2315 2316 static int 2317 nv50_disp_atomic_commit(struct drm_device *dev, 2318 struct drm_atomic_state *state, bool nonblock) 2319 { 2320 struct drm_plane_state *new_plane_state; 2321 struct drm_plane *plane; 2322 int ret, i; 2323 2324 ret = pm_runtime_get_sync(dev->dev); 2325 if (ret < 0 && ret != -EACCES) { 2326 pm_runtime_put_autosuspend(dev->dev); 2327 return ret; 2328 } 2329 2330 ret = drm_atomic_helper_setup_commit(state, nonblock); 2331 if (ret) 2332 goto done; 2333 2334 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2335 2336 ret = drm_atomic_helper_prepare_planes(dev, state); 2337 if (ret) 2338 goto done; 2339 2340 if (!nonblock) { 2341 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2342 if (ret) 2343 goto err_cleanup; 2344 } 2345 2346 ret = drm_atomic_helper_swap_state(state, true); 2347 if (ret) 2348 goto err_cleanup; 2349 2350 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2351 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2352 struct nv50_wndw *wndw = nv50_wndw(plane); 2353 2354 if (asyw->set.image) 2355 nv50_wndw_ntfy_enable(wndw, asyw); 2356 } 2357 2358 drm_atomic_state_get(state); 2359 2360 /* 2361 * Grab another RPM ref for the commit tail, which will release the 2362 * ref when it's finished 2363 */ 2364 pm_runtime_get_noresume(dev->dev); 2365 2366 if (nonblock) 2367 queue_work(system_unbound_wq, &state->commit_work); 2368 else 2369 nv50_disp_atomic_commit_tail(state); 2370 2371 err_cleanup: 2372 if (ret) 2373 drm_atomic_helper_cleanup_planes(dev, state); 2374 done: 2375 pm_runtime_put_autosuspend(dev->dev); 2376 return ret; 2377 } 2378 2379 static struct nv50_outp_atom * 2380 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2381 { 2382 struct nv50_outp_atom *outp; 2383 2384 list_for_each_entry(outp, &atom->outp, head) { 2385 if (outp->encoder == encoder) 2386 return outp; 2387 } 2388 2389 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2390 if (!outp) 2391 return ERR_PTR(-ENOMEM); 2392 2393 list_add(&outp->head, &atom->outp); 2394 outp->encoder = encoder; 2395 return outp; 2396 } 2397 2398 static int 2399 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2400 struct drm_connector_state *old_connector_state) 2401 { 2402 struct drm_encoder *encoder = old_connector_state->best_encoder; 2403 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2404 struct drm_crtc *crtc; 2405 struct nv50_outp_atom *outp; 2406 2407 if (!(crtc = old_connector_state->crtc)) 2408 return 0; 2409 2410 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2411 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2412 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2413 outp = nv50_disp_outp_atomic_add(atom, encoder); 2414 if (IS_ERR(outp)) 2415 return PTR_ERR(outp); 2416 2417 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 2418 outp->flush_disable = true; 2419 atom->flush_disable = true; 2420 } 2421 outp->clr.ctrl = true; 2422 atom->lock_core = true; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int 2429 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2430 struct drm_connector_state *connector_state) 2431 { 2432 struct drm_encoder *encoder = connector_state->best_encoder; 2433 struct drm_crtc_state *new_crtc_state; 2434 struct drm_crtc *crtc; 2435 struct nv50_outp_atom *outp; 2436 2437 if (!(crtc = connector_state->crtc)) 2438 return 0; 2439 2440 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2441 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2442 outp = nv50_disp_outp_atomic_add(atom, encoder); 2443 if (IS_ERR(outp)) 2444 return PTR_ERR(outp); 2445 2446 outp->set.ctrl = true; 2447 atom->lock_core = true; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int 2454 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2455 { 2456 struct nv50_atom *atom = nv50_atom(state); 2457 struct nv50_core *core = nv50_disp(dev)->core; 2458 struct drm_connector_state *old_connector_state, *new_connector_state; 2459 struct drm_connector *connector; 2460 struct drm_crtc_state *new_crtc_state; 2461 struct drm_crtc *crtc; 2462 struct nv50_head *head; 2463 struct nv50_head_atom *asyh; 2464 int ret, i; 2465 2466 if (core->assign_windows && core->func->head->static_wndw_map) { 2467 drm_for_each_crtc(crtc, dev) { 2468 new_crtc_state = drm_atomic_get_crtc_state(state, 2469 crtc); 2470 if (IS_ERR(new_crtc_state)) 2471 return PTR_ERR(new_crtc_state); 2472 2473 head = nv50_head(crtc); 2474 asyh = nv50_head_atom(new_crtc_state); 2475 core->func->head->static_wndw_map(head, asyh); 2476 } 2477 } 2478 2479 /* We need to handle colour management on a per-plane basis. */ 2480 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2481 if (new_crtc_state->color_mgmt_changed) { 2482 ret = drm_atomic_add_affected_planes(state, crtc); 2483 if (ret) 2484 return ret; 2485 } 2486 } 2487 2488 ret = drm_atomic_helper_check(dev, state); 2489 if (ret) 2490 return ret; 2491 2492 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2493 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2494 if (ret) 2495 return ret; 2496 2497 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2498 if (ret) 2499 return ret; 2500 } 2501 2502 ret = drm_dp_mst_atomic_check(state); 2503 if (ret) 2504 return ret; 2505 2506 nv50_crc_atomic_check_outp(atom); 2507 2508 return 0; 2509 } 2510 2511 static void 2512 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2513 { 2514 struct nv50_atom *atom = nv50_atom(state); 2515 struct nv50_outp_atom *outp, *outt; 2516 2517 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2518 list_del(&outp->head); 2519 kfree(outp); 2520 } 2521 2522 drm_atomic_state_default_clear(state); 2523 } 2524 2525 static void 2526 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2527 { 2528 struct nv50_atom *atom = nv50_atom(state); 2529 drm_atomic_state_default_release(&atom->state); 2530 kfree(atom); 2531 } 2532 2533 static struct drm_atomic_state * 2534 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2535 { 2536 struct nv50_atom *atom; 2537 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2538 drm_atomic_state_init(dev, &atom->state) < 0) { 2539 kfree(atom); 2540 return NULL; 2541 } 2542 INIT_LIST_HEAD(&atom->outp); 2543 return &atom->state; 2544 } 2545 2546 static const struct drm_mode_config_funcs 2547 nv50_disp_func = { 2548 .fb_create = nouveau_user_framebuffer_create, 2549 .output_poll_changed = nouveau_fbcon_output_poll_changed, 2550 .atomic_check = nv50_disp_atomic_check, 2551 .atomic_commit = nv50_disp_atomic_commit, 2552 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2553 .atomic_state_clear = nv50_disp_atomic_state_clear, 2554 .atomic_state_free = nv50_disp_atomic_state_free, 2555 }; 2556 2557 /****************************************************************************** 2558 * Init 2559 *****************************************************************************/ 2560 2561 static void 2562 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2563 { 2564 struct nouveau_drm *drm = nouveau_drm(dev); 2565 struct drm_encoder *encoder; 2566 struct drm_plane *plane; 2567 2568 drm_for_each_plane(plane, dev) { 2569 struct nv50_wndw *wndw = nv50_wndw(plane); 2570 if (plane->funcs != &nv50_wndw) 2571 continue; 2572 nv50_wndw_fini(wndw); 2573 } 2574 2575 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2576 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2577 nv50_mstm_fini(nouveau_encoder(encoder)); 2578 } 2579 2580 if (!runtime) 2581 cancel_work_sync(&drm->hpd_work); 2582 } 2583 2584 static int 2585 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2586 { 2587 struct nv50_core *core = nv50_disp(dev)->core; 2588 struct drm_encoder *encoder; 2589 struct drm_plane *plane; 2590 2591 if (resume || runtime) 2592 core->func->init(core); 2593 2594 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2595 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2596 struct nouveau_encoder *nv_encoder = 2597 nouveau_encoder(encoder); 2598 nv50_mstm_init(nv_encoder, runtime); 2599 } 2600 } 2601 2602 drm_for_each_plane(plane, dev) { 2603 struct nv50_wndw *wndw = nv50_wndw(plane); 2604 if (plane->funcs != &nv50_wndw) 2605 continue; 2606 nv50_wndw_init(wndw); 2607 } 2608 2609 return 0; 2610 } 2611 2612 static void 2613 nv50_display_destroy(struct drm_device *dev) 2614 { 2615 struct nv50_disp *disp = nv50_disp(dev); 2616 2617 nv50_audio_component_fini(nouveau_drm(dev)); 2618 2619 nvif_object_unmap(&disp->caps); 2620 nvif_object_dtor(&disp->caps); 2621 nv50_core_del(&disp->core); 2622 2623 nouveau_bo_unmap(disp->sync); 2624 if (disp->sync) 2625 nouveau_bo_unpin(disp->sync); 2626 nouveau_bo_ref(NULL, &disp->sync); 2627 2628 nouveau_display(dev)->priv = NULL; 2629 kfree(disp); 2630 } 2631 2632 int 2633 nv50_display_create(struct drm_device *dev) 2634 { 2635 struct nvif_device *device = &nouveau_drm(dev)->client.device; 2636 struct nouveau_drm *drm = nouveau_drm(dev); 2637 struct dcb_table *dcb = &drm->vbios.dcb; 2638 struct drm_connector *connector, *tmp; 2639 struct nv50_disp *disp; 2640 struct dcb_output *dcbe; 2641 int crtcs, ret, i; 2642 bool has_mst = nv50_has_mst(drm); 2643 2644 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2645 if (!disp) 2646 return -ENOMEM; 2647 2648 mutex_init(&disp->mutex); 2649 2650 nouveau_display(dev)->priv = disp; 2651 nouveau_display(dev)->dtor = nv50_display_destroy; 2652 nouveau_display(dev)->init = nv50_display_init; 2653 nouveau_display(dev)->fini = nv50_display_fini; 2654 disp->disp = &nouveau_display(dev)->disp; 2655 dev->mode_config.funcs = &nv50_disp_func; 2656 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2657 dev->mode_config.normalize_zpos = true; 2658 2659 /* small shared memory area we use for notifiers and semaphores */ 2660 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2661 NOUVEAU_GEM_DOMAIN_VRAM, 2662 0, 0x0000, NULL, NULL, &disp->sync); 2663 if (!ret) { 2664 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2665 if (!ret) { 2666 ret = nouveau_bo_map(disp->sync); 2667 if (ret) 2668 nouveau_bo_unpin(disp->sync); 2669 } 2670 if (ret) 2671 nouveau_bo_ref(NULL, &disp->sync); 2672 } 2673 2674 if (ret) 2675 goto out; 2676 2677 /* allocate master evo channel */ 2678 ret = nv50_core_new(drm, &disp->core); 2679 if (ret) 2680 goto out; 2681 2682 disp->core->func->init(disp->core); 2683 if (disp->core->func->caps_init) { 2684 ret = disp->core->func->caps_init(drm, disp); 2685 if (ret) 2686 goto out; 2687 } 2688 2689 /* Assign the correct format modifiers */ 2690 if (disp->disp->object.oclass >= TU102_DISP) 2691 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2692 else 2693 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2694 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2695 else 2696 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2697 2698 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2699 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2700 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2701 * small page allocations in prepare_fb(). When this is implemented, we should also force 2702 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2703 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2704 * large pages. 2705 */ 2706 if (disp->disp->object.oclass >= GM107_DISP) { 2707 dev->mode_config.cursor_width = 256; 2708 dev->mode_config.cursor_height = 256; 2709 } else if (disp->disp->object.oclass >= GK104_DISP) { 2710 dev->mode_config.cursor_width = 128; 2711 dev->mode_config.cursor_height = 128; 2712 } else { 2713 dev->mode_config.cursor_width = 64; 2714 dev->mode_config.cursor_height = 64; 2715 } 2716 2717 /* create crtc objects to represent the hw heads */ 2718 if (disp->disp->object.oclass >= GV100_DISP) 2719 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; 2720 else 2721 if (disp->disp->object.oclass >= GF110_DISP) 2722 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; 2723 else 2724 crtcs = 0x3; 2725 2726 for (i = 0; i < fls(crtcs); i++) { 2727 struct nv50_head *head; 2728 2729 if (!(crtcs & (1 << i))) 2730 continue; 2731 2732 head = nv50_head_create(dev, i); 2733 if (IS_ERR(head)) { 2734 ret = PTR_ERR(head); 2735 goto out; 2736 } 2737 2738 if (has_mst) { 2739 head->msto = nv50_msto_new(dev, head, i); 2740 if (IS_ERR(head->msto)) { 2741 ret = PTR_ERR(head->msto); 2742 head->msto = NULL; 2743 goto out; 2744 } 2745 2746 /* 2747 * FIXME: This is a hack to workaround the following 2748 * issues: 2749 * 2750 * https://gitlab.gnome.org/GNOME/mutter/issues/759 2751 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 2752 * 2753 * Once these issues are closed, this should be 2754 * removed 2755 */ 2756 head->msto->encoder.possible_crtcs = crtcs; 2757 } 2758 } 2759 2760 /* create encoder/connector objects based on VBIOS DCB table */ 2761 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { 2762 connector = nouveau_connector_create(dev, dcbe); 2763 if (IS_ERR(connector)) 2764 continue; 2765 2766 if (dcbe->location == DCB_LOC_ON_CHIP) { 2767 switch (dcbe->type) { 2768 case DCB_OUTPUT_TMDS: 2769 case DCB_OUTPUT_LVDS: 2770 case DCB_OUTPUT_DP: 2771 ret = nv50_sor_create(connector, dcbe); 2772 break; 2773 case DCB_OUTPUT_ANALOG: 2774 ret = nv50_dac_create(connector, dcbe); 2775 break; 2776 default: 2777 ret = -ENODEV; 2778 break; 2779 } 2780 } else { 2781 ret = nv50_pior_create(connector, dcbe); 2782 } 2783 2784 if (ret) { 2785 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2786 dcbe->location, dcbe->type, 2787 ffs(dcbe->or) - 1, ret); 2788 ret = 0; 2789 } 2790 } 2791 2792 /* cull any connectors we created that don't have an encoder */ 2793 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2794 if (connector->possible_encoders) 2795 continue; 2796 2797 NV_WARN(drm, "%s has no encoders, removing\n", 2798 connector->name); 2799 connector->funcs->destroy(connector); 2800 } 2801 2802 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2803 dev->vblank_disable_immediate = true; 2804 2805 nv50_audio_component_init(drm); 2806 2807 out: 2808 if (ret) 2809 nv50_display_destroy(dev); 2810 return ret; 2811 } 2812 2813 /****************************************************************************** 2814 * Format modifiers 2815 *****************************************************************************/ 2816 2817 /**************************************************************** 2818 * Log2(block height) ----------------------------+ * 2819 * Page Kind ----------------------------------+ | * 2820 * Gob Height/Page Kind Generation ------+ | | * 2821 * Sector layout -------+ | | | * 2822 * Compression ------+ | | | | */ 2823 const u64 disp50xx_modifiers[] = { /* | | | | | */ 2824 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 2825 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 2826 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 2827 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 2828 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 2829 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 2830 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 2831 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 2832 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 2833 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 2834 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 2835 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 2836 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 2837 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 2838 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 2839 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 2840 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 2841 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 2842 DRM_FORMAT_MOD_LINEAR, 2843 DRM_FORMAT_MOD_INVALID 2844 }; 2845 2846 /**************************************************************** 2847 * Log2(block height) ----------------------------+ * 2848 * Page Kind ----------------------------------+ | * 2849 * Gob Height/Page Kind Generation ------+ | | * 2850 * Sector layout -------+ | | | * 2851 * Compression ------+ | | | | */ 2852 const u64 disp90xx_modifiers[] = { /* | | | | | */ 2853 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 2854 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 2855 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 2856 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 2857 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 2858 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 2859 DRM_FORMAT_MOD_LINEAR, 2860 DRM_FORMAT_MOD_INVALID 2861 }; 2862