1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 
35 #include <drm/drm_atomic_helper.h>
36 #include <drm/drm_dp_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_fb_helper.h>
39 #include <drm/drm_plane_helper.h>
40 #include <drm/drm_probe_helper.h>
41 #include <drm/drm_scdc_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include <nvif/push507c.h>
45 
46 #include <nvif/class.h>
47 #include <nvif/cl0002.h>
48 #include <nvif/cl5070.h>
49 #include <nvif/cl507d.h>
50 #include <nvif/event.h>
51 #include <nvif/timer.h>
52 
53 #include <nvhw/class/cl507c.h>
54 #include <nvhw/class/cl507d.h>
55 #include <nvhw/class/cl837d.h>
56 #include <nvhw/class/cl887d.h>
57 #include <nvhw/class/cl907d.h>
58 #include <nvhw/class/cl917d.h>
59 
60 #include "nouveau_drv.h"
61 #include "nouveau_dma.h"
62 #include "nouveau_gem.h"
63 #include "nouveau_connector.h"
64 #include "nouveau_encoder.h"
65 #include "nouveau_fence.h"
66 #include "nouveau_fbcon.h"
67 
68 #include <subdev/bios/dp.h>
69 
70 /******************************************************************************
71  * EVO channel
72  *****************************************************************************/
73 
74 static int
75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
76 		 const s32 *oclass, u8 head, void *data, u32 size,
77 		 struct nv50_chan *chan)
78 {
79 	struct nvif_sclass *sclass;
80 	int ret, i, n;
81 
82 	chan->device = device;
83 
84 	ret = n = nvif_object_sclass_get(disp, &sclass);
85 	if (ret < 0)
86 		return ret;
87 
88 	while (oclass[0]) {
89 		for (i = 0; i < n; i++) {
90 			if (sclass[i].oclass == oclass[0]) {
91 				ret = nvif_object_ctor(disp, "kmsChan", 0,
92 						       oclass[0], data, size,
93 						       &chan->user);
94 				if (ret == 0)
95 					nvif_object_map(&chan->user, NULL, 0);
96 				nvif_object_sclass_put(&sclass);
97 				return ret;
98 			}
99 		}
100 		oclass++;
101 	}
102 
103 	nvif_object_sclass_put(&sclass);
104 	return -ENOSYS;
105 }
106 
107 static void
108 nv50_chan_destroy(struct nv50_chan *chan)
109 {
110 	nvif_object_dtor(&chan->user);
111 }
112 
113 /******************************************************************************
114  * DMA EVO channel
115  *****************************************************************************/
116 
117 void
118 nv50_dmac_destroy(struct nv50_dmac *dmac)
119 {
120 	nvif_object_dtor(&dmac->vram);
121 	nvif_object_dtor(&dmac->sync);
122 
123 	nv50_chan_destroy(&dmac->base);
124 
125 	nvif_mem_dtor(&dmac->_push.mem);
126 }
127 
128 static void
129 nv50_dmac_kick(struct nvif_push *push)
130 {
131 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
132 
133 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
134 	if (dmac->put != dmac->cur) {
135 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
136 		 * writes have been flushed right through to VRAM before writing PUT.
137 		 */
138 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
139 			struct nvif_device *device = dmac->base.device;
140 			nvif_wr32(&device->object, 0x070000, 0x00000001);
141 			nvif_msec(device, 2000,
142 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
143 					break;
144 			);
145 		}
146 
147 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
148 		dmac->put = dmac->cur;
149 	}
150 
151 	push->bgn = push->cur;
152 }
153 
154 static int
155 nv50_dmac_free(struct nv50_dmac *dmac)
156 {
157 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
158 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
159 		return get - dmac->cur - 5;
160 	return dmac->max - dmac->cur;
161 }
162 
163 static int
164 nv50_dmac_wind(struct nv50_dmac *dmac)
165 {
166 	/* Wait for GET to depart from the beginning of the push buffer to
167 	 * prevent writing PUT == GET, which would be ignored by HW.
168 	 */
169 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
170 	if (get == 0) {
171 		/* Corner-case, HW idle, but non-committed work pending. */
172 		if (dmac->put == 0)
173 			nv50_dmac_kick(dmac->push);
174 
175 		if (nvif_msec(dmac->base.device, 2000,
176 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
177 				break;
178 		) < 0)
179 			return -ETIMEDOUT;
180 	}
181 
182 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
183 	dmac->cur = 0;
184 	return 0;
185 }
186 
187 static int
188 nv50_dmac_wait(struct nvif_push *push, u32 size)
189 {
190 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
191 	int free;
192 
193 	if (WARN_ON(size > dmac->max))
194 		return -EINVAL;
195 
196 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
197 	if (dmac->cur + size >= dmac->max) {
198 		int ret = nv50_dmac_wind(dmac);
199 		if (ret)
200 			return ret;
201 
202 		push->cur = dmac->_push.mem.object.map.ptr;
203 		push->cur = push->cur + dmac->cur;
204 		nv50_dmac_kick(push);
205 	}
206 
207 	if (nvif_msec(dmac->base.device, 2000,
208 		if ((free = nv50_dmac_free(dmac)) >= size)
209 			break;
210 	) < 0) {
211 		WARN_ON(1);
212 		return -ETIMEDOUT;
213 	}
214 
215 	push->bgn = dmac->_push.mem.object.map.ptr;
216 	push->bgn = push->bgn + dmac->cur;
217 	push->cur = push->bgn;
218 	push->end = push->cur + free;
219 	return 0;
220 }
221 
222 int
223 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
224 		 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
225 		 struct nv50_dmac *dmac)
226 {
227 	struct nouveau_cli *cli = (void *)device->object.client;
228 	struct nv50_disp_core_channel_dma_v0 *args = data;
229 	u8 type = NVIF_MEM_COHERENT;
230 	int ret;
231 
232 	mutex_init(&dmac->lock);
233 
234 	/* Pascal added support for 47-bit physical addresses, but some
235 	 * parts of EVO still only accept 40-bit PAs.
236 	 *
237 	 * To avoid issues on systems with large amounts of RAM, and on
238 	 * systems where an IOMMU maps pages at a high address, we need
239 	 * to allocate push buffers in VRAM instead.
240 	 *
241 	 * This appears to match NVIDIA's behaviour on Pascal.
242 	 */
243 	if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
244 		type |= NVIF_MEM_VRAM;
245 
246 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
247 				&dmac->_push.mem);
248 	if (ret)
249 		return ret;
250 
251 	dmac->ptr = dmac->_push.mem.object.map.ptr;
252 	dmac->_push.wait = nv50_dmac_wait;
253 	dmac->_push.kick = nv50_dmac_kick;
254 	dmac->push = &dmac->_push;
255 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
256 	dmac->push->cur = dmac->push->bgn;
257 	dmac->push->end = dmac->push->bgn;
258 	dmac->max = 0x1000/4 - 1;
259 
260 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
261 	 * of the push buffer aren't able to be used safely.
262 	 */
263 	if (disp->oclass < GV100_DISP)
264 		dmac->max -= 12;
265 
266 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
267 
268 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
269 			       &dmac->base);
270 	if (ret)
271 		return ret;
272 
273 	if (!syncbuf)
274 		return 0;
275 
276 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
277 			       NV_DMA_IN_MEMORY,
278 			       &(struct nv_dma_v0) {
279 					.target = NV_DMA_V0_TARGET_VRAM,
280 					.access = NV_DMA_V0_ACCESS_RDWR,
281 					.start = syncbuf + 0x0000,
282 					.limit = syncbuf + 0x0fff,
283 			       }, sizeof(struct nv_dma_v0),
284 			       &dmac->sync);
285 	if (ret)
286 		return ret;
287 
288 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
289 			       NV_DMA_IN_MEMORY,
290 			       &(struct nv_dma_v0) {
291 					.target = NV_DMA_V0_TARGET_VRAM,
292 					.access = NV_DMA_V0_ACCESS_RDWR,
293 					.start = 0,
294 					.limit = device->info.ram_user - 1,
295 			       }, sizeof(struct nv_dma_v0),
296 			       &dmac->vram);
297 	if (ret)
298 		return ret;
299 
300 	return ret;
301 }
302 
303 /******************************************************************************
304  * Output path helpers
305  *****************************************************************************/
306 static void
307 nv50_outp_release(struct nouveau_encoder *nv_encoder)
308 {
309 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
310 	struct {
311 		struct nv50_disp_mthd_v1 base;
312 	} args = {
313 		.base.version = 1,
314 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
315 		.base.hasht  = nv_encoder->dcb->hasht,
316 		.base.hashm  = nv_encoder->dcb->hashm,
317 	};
318 
319 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
320 	nv_encoder->or = -1;
321 	nv_encoder->link = 0;
322 }
323 
324 static int
325 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
326 {
327 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
328 	struct nv50_disp *disp = nv50_disp(drm->dev);
329 	struct {
330 		struct nv50_disp_mthd_v1 base;
331 		struct nv50_disp_acquire_v0 info;
332 	} args = {
333 		.base.version = 1,
334 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
335 		.base.hasht  = nv_encoder->dcb->hasht,
336 		.base.hashm  = nv_encoder->dcb->hashm,
337 		.info.hda = hda,
338 	};
339 	int ret;
340 
341 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
342 	if (ret) {
343 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
344 		return ret;
345 	}
346 
347 	nv_encoder->or = args.info.or;
348 	nv_encoder->link = args.info.link;
349 	return 0;
350 }
351 
352 static int
353 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
354 			    struct drm_crtc_state *crtc_state,
355 			    struct drm_connector_state *conn_state,
356 			    struct drm_display_mode *native_mode)
357 {
358 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
359 	struct drm_display_mode *mode = &crtc_state->mode;
360 	struct drm_connector *connector = conn_state->connector;
361 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
362 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
363 
364 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
365 	asyc->scaler.full = false;
366 	if (!native_mode)
367 		return 0;
368 
369 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
370 		switch (connector->connector_type) {
371 		case DRM_MODE_CONNECTOR_LVDS:
372 		case DRM_MODE_CONNECTOR_eDP:
373 			/* Don't force scaler for EDID modes with
374 			 * same size as the native one (e.g. different
375 			 * refresh rate)
376 			 */
377 			if (mode->hdisplay == native_mode->hdisplay &&
378 			    mode->vdisplay == native_mode->vdisplay &&
379 			    mode->type & DRM_MODE_TYPE_DRIVER)
380 				break;
381 			mode = native_mode;
382 			asyc->scaler.full = true;
383 			break;
384 		default:
385 			break;
386 		}
387 	} else {
388 		mode = native_mode;
389 	}
390 
391 	if (!drm_mode_equal(adjusted_mode, mode)) {
392 		drm_mode_copy(adjusted_mode, mode);
393 		crtc_state->mode_changed = true;
394 	}
395 
396 	return 0;
397 }
398 
399 static int
400 nv50_outp_atomic_check(struct drm_encoder *encoder,
401 		       struct drm_crtc_state *crtc_state,
402 		       struct drm_connector_state *conn_state)
403 {
404 	struct drm_connector *connector = conn_state->connector;
405 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
406 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
407 	int ret;
408 
409 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
410 					  nv_connector->native_mode);
411 	if (ret)
412 		return ret;
413 
414 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
415 		asyh->or.bpc = connector->display_info.bpc;
416 
417 	return 0;
418 }
419 
420 struct nouveau_connector *
421 nv50_outp_get_new_connector(struct nouveau_encoder *outp,
422 			    struct drm_atomic_state *state)
423 {
424 	struct drm_connector *connector;
425 	struct drm_connector_state *connector_state;
426 	struct drm_encoder *encoder = to_drm_encoder(outp);
427 	int i;
428 
429 	for_each_new_connector_in_state(state, connector, connector_state, i) {
430 		if (connector_state->best_encoder == encoder)
431 			return nouveau_connector(connector);
432 	}
433 
434 	return NULL;
435 }
436 
437 struct nouveau_connector *
438 nv50_outp_get_old_connector(struct nouveau_encoder *outp,
439 			    struct drm_atomic_state *state)
440 {
441 	struct drm_connector *connector;
442 	struct drm_connector_state *connector_state;
443 	struct drm_encoder *encoder = to_drm_encoder(outp);
444 	int i;
445 
446 	for_each_old_connector_in_state(state, connector, connector_state, i) {
447 		if (connector_state->best_encoder == encoder)
448 			return nouveau_connector(connector);
449 	}
450 
451 	return NULL;
452 }
453 
454 /******************************************************************************
455  * DAC
456  *****************************************************************************/
457 static void
458 nv50_dac_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
459 {
460 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
461 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
462 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
463 	if (nv_encoder->crtc)
464 		core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
465 	nv_encoder->crtc = NULL;
466 	nv50_outp_release(nv_encoder);
467 }
468 
469 static void
470 nv50_dac_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
471 {
472 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
473 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
474 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
475 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
476 	u32 ctrl = 0;
477 
478 	switch (nv_crtc->index) {
479 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
480 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
481 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
482 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
483 	default:
484 		WARN_ON(1);
485 		break;
486 	}
487 
488 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
489 
490 	nv50_outp_acquire(nv_encoder, false);
491 
492 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
493 	asyh->or.depth = 0;
494 
495 	nv_encoder->crtc = encoder->crtc;
496 }
497 
498 static enum drm_connector_status
499 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
500 {
501 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
502 	struct nv50_disp *disp = nv50_disp(encoder->dev);
503 	struct {
504 		struct nv50_disp_mthd_v1 base;
505 		struct nv50_disp_dac_load_v0 load;
506 	} args = {
507 		.base.version = 1,
508 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
509 		.base.hasht  = nv_encoder->dcb->hasht,
510 		.base.hashm  = nv_encoder->dcb->hashm,
511 	};
512 	int ret;
513 
514 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
515 	if (args.load.data == 0)
516 		args.load.data = 340;
517 
518 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
519 	if (ret || !args.load.load)
520 		return connector_status_disconnected;
521 
522 	return connector_status_connected;
523 }
524 
525 static const struct drm_encoder_helper_funcs
526 nv50_dac_help = {
527 	.atomic_check = nv50_outp_atomic_check,
528 	.atomic_enable = nv50_dac_enable,
529 	.atomic_disable = nv50_dac_disable,
530 	.detect = nv50_dac_detect
531 };
532 
533 static void
534 nv50_dac_destroy(struct drm_encoder *encoder)
535 {
536 	drm_encoder_cleanup(encoder);
537 	kfree(encoder);
538 }
539 
540 static const struct drm_encoder_funcs
541 nv50_dac_func = {
542 	.destroy = nv50_dac_destroy,
543 };
544 
545 static int
546 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
547 {
548 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
549 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
550 	struct nvkm_i2c_bus *bus;
551 	struct nouveau_encoder *nv_encoder;
552 	struct drm_encoder *encoder;
553 	int type = DRM_MODE_ENCODER_DAC;
554 
555 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
556 	if (!nv_encoder)
557 		return -ENOMEM;
558 	nv_encoder->dcb = dcbe;
559 
560 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
561 	if (bus)
562 		nv_encoder->i2c = &bus->i2c;
563 
564 	encoder = to_drm_encoder(nv_encoder);
565 	encoder->possible_crtcs = dcbe->heads;
566 	encoder->possible_clones = 0;
567 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
568 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
569 	drm_encoder_helper_add(encoder, &nv50_dac_help);
570 
571 	drm_connector_attach_encoder(connector, encoder);
572 	return 0;
573 }
574 
575 /*
576  * audio component binding for ELD notification
577  */
578 static void
579 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
580 				int dev_id)
581 {
582 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
583 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
584 						 port, dev_id);
585 }
586 
587 static int
588 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
589 			     bool *enabled, unsigned char *buf, int max_bytes)
590 {
591 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
592 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
593 	struct drm_encoder *encoder;
594 	struct nouveau_encoder *nv_encoder;
595 	struct drm_connector *connector;
596 	struct nouveau_crtc *nv_crtc;
597 	struct drm_connector_list_iter conn_iter;
598 	int ret = 0;
599 
600 	*enabled = false;
601 
602 	drm_for_each_encoder(encoder, drm->dev) {
603 		struct nouveau_connector *nv_connector = NULL;
604 
605 		nv_encoder = nouveau_encoder(encoder);
606 
607 		drm_connector_list_iter_begin(drm_dev, &conn_iter);
608 		drm_for_each_connector_iter(connector, &conn_iter) {
609 			if (connector->state->best_encoder == encoder) {
610 				nv_connector = nouveau_connector(connector);
611 				break;
612 			}
613 		}
614 		drm_connector_list_iter_end(&conn_iter);
615 		if (!nv_connector)
616 			continue;
617 
618 		nv_crtc = nouveau_crtc(encoder->crtc);
619 		if (!nv_crtc || nv_encoder->or != port ||
620 		    nv_crtc->index != dev_id)
621 			continue;
622 		*enabled = nv_encoder->audio;
623 		if (*enabled) {
624 			ret = drm_eld_size(nv_connector->base.eld);
625 			memcpy(buf, nv_connector->base.eld,
626 			       min(max_bytes, ret));
627 		}
628 		break;
629 	}
630 
631 	return ret;
632 }
633 
634 static const struct drm_audio_component_ops nv50_audio_component_ops = {
635 	.get_eld = nv50_audio_component_get_eld,
636 };
637 
638 static int
639 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
640 			  void *data)
641 {
642 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
643 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
644 	struct drm_audio_component *acomp = data;
645 
646 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
647 		return -ENOMEM;
648 
649 	drm_modeset_lock_all(drm_dev);
650 	acomp->ops = &nv50_audio_component_ops;
651 	acomp->dev = kdev;
652 	drm->audio.component = acomp;
653 	drm_modeset_unlock_all(drm_dev);
654 	return 0;
655 }
656 
657 static void
658 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
659 			    void *data)
660 {
661 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
662 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
663 	struct drm_audio_component *acomp = data;
664 
665 	drm_modeset_lock_all(drm_dev);
666 	drm->audio.component = NULL;
667 	acomp->ops = NULL;
668 	acomp->dev = NULL;
669 	drm_modeset_unlock_all(drm_dev);
670 }
671 
672 static const struct component_ops nv50_audio_component_bind_ops = {
673 	.bind   = nv50_audio_component_bind,
674 	.unbind = nv50_audio_component_unbind,
675 };
676 
677 static void
678 nv50_audio_component_init(struct nouveau_drm *drm)
679 {
680 	if (!component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
681 		drm->audio.component_registered = true;
682 }
683 
684 static void
685 nv50_audio_component_fini(struct nouveau_drm *drm)
686 {
687 	if (drm->audio.component_registered) {
688 		component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
689 		drm->audio.component_registered = false;
690 	}
691 }
692 
693 /******************************************************************************
694  * Audio
695  *****************************************************************************/
696 static void
697 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
698 {
699 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
700 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
701 	struct nv50_disp *disp = nv50_disp(encoder->dev);
702 	struct {
703 		struct nv50_disp_mthd_v1 base;
704 		struct nv50_disp_sor_hda_eld_v0 eld;
705 	} args = {
706 		.base.version = 1,
707 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
708 		.base.hasht   = nv_encoder->dcb->hasht,
709 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
710 				(0x0100 << nv_crtc->index),
711 	};
712 
713 	if (!nv_encoder->audio)
714 		return;
715 
716 	nv_encoder->audio = false;
717 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
718 
719 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
720 					nv_crtc->index);
721 }
722 
723 static void
724 nv50_audio_enable(struct drm_encoder *encoder, struct drm_atomic_state *state,
725 		  struct drm_display_mode *mode)
726 {
727 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
728 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
729 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
730 	struct nouveau_connector *nv_connector;
731 	struct nv50_disp *disp = nv50_disp(encoder->dev);
732 	struct __packed {
733 		struct {
734 			struct nv50_disp_mthd_v1 mthd;
735 			struct nv50_disp_sor_hda_eld_v0 eld;
736 		} base;
737 		u8 data[sizeof(nv_connector->base.eld)];
738 	} args = {
739 		.base.mthd.version = 1,
740 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
741 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
742 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
743 				     (0x0100 << nv_crtc->index),
744 	};
745 
746 	nv_connector = nv50_outp_get_new_connector(nv_encoder, state);
747 	if (!drm_detect_monitor_audio(nv_connector->edid))
748 		return;
749 
750 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
751 
752 	nvif_mthd(&disp->disp->object, 0, &args,
753 		  sizeof(args.base) + drm_eld_size(args.data));
754 	nv_encoder->audio = true;
755 
756 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
757 					nv_crtc->index);
758 }
759 
760 /******************************************************************************
761  * HDMI
762  *****************************************************************************/
763 static void
764 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
765 {
766 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
767 	struct nv50_disp *disp = nv50_disp(encoder->dev);
768 	struct {
769 		struct nv50_disp_mthd_v1 base;
770 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
771 	} args = {
772 		.base.version = 1,
773 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
774 		.base.hasht  = nv_encoder->dcb->hasht,
775 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
776 			       (0x0100 << nv_crtc->index),
777 	};
778 
779 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
780 }
781 
782 static void
783 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_atomic_state *state,
784 		 struct drm_display_mode *mode)
785 {
786 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
787 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
788 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
789 	struct nv50_disp *disp = nv50_disp(encoder->dev);
790 	struct {
791 		struct nv50_disp_mthd_v1 base;
792 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
793 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
794 	} args = {
795 		.base.version = 1,
796 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
797 		.base.hasht  = nv_encoder->dcb->hasht,
798 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
799 			       (0x0100 << nv_crtc->index),
800 		.pwr.state = 1,
801 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
802 	};
803 	struct nouveau_connector *nv_connector;
804 	struct drm_hdmi_info *hdmi;
805 	u32 max_ac_packet;
806 	union hdmi_infoframe avi_frame;
807 	union hdmi_infoframe vendor_frame;
808 	bool high_tmds_clock_ratio = false, scrambling = false;
809 	u8 config;
810 	int ret;
811 	int size;
812 
813 	nv_connector = nv50_outp_get_new_connector(nv_encoder, state);
814 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
815 		return;
816 
817 	hdmi = &nv_connector->base.display_info.hdmi;
818 
819 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
820 						       &nv_connector->base, mode);
821 	if (!ret) {
822 		/* We have an AVI InfoFrame, populate it to the display */
823 		args.pwr.avi_infoframe_length
824 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
825 	}
826 
827 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
828 							  &nv_connector->base, mode);
829 	if (!ret) {
830 		/* We have a Vendor InfoFrame, populate it to the display */
831 		args.pwr.vendor_infoframe_length
832 			= hdmi_infoframe_pack(&vendor_frame,
833 					      args.infoframes
834 					      + args.pwr.avi_infoframe_length,
835 					      17);
836 	}
837 
838 	max_ac_packet  = mode->htotal - mode->hdisplay;
839 	max_ac_packet -= args.pwr.rekey;
840 	max_ac_packet -= 18; /* constant from tegra */
841 	args.pwr.max_ac_packet = max_ac_packet / 32;
842 
843 	if (hdmi->scdc.scrambling.supported) {
844 		high_tmds_clock_ratio = mode->clock > 340000;
845 		scrambling = high_tmds_clock_ratio ||
846 			hdmi->scdc.scrambling.low_rates;
847 	}
848 
849 	args.pwr.scdc =
850 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
851 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
852 
853 	size = sizeof(args.base)
854 		+ sizeof(args.pwr)
855 		+ args.pwr.avi_infoframe_length
856 		+ args.pwr.vendor_infoframe_length;
857 	nvif_mthd(&disp->disp->object, 0, &args, size);
858 
859 	nv50_audio_enable(encoder, state, mode);
860 
861 	/* If SCDC is supported by the downstream monitor, update
862 	 * divider / scrambling settings to what we programmed above.
863 	 */
864 	if (!hdmi->scdc.scrambling.supported)
865 		return;
866 
867 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
868 	if (ret < 0) {
869 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
870 		return;
871 	}
872 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
873 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
874 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
875 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
876 	if (ret < 0)
877 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
878 			 config, ret);
879 }
880 
881 /******************************************************************************
882  * MST
883  *****************************************************************************/
884 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
885 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
886 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
887 
888 struct nv50_mstc {
889 	struct nv50_mstm *mstm;
890 	struct drm_dp_mst_port *port;
891 	struct drm_connector connector;
892 
893 	struct drm_display_mode *native;
894 	struct edid *edid;
895 };
896 
897 struct nv50_msto {
898 	struct drm_encoder encoder;
899 
900 	struct nv50_head *head;
901 	struct nv50_mstc *mstc;
902 	bool disabled;
903 };
904 
905 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
906 {
907 	struct nv50_msto *msto;
908 
909 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
910 		return nouveau_encoder(encoder);
911 
912 	msto = nv50_msto(encoder);
913 	if (!msto->mstc)
914 		return NULL;
915 	return msto->mstc->mstm->outp;
916 }
917 
918 static struct drm_dp_payload *
919 nv50_msto_payload(struct nv50_msto *msto)
920 {
921 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
922 	struct nv50_mstc *mstc = msto->mstc;
923 	struct nv50_mstm *mstm = mstc->mstm;
924 	int vcpi = mstc->port->vcpi.vcpi, i;
925 
926 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
927 
928 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
929 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
930 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
931 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
932 			  mstm->outp->base.base.name, i, payload->vcpi,
933 			  payload->start_slot, payload->num_slots);
934 	}
935 
936 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
937 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
938 		if (payload->vcpi == vcpi)
939 			return payload;
940 	}
941 
942 	return NULL;
943 }
944 
945 static void
946 nv50_msto_cleanup(struct nv50_msto *msto)
947 {
948 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
949 	struct nv50_mstc *mstc = msto->mstc;
950 	struct nv50_mstm *mstm = mstc->mstm;
951 
952 	if (!msto->disabled)
953 		return;
954 
955 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
956 
957 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
958 
959 	msto->mstc = NULL;
960 	msto->disabled = false;
961 }
962 
963 static void
964 nv50_msto_prepare(struct nv50_msto *msto)
965 {
966 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
967 	struct nv50_mstc *mstc = msto->mstc;
968 	struct nv50_mstm *mstm = mstc->mstm;
969 	struct {
970 		struct nv50_disp_mthd_v1 base;
971 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
972 	} args = {
973 		.base.version = 1,
974 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
975 		.base.hasht  = mstm->outp->dcb->hasht,
976 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
977 			       (0x0100 << msto->head->base.index),
978 	};
979 
980 	mutex_lock(&mstm->mgr.payload_lock);
981 
982 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
983 	if (mstc->port->vcpi.vcpi > 0) {
984 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
985 		if (payload) {
986 			args.vcpi.start_slot = payload->start_slot;
987 			args.vcpi.num_slots = payload->num_slots;
988 			args.vcpi.pbn = mstc->port->vcpi.pbn;
989 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
990 		}
991 	}
992 
993 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
994 		  msto->encoder.name, msto->head->base.base.name,
995 		  args.vcpi.start_slot, args.vcpi.num_slots,
996 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
997 
998 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
999 	mutex_unlock(&mstm->mgr.payload_lock);
1000 }
1001 
1002 static int
1003 nv50_msto_atomic_check(struct drm_encoder *encoder,
1004 		       struct drm_crtc_state *crtc_state,
1005 		       struct drm_connector_state *conn_state)
1006 {
1007 	struct drm_atomic_state *state = crtc_state->state;
1008 	struct drm_connector *connector = conn_state->connector;
1009 	struct nv50_mstc *mstc = nv50_mstc(connector);
1010 	struct nv50_mstm *mstm = mstc->mstm;
1011 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1012 	int slots;
1013 	int ret;
1014 
1015 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1016 					  mstc->native);
1017 	if (ret)
1018 		return ret;
1019 
1020 	if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
1021 		return 0;
1022 
1023 	/*
1024 	 * When restoring duplicated states, we need to make sure that the bw
1025 	 * remains the same and avoid recalculating it, as the connector's bpc
1026 	 * may have changed after the state was duplicated
1027 	 */
1028 	if (!state->duplicated) {
1029 		const int clock = crtc_state->adjusted_mode.clock;
1030 
1031 		asyh->or.bpc = connector->display_info.bpc;
1032 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1033 						    false);
1034 	}
1035 
1036 	slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
1037 					      asyh->dp.pbn, 0);
1038 	if (slots < 0)
1039 		return slots;
1040 
1041 	asyh->dp.tu = slots;
1042 
1043 	return 0;
1044 }
1045 
1046 static u8
1047 nv50_dp_bpc_to_depth(unsigned int bpc)
1048 {
1049 	switch (bpc) {
1050 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1051 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1052 	case 10:
1053 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1054 	}
1055 }
1056 
1057 static void
1058 nv50_msto_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1059 {
1060 	struct nv50_head *head = nv50_head(encoder->crtc);
1061 	struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state);
1062 	struct nv50_msto *msto = nv50_msto(encoder);
1063 	struct nv50_mstc *mstc = NULL;
1064 	struct nv50_mstm *mstm = NULL;
1065 	struct drm_connector *connector;
1066 	struct drm_connector_list_iter conn_iter;
1067 	u8 proto;
1068 	bool r;
1069 
1070 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1071 	drm_for_each_connector_iter(connector, &conn_iter) {
1072 		if (connector->state->best_encoder == &msto->encoder) {
1073 			mstc = nv50_mstc(connector);
1074 			mstm = mstc->mstm;
1075 			break;
1076 		}
1077 	}
1078 	drm_connector_list_iter_end(&conn_iter);
1079 
1080 	if (WARN_ON(!mstc))
1081 		return;
1082 
1083 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn,
1084 				     armh->dp.tu);
1085 	if (!r)
1086 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1087 
1088 	if (!mstm->links++)
1089 		nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1090 
1091 	if (mstm->outp->link & 1)
1092 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1093 	else
1094 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1095 
1096 	mstm->outp->update(mstm->outp, head->base.index, armh, proto,
1097 			   nv50_dp_bpc_to_depth(armh->or.bpc));
1098 
1099 	msto->mstc = mstc;
1100 	mstm->modified = true;
1101 }
1102 
1103 static void
1104 nv50_msto_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1105 {
1106 	struct nv50_msto *msto = nv50_msto(encoder);
1107 	struct nv50_mstc *mstc = msto->mstc;
1108 	struct nv50_mstm *mstm = mstc->mstm;
1109 
1110 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1111 
1112 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1113 	mstm->modified = true;
1114 	if (!--mstm->links)
1115 		mstm->disabled = true;
1116 	msto->disabled = true;
1117 }
1118 
1119 static const struct drm_encoder_helper_funcs
1120 nv50_msto_help = {
1121 	.atomic_disable = nv50_msto_disable,
1122 	.atomic_enable = nv50_msto_enable,
1123 	.atomic_check = nv50_msto_atomic_check,
1124 };
1125 
1126 static void
1127 nv50_msto_destroy(struct drm_encoder *encoder)
1128 {
1129 	struct nv50_msto *msto = nv50_msto(encoder);
1130 	drm_encoder_cleanup(&msto->encoder);
1131 	kfree(msto);
1132 }
1133 
1134 static const struct drm_encoder_funcs
1135 nv50_msto = {
1136 	.destroy = nv50_msto_destroy,
1137 };
1138 
1139 static struct nv50_msto *
1140 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1141 {
1142 	struct nv50_msto *msto;
1143 	int ret;
1144 
1145 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1146 	if (!msto)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1150 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1151 	if (ret) {
1152 		kfree(msto);
1153 		return ERR_PTR(ret);
1154 	}
1155 
1156 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1157 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1158 	msto->head = head;
1159 	return msto;
1160 }
1161 
1162 static struct drm_encoder *
1163 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1164 			      struct drm_connector_state *connector_state)
1165 {
1166 	struct nv50_mstc *mstc = nv50_mstc(connector);
1167 	struct drm_crtc *crtc = connector_state->crtc;
1168 
1169 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1170 		return NULL;
1171 
1172 	return &nv50_head(crtc)->msto->encoder;
1173 }
1174 
1175 static enum drm_mode_status
1176 nv50_mstc_mode_valid(struct drm_connector *connector,
1177 		     struct drm_display_mode *mode)
1178 {
1179 	struct nv50_mstc *mstc = nv50_mstc(connector);
1180 	struct nouveau_encoder *outp = mstc->mstm->outp;
1181 
1182 	/* TODO: calculate the PBN from the dotclock and validate against the
1183 	 * MSTB's max possible PBN
1184 	 */
1185 
1186 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1187 }
1188 
1189 static int
1190 nv50_mstc_get_modes(struct drm_connector *connector)
1191 {
1192 	struct nv50_mstc *mstc = nv50_mstc(connector);
1193 	int ret = 0;
1194 
1195 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1196 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1197 	if (mstc->edid)
1198 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1199 
1200 	/*
1201 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1202 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1203 	 * to properly fix this by dynamically selecting the highest possible
1204 	 * bpc that would fit in the topology
1205 	 */
1206 	if (connector->display_info.bpc)
1207 		connector->display_info.bpc =
1208 			clamp(connector->display_info.bpc, 6U, 8U);
1209 	else
1210 		connector->display_info.bpc = 8;
1211 
1212 	if (mstc->native)
1213 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1214 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1215 	return ret;
1216 }
1217 
1218 static int
1219 nv50_mstc_atomic_check(struct drm_connector *connector,
1220 		       struct drm_atomic_state *state)
1221 {
1222 	struct nv50_mstc *mstc = nv50_mstc(connector);
1223 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1224 	struct drm_connector_state *new_conn_state =
1225 		drm_atomic_get_new_connector_state(state, connector);
1226 	struct drm_connector_state *old_conn_state =
1227 		drm_atomic_get_old_connector_state(state, connector);
1228 	struct drm_crtc_state *crtc_state;
1229 	struct drm_crtc *new_crtc = new_conn_state->crtc;
1230 
1231 	if (!old_conn_state->crtc)
1232 		return 0;
1233 
1234 	/* We only want to free VCPI if this state disables the CRTC on this
1235 	 * connector
1236 	 */
1237 	if (new_crtc) {
1238 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1239 
1240 		if (!crtc_state ||
1241 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
1242 		    crtc_state->enable)
1243 			return 0;
1244 	}
1245 
1246 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1247 }
1248 
1249 static int
1250 nv50_mstc_detect(struct drm_connector *connector,
1251 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1252 {
1253 	struct nv50_mstc *mstc = nv50_mstc(connector);
1254 	int ret;
1255 
1256 	if (drm_connector_is_unregistered(connector))
1257 		return connector_status_disconnected;
1258 
1259 	ret = pm_runtime_get_sync(connector->dev->dev);
1260 	if (ret < 0 && ret != -EACCES) {
1261 		pm_runtime_put_autosuspend(connector->dev->dev);
1262 		return connector_status_disconnected;
1263 	}
1264 
1265 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1266 				     mstc->port);
1267 	if (ret != connector_status_connected)
1268 		goto out;
1269 
1270 out:
1271 	pm_runtime_mark_last_busy(connector->dev->dev);
1272 	pm_runtime_put_autosuspend(connector->dev->dev);
1273 	return ret;
1274 }
1275 
1276 static const struct drm_connector_helper_funcs
1277 nv50_mstc_help = {
1278 	.get_modes = nv50_mstc_get_modes,
1279 	.mode_valid = nv50_mstc_mode_valid,
1280 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1281 	.atomic_check = nv50_mstc_atomic_check,
1282 	.detect_ctx = nv50_mstc_detect,
1283 };
1284 
1285 static void
1286 nv50_mstc_destroy(struct drm_connector *connector)
1287 {
1288 	struct nv50_mstc *mstc = nv50_mstc(connector);
1289 
1290 	drm_connector_cleanup(&mstc->connector);
1291 	drm_dp_mst_put_port_malloc(mstc->port);
1292 
1293 	kfree(mstc);
1294 }
1295 
1296 static const struct drm_connector_funcs
1297 nv50_mstc = {
1298 	.reset = nouveau_conn_reset,
1299 	.fill_modes = drm_helper_probe_single_connector_modes,
1300 	.destroy = nv50_mstc_destroy,
1301 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1302 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1303 	.atomic_set_property = nouveau_conn_atomic_set_property,
1304 	.atomic_get_property = nouveau_conn_atomic_get_property,
1305 };
1306 
1307 static int
1308 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1309 	      const char *path, struct nv50_mstc **pmstc)
1310 {
1311 	struct drm_device *dev = mstm->outp->base.base.dev;
1312 	struct drm_crtc *crtc;
1313 	struct nv50_mstc *mstc;
1314 	int ret;
1315 
1316 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1317 		return -ENOMEM;
1318 	mstc->mstm = mstm;
1319 	mstc->port = port;
1320 
1321 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1322 				 DRM_MODE_CONNECTOR_DisplayPort);
1323 	if (ret) {
1324 		kfree(*pmstc);
1325 		*pmstc = NULL;
1326 		return ret;
1327 	}
1328 
1329 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1330 
1331 	mstc->connector.funcs->reset(&mstc->connector);
1332 	nouveau_conn_attach_properties(&mstc->connector);
1333 
1334 	drm_for_each_crtc(crtc, dev) {
1335 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1336 			continue;
1337 
1338 		drm_connector_attach_encoder(&mstc->connector,
1339 					     &nv50_head(crtc)->msto->encoder);
1340 	}
1341 
1342 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1343 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1344 	drm_connector_set_path_property(&mstc->connector, path);
1345 	drm_dp_mst_get_port_malloc(port);
1346 	return 0;
1347 }
1348 
1349 static void
1350 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1351 {
1352 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1353 	struct drm_encoder *encoder;
1354 	int ret;
1355 
1356 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1357 	ret = drm_dp_check_act_status(&mstm->mgr);
1358 
1359 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1360 
1361 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1362 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1363 			struct nv50_msto *msto = nv50_msto(encoder);
1364 			struct nv50_mstc *mstc = msto->mstc;
1365 			if (mstc && mstc->mstm == mstm)
1366 				nv50_msto_cleanup(msto);
1367 		}
1368 	}
1369 
1370 	mstm->modified = false;
1371 }
1372 
1373 static void
1374 nv50_mstm_prepare(struct nv50_mstm *mstm)
1375 {
1376 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1377 	struct drm_encoder *encoder;
1378 	int ret;
1379 
1380 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1381 	ret = drm_dp_update_payload_part1(&mstm->mgr);
1382 
1383 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1384 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1385 			struct nv50_msto *msto = nv50_msto(encoder);
1386 			struct nv50_mstc *mstc = msto->mstc;
1387 			if (mstc && mstc->mstm == mstm)
1388 				nv50_msto_prepare(msto);
1389 		}
1390 	}
1391 
1392 	if (mstm->disabled) {
1393 		if (!mstm->links)
1394 			nv50_outp_release(mstm->outp);
1395 		mstm->disabled = false;
1396 	}
1397 }
1398 
1399 static struct drm_connector *
1400 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1401 			struct drm_dp_mst_port *port, const char *path)
1402 {
1403 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1404 	struct nv50_mstc *mstc;
1405 	int ret;
1406 
1407 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1408 	if (ret)
1409 		return NULL;
1410 
1411 	return &mstc->connector;
1412 }
1413 
1414 static const struct drm_dp_mst_topology_cbs
1415 nv50_mstm = {
1416 	.add_connector = nv50_mstm_add_connector,
1417 };
1418 
1419 bool
1420 nv50_mstm_service(struct nouveau_drm *drm,
1421 		  struct nouveau_connector *nv_connector,
1422 		  struct nv50_mstm *mstm)
1423 {
1424 	struct drm_dp_aux *aux = &nv_connector->aux;
1425 	bool handled = true, ret = true;
1426 	int rc;
1427 	u8 esi[8] = {};
1428 
1429 	while (handled) {
1430 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1431 		if (rc != 8) {
1432 			ret = false;
1433 			break;
1434 		}
1435 
1436 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1437 		if (!handled)
1438 			break;
1439 
1440 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1441 				       3);
1442 		if (rc != 3) {
1443 			ret = false;
1444 			break;
1445 		}
1446 	}
1447 
1448 	if (!ret)
1449 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1450 			 nv_connector->base.name, rc);
1451 
1452 	return ret;
1453 }
1454 
1455 void
1456 nv50_mstm_remove(struct nv50_mstm *mstm)
1457 {
1458 	mstm->is_mst = false;
1459 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1460 }
1461 
1462 static int
1463 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1464 {
1465 	struct nouveau_encoder *outp = mstm->outp;
1466 	struct {
1467 		struct nv50_disp_mthd_v1 base;
1468 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1469 	} args = {
1470 		.base.version = 1,
1471 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1472 		.base.hasht = outp->dcb->hasht,
1473 		.base.hashm = outp->dcb->hashm,
1474 		.mst.state = state,
1475 	};
1476 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1477 	struct nvif_object *disp = &drm->display->disp.object;
1478 
1479 	return nvif_mthd(disp, 0, &args, sizeof(args));
1480 }
1481 
1482 int
1483 nv50_mstm_detect(struct nouveau_encoder *outp)
1484 {
1485 	struct nv50_mstm *mstm = outp->dp.mstm;
1486 	struct drm_dp_aux *aux;
1487 	int ret;
1488 
1489 	if (!mstm || !mstm->can_mst)
1490 		return 0;
1491 
1492 	aux = mstm->mgr.aux;
1493 
1494 	/* Clear any leftover MST state we didn't set ourselves by first
1495 	 * disabling MST if it was already enabled
1496 	 */
1497 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1498 	if (ret < 0)
1499 		return ret;
1500 
1501 	/* And start enabling */
1502 	ret = nv50_mstm_enable(mstm, true);
1503 	if (ret)
1504 		return ret;
1505 
1506 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1507 	if (ret) {
1508 		nv50_mstm_enable(mstm, false);
1509 		return ret;
1510 	}
1511 
1512 	mstm->is_mst = true;
1513 	return 1;
1514 }
1515 
1516 static void
1517 nv50_mstm_fini(struct nouveau_encoder *outp)
1518 {
1519 	struct nv50_mstm *mstm = outp->dp.mstm;
1520 
1521 	if (!mstm)
1522 		return;
1523 
1524 	/* Don't change the MST state of this connector until we've finished
1525 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1526 	 * path to protect mstm->is_mst without potentially deadlocking
1527 	 */
1528 	mutex_lock(&outp->dp.hpd_irq_lock);
1529 	mstm->suspended = true;
1530 	mutex_unlock(&outp->dp.hpd_irq_lock);
1531 
1532 	if (mstm->is_mst)
1533 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1534 }
1535 
1536 static void
1537 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1538 {
1539 	struct nv50_mstm *mstm = outp->dp.mstm;
1540 	int ret = 0;
1541 
1542 	if (!mstm)
1543 		return;
1544 
1545 	if (mstm->is_mst) {
1546 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1547 		if (ret == -1)
1548 			nv50_mstm_remove(mstm);
1549 	}
1550 
1551 	mutex_lock(&outp->dp.hpd_irq_lock);
1552 	mstm->suspended = false;
1553 	mutex_unlock(&outp->dp.hpd_irq_lock);
1554 
1555 	if (ret == -1)
1556 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1557 }
1558 
1559 static void
1560 nv50_mstm_del(struct nv50_mstm **pmstm)
1561 {
1562 	struct nv50_mstm *mstm = *pmstm;
1563 	if (mstm) {
1564 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1565 		kfree(*pmstm);
1566 		*pmstm = NULL;
1567 	}
1568 }
1569 
1570 static int
1571 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1572 	      int conn_base_id, struct nv50_mstm **pmstm)
1573 {
1574 	const int max_payloads = hweight8(outp->dcb->heads);
1575 	struct drm_device *dev = outp->base.base.dev;
1576 	struct nv50_mstm *mstm;
1577 	int ret;
1578 
1579 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1580 		return -ENOMEM;
1581 	mstm->outp = outp;
1582 	mstm->mgr.cbs = &nv50_mstm;
1583 
1584 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1585 					   max_payloads, conn_base_id);
1586 	if (ret)
1587 		return ret;
1588 
1589 	return 0;
1590 }
1591 
1592 /******************************************************************************
1593  * SOR
1594  *****************************************************************************/
1595 static void
1596 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1597 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1598 {
1599 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1600 	struct nv50_core *core = disp->core;
1601 
1602 	if (!asyh) {
1603 		nv_encoder->ctrl &= ~BIT(head);
1604 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1605 			nv_encoder->ctrl = 0;
1606 	} else {
1607 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1608 		nv_encoder->ctrl |= BIT(head);
1609 		asyh->or.depth = depth;
1610 	}
1611 
1612 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1613 }
1614 
1615 static void
1616 nv50_sor_disable(struct drm_encoder *encoder,
1617 		 struct drm_atomic_state *state)
1618 {
1619 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1620 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1621 	struct nouveau_connector *nv_connector =
1622 		nv50_outp_get_old_connector(nv_encoder, state);
1623 
1624 	nv_encoder->crtc = NULL;
1625 
1626 	if (nv_crtc) {
1627 		struct drm_dp_aux *aux = &nv_connector->aux;
1628 		u8 pwr;
1629 
1630 		if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1631 			int ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1632 
1633 			if (ret == 0) {
1634 				pwr &= ~DP_SET_POWER_MASK;
1635 				pwr |=  DP_SET_POWER_D3;
1636 				drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1637 			}
1638 		}
1639 
1640 		nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1641 		nv50_audio_disable(encoder, nv_crtc);
1642 		nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1643 		nv50_outp_release(nv_encoder);
1644 	}
1645 }
1646 
1647 static void
1648 nv50_sor_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1649 {
1650 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1651 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1652 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1653 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1654 	struct {
1655 		struct nv50_disp_mthd_v1 base;
1656 		struct nv50_disp_sor_lvds_script_v0 lvds;
1657 	} lvds = {
1658 		.base.version = 1,
1659 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1660 		.base.hasht   = nv_encoder->dcb->hasht,
1661 		.base.hashm   = nv_encoder->dcb->hashm,
1662 	};
1663 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1664 	struct drm_device *dev = encoder->dev;
1665 	struct nouveau_drm *drm = nouveau_drm(dev);
1666 	struct nouveau_connector *nv_connector;
1667 	struct nvbios *bios = &drm->vbios;
1668 	bool hda = false;
1669 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1670 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1671 
1672 	nv_connector = nv50_outp_get_new_connector(nv_encoder, state);
1673 	nv_encoder->crtc = encoder->crtc;
1674 
1675 	if ((disp->disp->object.oclass == GT214_DISP ||
1676 	     disp->disp->object.oclass >= GF110_DISP) &&
1677 	    drm_detect_monitor_audio(nv_connector->edid))
1678 		hda = true;
1679 	nv50_outp_acquire(nv_encoder, hda);
1680 
1681 	switch (nv_encoder->dcb->type) {
1682 	case DCB_OUTPUT_TMDS:
1683 		if (nv_encoder->link & 1) {
1684 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1685 			/* Only enable dual-link if:
1686 			 *  - Need to (i.e. rate > 165MHz)
1687 			 *  - DCB says we can
1688 			 *  - Not an HDMI monitor, since there's no dual-link
1689 			 *    on HDMI.
1690 			 */
1691 			if (mode->clock >= 165000 &&
1692 			    nv_encoder->dcb->duallink_possible &&
1693 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1694 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1695 		} else {
1696 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1697 		}
1698 
1699 		nv50_hdmi_enable(&nv_encoder->base.base, state, mode);
1700 		break;
1701 	case DCB_OUTPUT_LVDS:
1702 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1703 
1704 		if (bios->fp_no_ddc) {
1705 			if (bios->fp.dual_link)
1706 				lvds.lvds.script |= 0x0100;
1707 			if (bios->fp.if_is_24bit)
1708 				lvds.lvds.script |= 0x0200;
1709 		} else {
1710 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1711 				if (((u8 *)nv_connector->edid)[121] == 2)
1712 					lvds.lvds.script |= 0x0100;
1713 			} else
1714 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1715 				lvds.lvds.script |= 0x0100;
1716 			}
1717 
1718 			if (lvds.lvds.script & 0x0100) {
1719 				if (bios->fp.strapless_is_24bit & 2)
1720 					lvds.lvds.script |= 0x0200;
1721 			} else {
1722 				if (bios->fp.strapless_is_24bit & 1)
1723 					lvds.lvds.script |= 0x0200;
1724 			}
1725 
1726 			if (asyh->or.bpc == 8)
1727 				lvds.lvds.script |= 0x0200;
1728 		}
1729 
1730 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1731 		break;
1732 	case DCB_OUTPUT_DP:
1733 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1734 
1735 		if (nv_encoder->link & 1)
1736 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1737 		else
1738 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1739 
1740 		nv50_audio_enable(encoder, state, mode);
1741 		break;
1742 	default:
1743 		BUG();
1744 		break;
1745 	}
1746 
1747 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1748 }
1749 
1750 static const struct drm_encoder_helper_funcs
1751 nv50_sor_help = {
1752 	.atomic_check = nv50_outp_atomic_check,
1753 	.atomic_enable = nv50_sor_enable,
1754 	.atomic_disable = nv50_sor_disable,
1755 };
1756 
1757 static void
1758 nv50_sor_destroy(struct drm_encoder *encoder)
1759 {
1760 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1761 	nv50_mstm_del(&nv_encoder->dp.mstm);
1762 	drm_encoder_cleanup(encoder);
1763 
1764 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1765 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1766 
1767 	kfree(encoder);
1768 }
1769 
1770 static const struct drm_encoder_funcs
1771 nv50_sor_func = {
1772 	.destroy = nv50_sor_destroy,
1773 };
1774 
1775 static bool nv50_has_mst(struct nouveau_drm *drm)
1776 {
1777 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1778 	u32 data;
1779 	u8 ver, hdr, cnt, len;
1780 
1781 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1782 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1783 }
1784 
1785 static int
1786 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1787 {
1788 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1789 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1790 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1791 	struct nouveau_encoder *nv_encoder;
1792 	struct drm_encoder *encoder;
1793 	struct nv50_disp *disp = nv50_disp(connector->dev);
1794 	int type, ret;
1795 
1796 	switch (dcbe->type) {
1797 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1798 	case DCB_OUTPUT_TMDS:
1799 	case DCB_OUTPUT_DP:
1800 	default:
1801 		type = DRM_MODE_ENCODER_TMDS;
1802 		break;
1803 	}
1804 
1805 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1806 	if (!nv_encoder)
1807 		return -ENOMEM;
1808 	nv_encoder->dcb = dcbe;
1809 	nv_encoder->update = nv50_sor_update;
1810 
1811 	encoder = to_drm_encoder(nv_encoder);
1812 	encoder->possible_crtcs = dcbe->heads;
1813 	encoder->possible_clones = 0;
1814 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1815 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1816 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1817 
1818 	drm_connector_attach_encoder(connector, encoder);
1819 
1820 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1821 
1822 	if (dcbe->type == DCB_OUTPUT_DP) {
1823 		struct nvkm_i2c_aux *aux =
1824 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1825 
1826 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1827 
1828 		if (aux) {
1829 			if (disp->disp->object.oclass < GF110_DISP) {
1830 				/* HW has no support for address-only
1831 				 * transactions, so we're required to
1832 				 * use custom I2C-over-AUX code.
1833 				 */
1834 				nv_encoder->i2c = &aux->i2c;
1835 			} else {
1836 				nv_encoder->i2c = &nv_connector->aux.ddc;
1837 			}
1838 			nv_encoder->aux = aux;
1839 		}
1840 
1841 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1842 		    nv50_has_mst(drm)) {
1843 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1844 					    16, nv_connector->base.base.id,
1845 					    &nv_encoder->dp.mstm);
1846 			if (ret)
1847 				return ret;
1848 		}
1849 	} else {
1850 		struct nvkm_i2c_bus *bus =
1851 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1852 		if (bus)
1853 			nv_encoder->i2c = &bus->i2c;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 /******************************************************************************
1860  * PIOR
1861  *****************************************************************************/
1862 static int
1863 nv50_pior_atomic_check(struct drm_encoder *encoder,
1864 		       struct drm_crtc_state *crtc_state,
1865 		       struct drm_connector_state *conn_state)
1866 {
1867 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1868 	if (ret)
1869 		return ret;
1870 	crtc_state->adjusted_mode.clock *= 2;
1871 	return 0;
1872 }
1873 
1874 static void
1875 nv50_pior_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1876 {
1877 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1878 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1879 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1880 	if (nv_encoder->crtc)
1881 		core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1882 	nv_encoder->crtc = NULL;
1883 	nv50_outp_release(nv_encoder);
1884 }
1885 
1886 static void
1887 nv50_pior_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1888 {
1889 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1890 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1891 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1892 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1893 	u32 ctrl = 0;
1894 
1895 	switch (nv_crtc->index) {
1896 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1897 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1898 	default:
1899 		WARN_ON(1);
1900 		break;
1901 	}
1902 
1903 	nv50_outp_acquire(nv_encoder, false);
1904 
1905 	switch (asyh->or.bpc) {
1906 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1907 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1908 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1909 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1910 	}
1911 
1912 	switch (nv_encoder->dcb->type) {
1913 	case DCB_OUTPUT_TMDS:
1914 	case DCB_OUTPUT_DP:
1915 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1916 		break;
1917 	default:
1918 		BUG();
1919 		break;
1920 	}
1921 
1922 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1923 	nv_encoder->crtc = &nv_crtc->base;
1924 }
1925 
1926 static const struct drm_encoder_helper_funcs
1927 nv50_pior_help = {
1928 	.atomic_check = nv50_pior_atomic_check,
1929 	.atomic_enable = nv50_pior_enable,
1930 	.atomic_disable = nv50_pior_disable,
1931 };
1932 
1933 static void
1934 nv50_pior_destroy(struct drm_encoder *encoder)
1935 {
1936 	drm_encoder_cleanup(encoder);
1937 	kfree(encoder);
1938 }
1939 
1940 static const struct drm_encoder_funcs
1941 nv50_pior_func = {
1942 	.destroy = nv50_pior_destroy,
1943 };
1944 
1945 static int
1946 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1947 {
1948 	struct drm_device *dev = connector->dev;
1949 	struct nouveau_drm *drm = nouveau_drm(dev);
1950 	struct nv50_disp *disp = nv50_disp(dev);
1951 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1952 	struct nvkm_i2c_bus *bus = NULL;
1953 	struct nvkm_i2c_aux *aux = NULL;
1954 	struct i2c_adapter *ddc;
1955 	struct nouveau_encoder *nv_encoder;
1956 	struct drm_encoder *encoder;
1957 	int type;
1958 
1959 	switch (dcbe->type) {
1960 	case DCB_OUTPUT_TMDS:
1961 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1962 		ddc  = bus ? &bus->i2c : NULL;
1963 		type = DRM_MODE_ENCODER_TMDS;
1964 		break;
1965 	case DCB_OUTPUT_DP:
1966 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1967 		ddc  = aux ? &aux->i2c : NULL;
1968 		type = DRM_MODE_ENCODER_TMDS;
1969 		break;
1970 	default:
1971 		return -ENODEV;
1972 	}
1973 
1974 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1975 	if (!nv_encoder)
1976 		return -ENOMEM;
1977 	nv_encoder->dcb = dcbe;
1978 	nv_encoder->i2c = ddc;
1979 	nv_encoder->aux = aux;
1980 
1981 	encoder = to_drm_encoder(nv_encoder);
1982 	encoder->possible_crtcs = dcbe->heads;
1983 	encoder->possible_clones = 0;
1984 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1985 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1986 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1987 
1988 	drm_connector_attach_encoder(connector, encoder);
1989 
1990 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1991 
1992 	return 0;
1993 }
1994 
1995 /******************************************************************************
1996  * Atomic
1997  *****************************************************************************/
1998 
1999 static void
2000 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2001 {
2002 	struct nouveau_drm *drm = nouveau_drm(state->dev);
2003 	struct nv50_disp *disp = nv50_disp(drm->dev);
2004 	struct nv50_core *core = disp->core;
2005 	struct nv50_mstm *mstm;
2006 	struct drm_encoder *encoder;
2007 
2008 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2009 
2010 	drm_for_each_encoder(encoder, drm->dev) {
2011 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2012 			mstm = nouveau_encoder(encoder)->dp.mstm;
2013 			if (mstm && mstm->modified)
2014 				nv50_mstm_prepare(mstm);
2015 		}
2016 	}
2017 
2018 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2019 	core->func->update(core, interlock, true);
2020 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2021 				       disp->core->chan.base.device))
2022 		NV_ERROR(drm, "core notifier timeout\n");
2023 
2024 	drm_for_each_encoder(encoder, drm->dev) {
2025 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2026 			mstm = nouveau_encoder(encoder)->dp.mstm;
2027 			if (mstm && mstm->modified)
2028 				nv50_mstm_cleanup(mstm);
2029 		}
2030 	}
2031 }
2032 
2033 static void
2034 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2035 {
2036 	struct drm_plane_state *new_plane_state;
2037 	struct drm_plane *plane;
2038 	int i;
2039 
2040 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2041 		struct nv50_wndw *wndw = nv50_wndw(plane);
2042 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2043 			if (wndw->func->update)
2044 				wndw->func->update(wndw, interlock);
2045 		}
2046 	}
2047 }
2048 
2049 static void
2050 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2051 {
2052 	struct drm_device *dev = state->dev;
2053 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2054 	struct drm_crtc *crtc;
2055 	struct drm_plane_state *new_plane_state;
2056 	struct drm_plane *plane;
2057 	struct nouveau_drm *drm = nouveau_drm(dev);
2058 	struct nv50_disp *disp = nv50_disp(dev);
2059 	struct nv50_atom *atom = nv50_atom(state);
2060 	struct nv50_core *core = disp->core;
2061 	struct nv50_outp_atom *outp, *outt;
2062 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2063 	int i;
2064 	bool flushed = false;
2065 
2066 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2067 	nv50_crc_atomic_stop_reporting(state);
2068 	drm_atomic_helper_wait_for_fences(dev, state, false);
2069 	drm_atomic_helper_wait_for_dependencies(state);
2070 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2071 	drm_atomic_helper_calc_timestamping_constants(state);
2072 
2073 	if (atom->lock_core)
2074 		mutex_lock(&disp->mutex);
2075 
2076 	/* Disable head(s). */
2077 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2078 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2079 		struct nv50_head *head = nv50_head(crtc);
2080 
2081 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2082 			  asyh->clr.mask, asyh->set.mask);
2083 
2084 		if (old_crtc_state->active && !new_crtc_state->active) {
2085 			pm_runtime_put_noidle(dev->dev);
2086 			drm_crtc_vblank_off(crtc);
2087 		}
2088 
2089 		if (asyh->clr.mask) {
2090 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2091 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2092 		}
2093 	}
2094 
2095 	/* Disable plane(s). */
2096 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2097 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2098 		struct nv50_wndw *wndw = nv50_wndw(plane);
2099 
2100 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2101 			  asyw->clr.mask, asyw->set.mask);
2102 		if (!asyw->clr.mask)
2103 			continue;
2104 
2105 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2106 	}
2107 
2108 	/* Disable output path(s). */
2109 	list_for_each_entry(outp, &atom->outp, head) {
2110 		const struct drm_encoder_helper_funcs *help;
2111 		struct drm_encoder *encoder;
2112 
2113 		encoder = outp->encoder;
2114 		help = encoder->helper_private;
2115 
2116 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2117 			  outp->clr.mask, outp->set.mask);
2118 
2119 		if (outp->clr.mask) {
2120 			help->atomic_disable(encoder, state);
2121 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2122 			if (outp->flush_disable) {
2123 				nv50_disp_atomic_commit_wndw(state, interlock);
2124 				nv50_disp_atomic_commit_core(state, interlock);
2125 				memset(interlock, 0x00, sizeof(interlock));
2126 
2127 				flushed = true;
2128 			}
2129 		}
2130 	}
2131 
2132 	/* Flush disable. */
2133 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2134 		if (atom->flush_disable) {
2135 			nv50_disp_atomic_commit_wndw(state, interlock);
2136 			nv50_disp_atomic_commit_core(state, interlock);
2137 			memset(interlock, 0x00, sizeof(interlock));
2138 
2139 			flushed = true;
2140 		}
2141 	}
2142 
2143 	if (flushed)
2144 		nv50_crc_atomic_release_notifier_contexts(state);
2145 	nv50_crc_atomic_init_notifier_contexts(state);
2146 
2147 	/* Update output path(s). */
2148 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2149 		const struct drm_encoder_helper_funcs *help;
2150 		struct drm_encoder *encoder;
2151 
2152 		encoder = outp->encoder;
2153 		help = encoder->helper_private;
2154 
2155 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2156 			  outp->set.mask, outp->clr.mask);
2157 
2158 		if (outp->set.mask) {
2159 			help->atomic_enable(encoder, state);
2160 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2161 		}
2162 
2163 		list_del(&outp->head);
2164 		kfree(outp);
2165 	}
2166 
2167 	/* Update head(s). */
2168 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2169 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2170 		struct nv50_head *head = nv50_head(crtc);
2171 
2172 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2173 			  asyh->set.mask, asyh->clr.mask);
2174 
2175 		if (asyh->set.mask) {
2176 			nv50_head_flush_set(head, asyh);
2177 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2178 		}
2179 
2180 		if (new_crtc_state->active) {
2181 			if (!old_crtc_state->active) {
2182 				drm_crtc_vblank_on(crtc);
2183 				pm_runtime_get_noresume(dev->dev);
2184 			}
2185 			if (new_crtc_state->event)
2186 				drm_crtc_vblank_get(crtc);
2187 		}
2188 	}
2189 
2190 	/* Update window->head assignment.
2191 	 *
2192 	 * This has to happen in an update that's not interlocked with
2193 	 * any window channels to avoid hitting HW error checks.
2194 	 *
2195 	 *TODO: Proper handling of window ownership (Turing apparently
2196 	 *      supports non-fixed mappings).
2197 	 */
2198 	if (core->assign_windows) {
2199 		core->func->wndw.owner(core);
2200 		nv50_disp_atomic_commit_core(state, interlock);
2201 		core->assign_windows = false;
2202 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2203 	}
2204 
2205 	/* Update plane(s). */
2206 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2207 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2208 		struct nv50_wndw *wndw = nv50_wndw(plane);
2209 
2210 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2211 			  asyw->set.mask, asyw->clr.mask);
2212 		if ( !asyw->set.mask &&
2213 		    (!asyw->clr.mask || atom->flush_disable))
2214 			continue;
2215 
2216 		nv50_wndw_flush_set(wndw, interlock, asyw);
2217 	}
2218 
2219 	/* Flush update. */
2220 	nv50_disp_atomic_commit_wndw(state, interlock);
2221 
2222 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2223 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2224 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2225 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2226 		    !atom->state.legacy_cursor_update)
2227 			nv50_disp_atomic_commit_core(state, interlock);
2228 		else
2229 			disp->core->func->update(disp->core, interlock, false);
2230 	}
2231 
2232 	if (atom->lock_core)
2233 		mutex_unlock(&disp->mutex);
2234 
2235 	/* Wait for HW to signal completion. */
2236 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2237 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2238 		struct nv50_wndw *wndw = nv50_wndw(plane);
2239 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2240 		if (ret)
2241 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2242 	}
2243 
2244 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2245 		if (new_crtc_state->event) {
2246 			unsigned long flags;
2247 			/* Get correct count/ts if racing with vblank irq */
2248 			if (new_crtc_state->active)
2249 				drm_crtc_accurate_vblank_count(crtc);
2250 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2251 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2252 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2253 
2254 			new_crtc_state->event = NULL;
2255 			if (new_crtc_state->active)
2256 				drm_crtc_vblank_put(crtc);
2257 		}
2258 	}
2259 
2260 	nv50_crc_atomic_start_reporting(state);
2261 	if (!flushed)
2262 		nv50_crc_atomic_release_notifier_contexts(state);
2263 	drm_atomic_helper_commit_hw_done(state);
2264 	drm_atomic_helper_cleanup_planes(dev, state);
2265 	drm_atomic_helper_commit_cleanup_done(state);
2266 	drm_atomic_state_put(state);
2267 
2268 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2269 	pm_runtime_mark_last_busy(dev->dev);
2270 	pm_runtime_put_autosuspend(dev->dev);
2271 }
2272 
2273 static void
2274 nv50_disp_atomic_commit_work(struct work_struct *work)
2275 {
2276 	struct drm_atomic_state *state =
2277 		container_of(work, typeof(*state), commit_work);
2278 	nv50_disp_atomic_commit_tail(state);
2279 }
2280 
2281 static int
2282 nv50_disp_atomic_commit(struct drm_device *dev,
2283 			struct drm_atomic_state *state, bool nonblock)
2284 {
2285 	struct drm_plane_state *new_plane_state;
2286 	struct drm_plane *plane;
2287 	int ret, i;
2288 
2289 	ret = pm_runtime_get_sync(dev->dev);
2290 	if (ret < 0 && ret != -EACCES) {
2291 		pm_runtime_put_autosuspend(dev->dev);
2292 		return ret;
2293 	}
2294 
2295 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2296 	if (ret)
2297 		goto done;
2298 
2299 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2300 
2301 	ret = drm_atomic_helper_prepare_planes(dev, state);
2302 	if (ret)
2303 		goto done;
2304 
2305 	if (!nonblock) {
2306 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2307 		if (ret)
2308 			goto err_cleanup;
2309 	}
2310 
2311 	ret = drm_atomic_helper_swap_state(state, true);
2312 	if (ret)
2313 		goto err_cleanup;
2314 
2315 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2316 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2317 		struct nv50_wndw *wndw = nv50_wndw(plane);
2318 
2319 		if (asyw->set.image)
2320 			nv50_wndw_ntfy_enable(wndw, asyw);
2321 	}
2322 
2323 	drm_atomic_state_get(state);
2324 
2325 	/*
2326 	 * Grab another RPM ref for the commit tail, which will release the
2327 	 * ref when it's finished
2328 	 */
2329 	pm_runtime_get_noresume(dev->dev);
2330 
2331 	if (nonblock)
2332 		queue_work(system_unbound_wq, &state->commit_work);
2333 	else
2334 		nv50_disp_atomic_commit_tail(state);
2335 
2336 err_cleanup:
2337 	if (ret)
2338 		drm_atomic_helper_cleanup_planes(dev, state);
2339 done:
2340 	pm_runtime_put_autosuspend(dev->dev);
2341 	return ret;
2342 }
2343 
2344 static struct nv50_outp_atom *
2345 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2346 {
2347 	struct nv50_outp_atom *outp;
2348 
2349 	list_for_each_entry(outp, &atom->outp, head) {
2350 		if (outp->encoder == encoder)
2351 			return outp;
2352 	}
2353 
2354 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2355 	if (!outp)
2356 		return ERR_PTR(-ENOMEM);
2357 
2358 	list_add(&outp->head, &atom->outp);
2359 	outp->encoder = encoder;
2360 	return outp;
2361 }
2362 
2363 static int
2364 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2365 				struct drm_connector_state *old_connector_state)
2366 {
2367 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2368 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2369 	struct drm_crtc *crtc;
2370 	struct nv50_outp_atom *outp;
2371 
2372 	if (!(crtc = old_connector_state->crtc))
2373 		return 0;
2374 
2375 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2376 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2377 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2378 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2379 		if (IS_ERR(outp))
2380 			return PTR_ERR(outp);
2381 
2382 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2383 			outp->flush_disable = true;
2384 			atom->flush_disable = true;
2385 		}
2386 		outp->clr.ctrl = true;
2387 		atom->lock_core = true;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int
2394 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2395 				struct drm_connector_state *connector_state)
2396 {
2397 	struct drm_encoder *encoder = connector_state->best_encoder;
2398 	struct drm_crtc_state *new_crtc_state;
2399 	struct drm_crtc *crtc;
2400 	struct nv50_outp_atom *outp;
2401 
2402 	if (!(crtc = connector_state->crtc))
2403 		return 0;
2404 
2405 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2406 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2407 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2408 		if (IS_ERR(outp))
2409 			return PTR_ERR(outp);
2410 
2411 		outp->set.ctrl = true;
2412 		atom->lock_core = true;
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 static int
2419 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2420 {
2421 	struct nv50_atom *atom = nv50_atom(state);
2422 	struct nv50_core *core = nv50_disp(dev)->core;
2423 	struct drm_connector_state *old_connector_state, *new_connector_state;
2424 	struct drm_connector *connector;
2425 	struct drm_crtc_state *new_crtc_state;
2426 	struct drm_crtc *crtc;
2427 	struct nv50_head *head;
2428 	struct nv50_head_atom *asyh;
2429 	int ret, i;
2430 
2431 	if (core->assign_windows && core->func->head->static_wndw_map) {
2432 		drm_for_each_crtc(crtc, dev) {
2433 			new_crtc_state = drm_atomic_get_crtc_state(state,
2434 								   crtc);
2435 			if (IS_ERR(new_crtc_state))
2436 				return PTR_ERR(new_crtc_state);
2437 
2438 			head = nv50_head(crtc);
2439 			asyh = nv50_head_atom(new_crtc_state);
2440 			core->func->head->static_wndw_map(head, asyh);
2441 		}
2442 	}
2443 
2444 	/* We need to handle colour management on a per-plane basis. */
2445 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2446 		if (new_crtc_state->color_mgmt_changed) {
2447 			ret = drm_atomic_add_affected_planes(state, crtc);
2448 			if (ret)
2449 				return ret;
2450 		}
2451 	}
2452 
2453 	ret = drm_atomic_helper_check(dev, state);
2454 	if (ret)
2455 		return ret;
2456 
2457 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2458 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2459 		if (ret)
2460 			return ret;
2461 
2462 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2463 		if (ret)
2464 			return ret;
2465 	}
2466 
2467 	ret = drm_dp_mst_atomic_check(state);
2468 	if (ret)
2469 		return ret;
2470 
2471 	nv50_crc_atomic_check_outp(atom);
2472 
2473 	return 0;
2474 }
2475 
2476 static void
2477 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2478 {
2479 	struct nv50_atom *atom = nv50_atom(state);
2480 	struct nv50_outp_atom *outp, *outt;
2481 
2482 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2483 		list_del(&outp->head);
2484 		kfree(outp);
2485 	}
2486 
2487 	drm_atomic_state_default_clear(state);
2488 }
2489 
2490 static void
2491 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2492 {
2493 	struct nv50_atom *atom = nv50_atom(state);
2494 	drm_atomic_state_default_release(&atom->state);
2495 	kfree(atom);
2496 }
2497 
2498 static struct drm_atomic_state *
2499 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2500 {
2501 	struct nv50_atom *atom;
2502 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2503 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2504 		kfree(atom);
2505 		return NULL;
2506 	}
2507 	INIT_LIST_HEAD(&atom->outp);
2508 	return &atom->state;
2509 }
2510 
2511 static const struct drm_mode_config_funcs
2512 nv50_disp_func = {
2513 	.fb_create = nouveau_user_framebuffer_create,
2514 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2515 	.atomic_check = nv50_disp_atomic_check,
2516 	.atomic_commit = nv50_disp_atomic_commit,
2517 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2518 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2519 	.atomic_state_free = nv50_disp_atomic_state_free,
2520 };
2521 
2522 /******************************************************************************
2523  * Init
2524  *****************************************************************************/
2525 
2526 static void
2527 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2528 {
2529 	struct nouveau_drm *drm = nouveau_drm(dev);
2530 	struct drm_encoder *encoder;
2531 	struct drm_plane *plane;
2532 
2533 	drm_for_each_plane(plane, dev) {
2534 		struct nv50_wndw *wndw = nv50_wndw(plane);
2535 		if (plane->funcs != &nv50_wndw)
2536 			continue;
2537 		nv50_wndw_fini(wndw);
2538 	}
2539 
2540 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2541 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2542 			nv50_mstm_fini(nouveau_encoder(encoder));
2543 	}
2544 
2545 	if (!runtime)
2546 		cancel_work_sync(&drm->hpd_work);
2547 }
2548 
2549 static int
2550 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2551 {
2552 	struct nv50_core *core = nv50_disp(dev)->core;
2553 	struct drm_encoder *encoder;
2554 	struct drm_plane *plane;
2555 
2556 	if (resume || runtime)
2557 		core->func->init(core);
2558 
2559 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2560 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2561 			struct nouveau_encoder *nv_encoder =
2562 				nouveau_encoder(encoder);
2563 			nv50_mstm_init(nv_encoder, runtime);
2564 		}
2565 	}
2566 
2567 	drm_for_each_plane(plane, dev) {
2568 		struct nv50_wndw *wndw = nv50_wndw(plane);
2569 		if (plane->funcs != &nv50_wndw)
2570 			continue;
2571 		nv50_wndw_init(wndw);
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static void
2578 nv50_display_destroy(struct drm_device *dev)
2579 {
2580 	struct nv50_disp *disp = nv50_disp(dev);
2581 
2582 	nv50_audio_component_fini(nouveau_drm(dev));
2583 
2584 	nvif_object_unmap(&disp->caps);
2585 	nvif_object_dtor(&disp->caps);
2586 	nv50_core_del(&disp->core);
2587 
2588 	nouveau_bo_unmap(disp->sync);
2589 	if (disp->sync)
2590 		nouveau_bo_unpin(disp->sync);
2591 	nouveau_bo_ref(NULL, &disp->sync);
2592 
2593 	nouveau_display(dev)->priv = NULL;
2594 	kfree(disp);
2595 }
2596 
2597 int
2598 nv50_display_create(struct drm_device *dev)
2599 {
2600 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2601 	struct nouveau_drm *drm = nouveau_drm(dev);
2602 	struct dcb_table *dcb = &drm->vbios.dcb;
2603 	struct drm_connector *connector, *tmp;
2604 	struct nv50_disp *disp;
2605 	struct dcb_output *dcbe;
2606 	int crtcs, ret, i;
2607 	bool has_mst = nv50_has_mst(drm);
2608 
2609 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2610 	if (!disp)
2611 		return -ENOMEM;
2612 
2613 	mutex_init(&disp->mutex);
2614 
2615 	nouveau_display(dev)->priv = disp;
2616 	nouveau_display(dev)->dtor = nv50_display_destroy;
2617 	nouveau_display(dev)->init = nv50_display_init;
2618 	nouveau_display(dev)->fini = nv50_display_fini;
2619 	disp->disp = &nouveau_display(dev)->disp;
2620 	dev->mode_config.funcs = &nv50_disp_func;
2621 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2622 	dev->mode_config.normalize_zpos = true;
2623 
2624 	/* small shared memory area we use for notifiers and semaphores */
2625 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2626 			     NOUVEAU_GEM_DOMAIN_VRAM,
2627 			     0, 0x0000, NULL, NULL, &disp->sync);
2628 	if (!ret) {
2629 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2630 		if (!ret) {
2631 			ret = nouveau_bo_map(disp->sync);
2632 			if (ret)
2633 				nouveau_bo_unpin(disp->sync);
2634 		}
2635 		if (ret)
2636 			nouveau_bo_ref(NULL, &disp->sync);
2637 	}
2638 
2639 	if (ret)
2640 		goto out;
2641 
2642 	/* allocate master evo channel */
2643 	ret = nv50_core_new(drm, &disp->core);
2644 	if (ret)
2645 		goto out;
2646 
2647 	disp->core->func->init(disp->core);
2648 	if (disp->core->func->caps_init) {
2649 		ret = disp->core->func->caps_init(drm, disp);
2650 		if (ret)
2651 			goto out;
2652 	}
2653 
2654 	/* Assign the correct format modifiers */
2655 	if (disp->disp->object.oclass >= TU102_DISP)
2656 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2657 	else
2658 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2659 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2660 	else
2661 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2662 
2663 	/* create crtc objects to represent the hw heads */
2664 	if (disp->disp->object.oclass >= GV100_DISP)
2665 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2666 	else
2667 	if (disp->disp->object.oclass >= GF110_DISP)
2668 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2669 	else
2670 		crtcs = 0x3;
2671 
2672 	for (i = 0; i < fls(crtcs); i++) {
2673 		struct nv50_head *head;
2674 
2675 		if (!(crtcs & (1 << i)))
2676 			continue;
2677 
2678 		head = nv50_head_create(dev, i);
2679 		if (IS_ERR(head)) {
2680 			ret = PTR_ERR(head);
2681 			goto out;
2682 		}
2683 
2684 		if (has_mst) {
2685 			head->msto = nv50_msto_new(dev, head, i);
2686 			if (IS_ERR(head->msto)) {
2687 				ret = PTR_ERR(head->msto);
2688 				head->msto = NULL;
2689 				goto out;
2690 			}
2691 
2692 			/*
2693 			 * FIXME: This is a hack to workaround the following
2694 			 * issues:
2695 			 *
2696 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2697 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2698 			 *
2699 			 * Once these issues are closed, this should be
2700 			 * removed
2701 			 */
2702 			head->msto->encoder.possible_crtcs = crtcs;
2703 		}
2704 	}
2705 
2706 	/* create encoder/connector objects based on VBIOS DCB table */
2707 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2708 		connector = nouveau_connector_create(dev, dcbe);
2709 		if (IS_ERR(connector))
2710 			continue;
2711 
2712 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2713 			switch (dcbe->type) {
2714 			case DCB_OUTPUT_TMDS:
2715 			case DCB_OUTPUT_LVDS:
2716 			case DCB_OUTPUT_DP:
2717 				ret = nv50_sor_create(connector, dcbe);
2718 				break;
2719 			case DCB_OUTPUT_ANALOG:
2720 				ret = nv50_dac_create(connector, dcbe);
2721 				break;
2722 			default:
2723 				ret = -ENODEV;
2724 				break;
2725 			}
2726 		} else {
2727 			ret = nv50_pior_create(connector, dcbe);
2728 		}
2729 
2730 		if (ret) {
2731 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2732 				     dcbe->location, dcbe->type,
2733 				     ffs(dcbe->or) - 1, ret);
2734 			ret = 0;
2735 		}
2736 	}
2737 
2738 	/* cull any connectors we created that don't have an encoder */
2739 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2740 		if (connector->possible_encoders)
2741 			continue;
2742 
2743 		NV_WARN(drm, "%s has no encoders, removing\n",
2744 			connector->name);
2745 		connector->funcs->destroy(connector);
2746 	}
2747 
2748 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2749 	dev->vblank_disable_immediate = true;
2750 
2751 	nv50_audio_component_init(drm);
2752 
2753 out:
2754 	if (ret)
2755 		nv50_display_destroy(dev);
2756 	return ret;
2757 }
2758 
2759 /******************************************************************************
2760  * Format modifiers
2761  *****************************************************************************/
2762 
2763 /****************************************************************
2764  *            Log2(block height) ----------------------------+  *
2765  *            Page Kind ----------------------------------+  |  *
2766  *            Gob Height/Page Kind Generation ------+     |  |  *
2767  *                          Sector layout -------+  |     |  |  *
2768  *                          Compression ------+  |  |     |  |  */
2769 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2770 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2771 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2772 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2773 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2774 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2775 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2776 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2777 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2778 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2779 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2780 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2781 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2782 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2783 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2784 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2785 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2786 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2787 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2788 	DRM_FORMAT_MOD_LINEAR,
2789 	DRM_FORMAT_MOD_INVALID
2790 };
2791 
2792 /****************************************************************
2793  *            Log2(block height) ----------------------------+  *
2794  *            Page Kind ----------------------------------+  |  *
2795  *            Gob Height/Page Kind Generation ------+     |  |  *
2796  *                          Sector layout -------+  |     |  |  *
2797  *                          Compression ------+  |  |     |  |  */
2798 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2799 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2800 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2801 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2802 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2803 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2804 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2805 	DRM_FORMAT_MOD_LINEAR,
2806 	DRM_FORMAT_MOD_INVALID
2807 };
2808