1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/cl5070.h>
50 #include <nvif/event.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nouveau_fbcon.h"
68 
69 #include <subdev/bios/dp.h>
70 
71 /******************************************************************************
72  * EVO channel
73  *****************************************************************************/
74 
75 static int
76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 		 const s32 *oclass, u8 head, void *data, u32 size,
78 		 struct nv50_chan *chan)
79 {
80 	struct nvif_sclass *sclass;
81 	int ret, i, n;
82 
83 	chan->device = device;
84 
85 	ret = n = nvif_object_sclass_get(disp, &sclass);
86 	if (ret < 0)
87 		return ret;
88 
89 	while (oclass[0]) {
90 		for (i = 0; i < n; i++) {
91 			if (sclass[i].oclass == oclass[0]) {
92 				ret = nvif_object_ctor(disp, "kmsChan", 0,
93 						       oclass[0], data, size,
94 						       &chan->user);
95 				if (ret == 0)
96 					nvif_object_map(&chan->user, NULL, 0);
97 				nvif_object_sclass_put(&sclass);
98 				return ret;
99 			}
100 		}
101 		oclass++;
102 	}
103 
104 	nvif_object_sclass_put(&sclass);
105 	return -ENOSYS;
106 }
107 
108 static void
109 nv50_chan_destroy(struct nv50_chan *chan)
110 {
111 	nvif_object_dtor(&chan->user);
112 }
113 
114 /******************************************************************************
115  * DMA EVO channel
116  *****************************************************************************/
117 
118 void
119 nv50_dmac_destroy(struct nv50_dmac *dmac)
120 {
121 	nvif_object_dtor(&dmac->vram);
122 	nvif_object_dtor(&dmac->sync);
123 
124 	nv50_chan_destroy(&dmac->base);
125 
126 	nvif_mem_dtor(&dmac->_push.mem);
127 }
128 
129 static void
130 nv50_dmac_kick(struct nvif_push *push)
131 {
132 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
133 
134 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
135 	if (dmac->put != dmac->cur) {
136 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
137 		 * writes have been flushed right through to VRAM before writing PUT.
138 		 */
139 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 			struct nvif_device *device = dmac->base.device;
141 			nvif_wr32(&device->object, 0x070000, 0x00000001);
142 			nvif_msec(device, 2000,
143 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
144 					break;
145 			);
146 		}
147 
148 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 		dmac->put = dmac->cur;
150 	}
151 
152 	push->bgn = push->cur;
153 }
154 
155 static int
156 nv50_dmac_free(struct nv50_dmac *dmac)
157 {
158 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 		return get - dmac->cur - 5;
161 	return dmac->max - dmac->cur;
162 }
163 
164 static int
165 nv50_dmac_wind(struct nv50_dmac *dmac)
166 {
167 	/* Wait for GET to depart from the beginning of the push buffer to
168 	 * prevent writing PUT == GET, which would be ignored by HW.
169 	 */
170 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
171 	if (get == 0) {
172 		/* Corner-case, HW idle, but non-committed work pending. */
173 		if (dmac->put == 0)
174 			nv50_dmac_kick(dmac->push);
175 
176 		if (nvif_msec(dmac->base.device, 2000,
177 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
178 				break;
179 		) < 0)
180 			return -ETIMEDOUT;
181 	}
182 
183 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
184 	dmac->cur = 0;
185 	return 0;
186 }
187 
188 static int
189 nv50_dmac_wait(struct nvif_push *push, u32 size)
190 {
191 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
192 	int free;
193 
194 	if (WARN_ON(size > dmac->max))
195 		return -EINVAL;
196 
197 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
198 	if (dmac->cur + size >= dmac->max) {
199 		int ret = nv50_dmac_wind(dmac);
200 		if (ret)
201 			return ret;
202 
203 		push->cur = dmac->_push.mem.object.map.ptr;
204 		push->cur = push->cur + dmac->cur;
205 		nv50_dmac_kick(push);
206 	}
207 
208 	if (nvif_msec(dmac->base.device, 2000,
209 		if ((free = nv50_dmac_free(dmac)) >= size)
210 			break;
211 	) < 0) {
212 		WARN_ON(1);
213 		return -ETIMEDOUT;
214 	}
215 
216 	push->bgn = dmac->_push.mem.object.map.ptr;
217 	push->bgn = push->bgn + dmac->cur;
218 	push->cur = push->bgn;
219 	push->end = push->cur + free;
220 	return 0;
221 }
222 
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
226 
227 int
228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 		 struct nv50_dmac *dmac)
231 {
232 	struct nouveau_cli *cli = (void *)device->object.client;
233 	struct nvif_disp_chan_v0 *args = data;
234 	u8 type = NVIF_MEM_COHERENT;
235 	int ret;
236 
237 	mutex_init(&dmac->lock);
238 
239 	/* Pascal added support for 47-bit physical addresses, but some
240 	 * parts of EVO still only accept 40-bit PAs.
241 	 *
242 	 * To avoid issues on systems with large amounts of RAM, and on
243 	 * systems where an IOMMU maps pages at a high address, we need
244 	 * to allocate push buffers in VRAM instead.
245 	 *
246 	 * This appears to match NVIDIA's behaviour on Pascal.
247 	 */
248 	if ((nv50_dmac_vram_pushbuf > 0) ||
249 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 		type |= NVIF_MEM_VRAM;
251 
252 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
253 				&dmac->_push.mem);
254 	if (ret)
255 		return ret;
256 
257 	dmac->ptr = dmac->_push.mem.object.map.ptr;
258 	dmac->_push.wait = nv50_dmac_wait;
259 	dmac->_push.kick = nv50_dmac_kick;
260 	dmac->push = &dmac->_push;
261 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 	dmac->push->cur = dmac->push->bgn;
263 	dmac->push->end = dmac->push->bgn;
264 	dmac->max = 0x1000/4 - 1;
265 
266 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
267 	 * of the push buffer aren't able to be used safely.
268 	 */
269 	if (disp->oclass < GV100_DISP)
270 		dmac->max -= 12;
271 
272 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
273 
274 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 			       &dmac->base);
276 	if (ret)
277 		return ret;
278 
279 	if (syncbuf < 0)
280 		return 0;
281 
282 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 			       NV_DMA_IN_MEMORY,
284 			       &(struct nv_dma_v0) {
285 					.target = NV_DMA_V0_TARGET_VRAM,
286 					.access = NV_DMA_V0_ACCESS_RDWR,
287 					.start = syncbuf + 0x0000,
288 					.limit = syncbuf + 0x0fff,
289 			       }, sizeof(struct nv_dma_v0),
290 			       &dmac->sync);
291 	if (ret)
292 		return ret;
293 
294 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 			       NV_DMA_IN_MEMORY,
296 			       &(struct nv_dma_v0) {
297 					.target = NV_DMA_V0_TARGET_VRAM,
298 					.access = NV_DMA_V0_ACCESS_RDWR,
299 					.start = 0,
300 					.limit = device->info.ram_user - 1,
301 			       }, sizeof(struct nv_dma_v0),
302 			       &dmac->vram);
303 	if (ret)
304 		return ret;
305 
306 	return ret;
307 }
308 
309 /******************************************************************************
310  * Output path helpers
311  *****************************************************************************/
312 static void
313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 		    struct nouveau_encoder *outp)
315 {
316 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 		 outp->base.base.name, outp->caps.dp_interlace);
318 }
319 
320 static void
321 nv50_outp_release(struct nouveau_encoder *nv_encoder)
322 {
323 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
324 	struct {
325 		struct nv50_disp_mthd_v1 base;
326 	} args = {
327 		.base.version = 1,
328 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
329 		.base.hasht  = nv_encoder->dcb->hasht,
330 		.base.hashm  = nv_encoder->dcb->hashm,
331 	};
332 
333 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
334 	nv_encoder->or = -1;
335 	nv_encoder->link = 0;
336 }
337 
338 static int
339 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
340 {
341 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
342 	struct nv50_disp *disp = nv50_disp(drm->dev);
343 	struct {
344 		struct nv50_disp_mthd_v1 base;
345 		struct nv50_disp_acquire_v0 info;
346 	} args = {
347 		.base.version = 1,
348 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
349 		.base.hasht  = nv_encoder->dcb->hasht,
350 		.base.hashm  = nv_encoder->dcb->hashm,
351 		.info.hda = hda,
352 	};
353 	int ret;
354 
355 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
356 	if (ret) {
357 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
358 		return ret;
359 	}
360 
361 	nv_encoder->or = args.info.or;
362 	nv_encoder->link = args.info.link;
363 	return 0;
364 }
365 
366 static int
367 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
368 			    struct drm_crtc_state *crtc_state,
369 			    struct drm_connector_state *conn_state,
370 			    struct drm_display_mode *native_mode)
371 {
372 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
373 	struct drm_display_mode *mode = &crtc_state->mode;
374 	struct drm_connector *connector = conn_state->connector;
375 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
376 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
377 
378 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
379 	asyc->scaler.full = false;
380 	if (!native_mode)
381 		return 0;
382 
383 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
384 		switch (connector->connector_type) {
385 		case DRM_MODE_CONNECTOR_LVDS:
386 		case DRM_MODE_CONNECTOR_eDP:
387 			/* Don't force scaler for EDID modes with
388 			 * same size as the native one (e.g. different
389 			 * refresh rate)
390 			 */
391 			if (mode->hdisplay == native_mode->hdisplay &&
392 			    mode->vdisplay == native_mode->vdisplay &&
393 			    mode->type & DRM_MODE_TYPE_DRIVER)
394 				break;
395 			mode = native_mode;
396 			asyc->scaler.full = true;
397 			break;
398 		default:
399 			break;
400 		}
401 	} else {
402 		mode = native_mode;
403 	}
404 
405 	if (!drm_mode_equal(adjusted_mode, mode)) {
406 		drm_mode_copy(adjusted_mode, mode);
407 		crtc_state->mode_changed = true;
408 	}
409 
410 	return 0;
411 }
412 
413 static int
414 nv50_outp_atomic_check(struct drm_encoder *encoder,
415 		       struct drm_crtc_state *crtc_state,
416 		       struct drm_connector_state *conn_state)
417 {
418 	struct drm_connector *connector = conn_state->connector;
419 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
420 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
421 	int ret;
422 
423 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
424 					  nv_connector->native_mode);
425 	if (ret)
426 		return ret;
427 
428 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
429 		asyh->or.bpc = connector->display_info.bpc;
430 
431 	return 0;
432 }
433 
434 struct nouveau_connector *
435 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
436 {
437 	struct drm_connector *connector;
438 	struct drm_connector_state *connector_state;
439 	struct drm_encoder *encoder = to_drm_encoder(outp);
440 	int i;
441 
442 	for_each_new_connector_in_state(state, connector, connector_state, i) {
443 		if (connector_state->best_encoder == encoder)
444 			return nouveau_connector(connector);
445 	}
446 
447 	return NULL;
448 }
449 
450 struct nouveau_connector *
451 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
452 {
453 	struct drm_connector *connector;
454 	struct drm_connector_state *connector_state;
455 	struct drm_encoder *encoder = to_drm_encoder(outp);
456 	int i;
457 
458 	for_each_old_connector_in_state(state, connector, connector_state, i) {
459 		if (connector_state->best_encoder == encoder)
460 			return nouveau_connector(connector);
461 	}
462 
463 	return NULL;
464 }
465 
466 static struct nouveau_crtc *
467 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
468 {
469 	struct drm_crtc *crtc;
470 	struct drm_crtc_state *crtc_state;
471 	const u32 mask = drm_encoder_mask(&outp->base.base);
472 	int i;
473 
474 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
475 		if (crtc_state->encoder_mask & mask)
476 			return nouveau_crtc(crtc);
477 	}
478 
479 	return NULL;
480 }
481 
482 /******************************************************************************
483  * DAC
484  *****************************************************************************/
485 static void
486 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
487 {
488 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
489 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
490 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
491 
492 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
493 	nv_encoder->crtc = NULL;
494 	nv50_outp_release(nv_encoder);
495 }
496 
497 static void
498 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
499 {
500 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
501 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
502 	struct nv50_head_atom *asyh =
503 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
504 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
505 	u32 ctrl = 0;
506 
507 	switch (nv_crtc->index) {
508 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
509 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
510 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
511 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
512 	default:
513 		WARN_ON(1);
514 		break;
515 	}
516 
517 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
518 
519 	nv50_outp_acquire(nv_encoder, false);
520 
521 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
522 	asyh->or.depth = 0;
523 
524 	nv_encoder->crtc = &nv_crtc->base;
525 }
526 
527 static enum drm_connector_status
528 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
529 {
530 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
531 	u32 loadval;
532 	int ret;
533 
534 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
535 	if (loadval == 0)
536 		loadval = 340;
537 
538 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
539 	if (ret <= 0)
540 		return connector_status_disconnected;
541 
542 	return connector_status_connected;
543 }
544 
545 static const struct drm_encoder_helper_funcs
546 nv50_dac_help = {
547 	.atomic_check = nv50_outp_atomic_check,
548 	.atomic_enable = nv50_dac_atomic_enable,
549 	.atomic_disable = nv50_dac_atomic_disable,
550 	.detect = nv50_dac_detect
551 };
552 
553 static void
554 nv50_dac_destroy(struct drm_encoder *encoder)
555 {
556 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
557 
558 	nvif_outp_dtor(&nv_encoder->outp);
559 
560 	drm_encoder_cleanup(encoder);
561 	kfree(encoder);
562 }
563 
564 static const struct drm_encoder_funcs
565 nv50_dac_func = {
566 	.destroy = nv50_dac_destroy,
567 };
568 
569 static int
570 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
571 {
572 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
573 	struct nv50_disp *disp = nv50_disp(connector->dev);
574 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
575 	struct nvkm_i2c_bus *bus;
576 	struct nouveau_encoder *nv_encoder;
577 	struct drm_encoder *encoder;
578 	int type = DRM_MODE_ENCODER_DAC;
579 
580 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
581 	if (!nv_encoder)
582 		return -ENOMEM;
583 	nv_encoder->dcb = dcbe;
584 
585 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
586 	if (bus)
587 		nv_encoder->i2c = &bus->i2c;
588 
589 	encoder = to_drm_encoder(nv_encoder);
590 	encoder->possible_crtcs = dcbe->heads;
591 	encoder->possible_clones = 0;
592 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
593 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
594 	drm_encoder_helper_add(encoder, &nv50_dac_help);
595 
596 	drm_connector_attach_encoder(connector, encoder);
597 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
598 }
599 
600 /*
601  * audio component binding for ELD notification
602  */
603 static void
604 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
605 				int dev_id)
606 {
607 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
608 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
609 						 port, dev_id);
610 }
611 
612 static int
613 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
614 			     bool *enabled, unsigned char *buf, int max_bytes)
615 {
616 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
617 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
618 	struct drm_encoder *encoder;
619 	struct nouveau_encoder *nv_encoder;
620 	struct nouveau_crtc *nv_crtc;
621 	int ret = 0;
622 
623 	*enabled = false;
624 
625 	mutex_lock(&drm->audio.lock);
626 
627 	drm_for_each_encoder(encoder, drm->dev) {
628 		struct nouveau_connector *nv_connector = NULL;
629 
630 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
631 			continue; /* TODO */
632 
633 		nv_encoder = nouveau_encoder(encoder);
634 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
635 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
636 
637 		if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
638 			continue;
639 
640 		*enabled = nv_encoder->audio.enabled;
641 		if (*enabled) {
642 			ret = drm_eld_size(nv_connector->base.eld);
643 			memcpy(buf, nv_connector->base.eld,
644 			       min(max_bytes, ret));
645 		}
646 		break;
647 	}
648 
649 	mutex_unlock(&drm->audio.lock);
650 
651 	return ret;
652 }
653 
654 static const struct drm_audio_component_ops nv50_audio_component_ops = {
655 	.get_eld = nv50_audio_component_get_eld,
656 };
657 
658 static int
659 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
660 			  void *data)
661 {
662 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
663 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
664 	struct drm_audio_component *acomp = data;
665 
666 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
667 		return -ENOMEM;
668 
669 	drm_modeset_lock_all(drm_dev);
670 	acomp->ops = &nv50_audio_component_ops;
671 	acomp->dev = kdev;
672 	drm->audio.component = acomp;
673 	drm_modeset_unlock_all(drm_dev);
674 	return 0;
675 }
676 
677 static void
678 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
679 			    void *data)
680 {
681 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
682 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
683 	struct drm_audio_component *acomp = data;
684 
685 	drm_modeset_lock_all(drm_dev);
686 	drm->audio.component = NULL;
687 	acomp->ops = NULL;
688 	acomp->dev = NULL;
689 	drm_modeset_unlock_all(drm_dev);
690 }
691 
692 static const struct component_ops nv50_audio_component_bind_ops = {
693 	.bind   = nv50_audio_component_bind,
694 	.unbind = nv50_audio_component_unbind,
695 };
696 
697 static void
698 nv50_audio_component_init(struct nouveau_drm *drm)
699 {
700 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
701 		return;
702 
703 	drm->audio.component_registered = true;
704 	mutex_init(&drm->audio.lock);
705 }
706 
707 static void
708 nv50_audio_component_fini(struct nouveau_drm *drm)
709 {
710 	if (!drm->audio.component_registered)
711 		return;
712 
713 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
714 	drm->audio.component_registered = false;
715 	mutex_destroy(&drm->audio.lock);
716 }
717 
718 /******************************************************************************
719  * Audio
720  *****************************************************************************/
721 static void
722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
723 {
724 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
725 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
726 	struct nv50_disp *disp = nv50_disp(encoder->dev);
727 	struct {
728 		struct nv50_disp_mthd_v1 base;
729 		struct nv50_disp_sor_hda_eld_v0 eld;
730 	} args = {
731 		.base.version = 1,
732 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
733 		.base.hasht   = nv_encoder->dcb->hasht,
734 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
735 				(0x0100 << nv_crtc->index),
736 	};
737 
738 	mutex_lock(&drm->audio.lock);
739 	if (nv_encoder->audio.enabled) {
740 		nv_encoder->audio.enabled = false;
741 		nv_encoder->audio.connector = NULL;
742 		nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
743 	}
744 	mutex_unlock(&drm->audio.lock);
745 
746 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
747 					nv_crtc->index);
748 }
749 
750 static void
751 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
752 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
753 		  struct drm_display_mode *mode)
754 {
755 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
756 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
757 	struct nv50_disp *disp = nv50_disp(encoder->dev);
758 	struct __packed {
759 		struct {
760 			struct nv50_disp_mthd_v1 mthd;
761 			struct nv50_disp_sor_hda_eld_v0 eld;
762 		} base;
763 		u8 data[sizeof(nv_connector->base.eld)];
764 	} args = {
765 		.base.mthd.version = 1,
766 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
767 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
768 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
769 				     (0x0100 << nv_crtc->index),
770 	};
771 
772 	if (!drm_detect_monitor_audio(nv_connector->edid))
773 		return;
774 
775 	mutex_lock(&drm->audio.lock);
776 
777 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
778 
779 	nvif_mthd(&disp->disp->object, 0, &args,
780 		  sizeof(args.base) + drm_eld_size(args.data));
781 	nv_encoder->audio.enabled = true;
782 	nv_encoder->audio.connector = &nv_connector->base;
783 
784 	mutex_unlock(&drm->audio.lock);
785 
786 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
787 					nv_crtc->index);
788 }
789 
790 /******************************************************************************
791  * HDMI
792  *****************************************************************************/
793 static void
794 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
795 {
796 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
797 	struct nv50_disp *disp = nv50_disp(encoder->dev);
798 	struct {
799 		struct nv50_disp_mthd_v1 base;
800 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
801 	} args = {
802 		.base.version = 1,
803 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
804 		.base.hasht  = nv_encoder->dcb->hasht,
805 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
806 			       (0x0100 << nv_crtc->index),
807 	};
808 
809 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
810 }
811 
812 static void
813 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
814 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
815 		 struct drm_display_mode *mode)
816 {
817 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
818 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
819 	struct nv50_disp *disp = nv50_disp(encoder->dev);
820 	struct {
821 		struct nv50_disp_mthd_v1 base;
822 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
823 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
824 	} args = {
825 		.base.version = 1,
826 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
827 		.base.hasht  = nv_encoder->dcb->hasht,
828 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
829 			       (0x0100 << nv_crtc->index),
830 		.pwr.state = 1,
831 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
832 	};
833 	struct drm_hdmi_info *hdmi;
834 	u32 max_ac_packet;
835 	union hdmi_infoframe avi_frame;
836 	union hdmi_infoframe vendor_frame;
837 	bool high_tmds_clock_ratio = false, scrambling = false;
838 	u8 config;
839 	int ret;
840 	int size;
841 
842 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
843 		return;
844 
845 	hdmi = &nv_connector->base.display_info.hdmi;
846 
847 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
848 						       &nv_connector->base, mode);
849 	if (!ret) {
850 		drm_hdmi_avi_infoframe_quant_range(&avi_frame.avi,
851 						   &nv_connector->base, mode,
852 						   HDMI_QUANTIZATION_RANGE_FULL);
853 		/* We have an AVI InfoFrame, populate it to the display */
854 		args.pwr.avi_infoframe_length
855 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
856 	}
857 
858 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
859 							  &nv_connector->base, mode);
860 	if (!ret) {
861 		/* We have a Vendor InfoFrame, populate it to the display */
862 		args.pwr.vendor_infoframe_length
863 			= hdmi_infoframe_pack(&vendor_frame,
864 					      args.infoframes
865 					      + args.pwr.avi_infoframe_length,
866 					      17);
867 	}
868 
869 	max_ac_packet  = mode->htotal - mode->hdisplay;
870 	max_ac_packet -= args.pwr.rekey;
871 	max_ac_packet -= 18; /* constant from tegra */
872 	args.pwr.max_ac_packet = max_ac_packet / 32;
873 
874 	if (hdmi->scdc.scrambling.supported) {
875 		high_tmds_clock_ratio = mode->clock > 340000;
876 		scrambling = high_tmds_clock_ratio ||
877 			hdmi->scdc.scrambling.low_rates;
878 	}
879 
880 	args.pwr.scdc =
881 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
882 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
883 
884 	size = sizeof(args.base)
885 		+ sizeof(args.pwr)
886 		+ args.pwr.avi_infoframe_length
887 		+ args.pwr.vendor_infoframe_length;
888 	nvif_mthd(&disp->disp->object, 0, &args, size);
889 
890 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
891 
892 	/* If SCDC is supported by the downstream monitor, update
893 	 * divider / scrambling settings to what we programmed above.
894 	 */
895 	if (!hdmi->scdc.scrambling.supported)
896 		return;
897 
898 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
899 	if (ret < 0) {
900 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
901 		return;
902 	}
903 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
904 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
905 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
906 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
907 	if (ret < 0)
908 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
909 			 config, ret);
910 }
911 
912 /******************************************************************************
913  * MST
914  *****************************************************************************/
915 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
916 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
917 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
918 
919 struct nv50_mstc {
920 	struct nv50_mstm *mstm;
921 	struct drm_dp_mst_port *port;
922 	struct drm_connector connector;
923 
924 	struct drm_display_mode *native;
925 	struct edid *edid;
926 };
927 
928 struct nv50_msto {
929 	struct drm_encoder encoder;
930 
931 	/* head is statically assigned on msto creation */
932 	struct nv50_head *head;
933 	struct nv50_mstc *mstc;
934 	bool disabled;
935 	bool enabled;
936 };
937 
938 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
939 {
940 	struct nv50_msto *msto;
941 
942 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
943 		return nouveau_encoder(encoder);
944 
945 	msto = nv50_msto(encoder);
946 	if (!msto->mstc)
947 		return NULL;
948 	return msto->mstc->mstm->outp;
949 }
950 
951 static void
952 nv50_msto_cleanup(struct drm_atomic_state *state,
953 		  struct drm_dp_mst_topology_state *mst_state,
954 		  struct drm_dp_mst_topology_mgr *mgr,
955 		  struct nv50_msto *msto)
956 {
957 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
958 	struct drm_dp_mst_atomic_payload *payload =
959 		drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
960 
961 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
962 
963 	if (msto->disabled) {
964 		msto->mstc = NULL;
965 		msto->disabled = false;
966 	} else if (msto->enabled) {
967 		drm_dp_add_payload_part2(mgr, state, payload);
968 		msto->enabled = false;
969 	}
970 }
971 
972 static void
973 nv50_msto_prepare(struct drm_atomic_state *state,
974 		  struct drm_dp_mst_topology_state *mst_state,
975 		  struct drm_dp_mst_topology_mgr *mgr,
976 		  struct nv50_msto *msto)
977 {
978 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
979 	struct nv50_mstc *mstc = msto->mstc;
980 	struct nv50_mstm *mstm = mstc->mstm;
981 	struct drm_dp_mst_atomic_payload *payload;
982 	struct {
983 		struct nv50_disp_mthd_v1 base;
984 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
985 	} args = {
986 		.base.version = 1,
987 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
988 		.base.hasht  = mstm->outp->dcb->hasht,
989 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
990 			       (0x0100 << msto->head->base.index),
991 	};
992 
993 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
994 
995 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
996 
997 	// TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
998 	if (msto->disabled) {
999 		drm_dp_remove_payload(mgr, mst_state, payload);
1000 	} else {
1001 		if (msto->enabled)
1002 			drm_dp_add_payload_part1(mgr, mst_state, payload);
1003 
1004 		args.vcpi.start_slot = payload->vc_start_slot;
1005 		args.vcpi.num_slots = payload->time_slots;
1006 		args.vcpi.pbn = payload->pbn;
1007 		args.vcpi.aligned_pbn = payload->time_slots * mst_state->pbn_div;
1008 	}
1009 
1010 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1011 		  msto->encoder.name, msto->head->base.base.name,
1012 		  args.vcpi.start_slot, args.vcpi.num_slots,
1013 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
1014 
1015 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1016 }
1017 
1018 static int
1019 nv50_msto_atomic_check(struct drm_encoder *encoder,
1020 		       struct drm_crtc_state *crtc_state,
1021 		       struct drm_connector_state *conn_state)
1022 {
1023 	struct drm_atomic_state *state = crtc_state->state;
1024 	struct drm_connector *connector = conn_state->connector;
1025 	struct drm_dp_mst_topology_state *mst_state;
1026 	struct nv50_mstc *mstc = nv50_mstc(connector);
1027 	struct nv50_mstm *mstm = mstc->mstm;
1028 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1029 	int slots;
1030 	int ret;
1031 
1032 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1033 					  mstc->native);
1034 	if (ret)
1035 		return ret;
1036 
1037 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
1038 		return 0;
1039 
1040 	/*
1041 	 * When restoring duplicated states, we need to make sure that the bw
1042 	 * remains the same and avoid recalculating it, as the connector's bpc
1043 	 * may have changed after the state was duplicated
1044 	 */
1045 	if (!state->duplicated) {
1046 		const int clock = crtc_state->adjusted_mode.clock;
1047 
1048 		asyh->or.bpc = connector->display_info.bpc;
1049 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1050 						    false);
1051 	}
1052 
1053 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
1054 	if (IS_ERR(mst_state))
1055 		return PTR_ERR(mst_state);
1056 
1057 	if (!mst_state->pbn_div) {
1058 		struct nouveau_encoder *outp = mstc->mstm->outp;
1059 
1060 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
1061 							      outp->dp.link_bw, outp->dp.link_nr);
1062 	}
1063 
1064 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1065 	if (slots < 0)
1066 		return slots;
1067 
1068 	asyh->dp.tu = slots;
1069 
1070 	return 0;
1071 }
1072 
1073 static u8
1074 nv50_dp_bpc_to_depth(unsigned int bpc)
1075 {
1076 	switch (bpc) {
1077 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1078 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1079 	case 10:
1080 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1081 	}
1082 }
1083 
1084 static void
1085 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1086 {
1087 	struct nv50_msto *msto = nv50_msto(encoder);
1088 	struct nv50_head *head = msto->head;
1089 	struct nv50_head_atom *asyh =
1090 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1091 	struct nv50_mstc *mstc = NULL;
1092 	struct nv50_mstm *mstm = NULL;
1093 	struct drm_connector *connector;
1094 	struct drm_connector_list_iter conn_iter;
1095 	u8 proto;
1096 
1097 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1098 	drm_for_each_connector_iter(connector, &conn_iter) {
1099 		if (connector->state->best_encoder == &msto->encoder) {
1100 			mstc = nv50_mstc(connector);
1101 			mstm = mstc->mstm;
1102 			break;
1103 		}
1104 	}
1105 	drm_connector_list_iter_end(&conn_iter);
1106 
1107 	if (WARN_ON(!mstc))
1108 		return;
1109 
1110 	if (!mstm->links++)
1111 		nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1112 
1113 	if (mstm->outp->link & 1)
1114 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1115 	else
1116 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1117 
1118 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1119 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1120 
1121 	msto->mstc = mstc;
1122 	msto->enabled = true;
1123 	mstm->modified = true;
1124 }
1125 
1126 static void
1127 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1128 {
1129 	struct nv50_msto *msto = nv50_msto(encoder);
1130 	struct nv50_mstc *mstc = msto->mstc;
1131 	struct nv50_mstm *mstm = mstc->mstm;
1132 
1133 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1134 	mstm->modified = true;
1135 	if (!--mstm->links)
1136 		mstm->disabled = true;
1137 	msto->disabled = true;
1138 }
1139 
1140 static const struct drm_encoder_helper_funcs
1141 nv50_msto_help = {
1142 	.atomic_disable = nv50_msto_atomic_disable,
1143 	.atomic_enable = nv50_msto_atomic_enable,
1144 	.atomic_check = nv50_msto_atomic_check,
1145 };
1146 
1147 static void
1148 nv50_msto_destroy(struct drm_encoder *encoder)
1149 {
1150 	struct nv50_msto *msto = nv50_msto(encoder);
1151 	drm_encoder_cleanup(&msto->encoder);
1152 	kfree(msto);
1153 }
1154 
1155 static const struct drm_encoder_funcs
1156 nv50_msto = {
1157 	.destroy = nv50_msto_destroy,
1158 };
1159 
1160 static struct nv50_msto *
1161 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1162 {
1163 	struct nv50_msto *msto;
1164 	int ret;
1165 
1166 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1167 	if (!msto)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1171 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1172 	if (ret) {
1173 		kfree(msto);
1174 		return ERR_PTR(ret);
1175 	}
1176 
1177 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1178 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1179 	msto->head = head;
1180 	return msto;
1181 }
1182 
1183 static struct drm_encoder *
1184 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1185 			      struct drm_atomic_state *state)
1186 {
1187 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1188 											 connector);
1189 	struct nv50_mstc *mstc = nv50_mstc(connector);
1190 	struct drm_crtc *crtc = connector_state->crtc;
1191 
1192 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1193 		return NULL;
1194 
1195 	return &nv50_head(crtc)->msto->encoder;
1196 }
1197 
1198 static enum drm_mode_status
1199 nv50_mstc_mode_valid(struct drm_connector *connector,
1200 		     struct drm_display_mode *mode)
1201 {
1202 	struct nv50_mstc *mstc = nv50_mstc(connector);
1203 	struct nouveau_encoder *outp = mstc->mstm->outp;
1204 
1205 	/* TODO: calculate the PBN from the dotclock and validate against the
1206 	 * MSTB's max possible PBN
1207 	 */
1208 
1209 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1210 }
1211 
1212 static int
1213 nv50_mstc_get_modes(struct drm_connector *connector)
1214 {
1215 	struct nv50_mstc *mstc = nv50_mstc(connector);
1216 	int ret = 0;
1217 
1218 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1219 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1220 	if (mstc->edid)
1221 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1222 
1223 	/*
1224 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1225 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1226 	 * to properly fix this by dynamically selecting the highest possible
1227 	 * bpc that would fit in the topology
1228 	 */
1229 	if (connector->display_info.bpc)
1230 		connector->display_info.bpc =
1231 			clamp(connector->display_info.bpc, 6U, 8U);
1232 	else
1233 		connector->display_info.bpc = 8;
1234 
1235 	if (mstc->native)
1236 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1237 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1238 	return ret;
1239 }
1240 
1241 static int
1242 nv50_mstc_atomic_check(struct drm_connector *connector,
1243 		       struct drm_atomic_state *state)
1244 {
1245 	struct nv50_mstc *mstc = nv50_mstc(connector);
1246 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1247 
1248 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1249 }
1250 
1251 static int
1252 nv50_mstc_detect(struct drm_connector *connector,
1253 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1254 {
1255 	struct nv50_mstc *mstc = nv50_mstc(connector);
1256 	int ret;
1257 
1258 	if (drm_connector_is_unregistered(connector))
1259 		return connector_status_disconnected;
1260 
1261 	ret = pm_runtime_get_sync(connector->dev->dev);
1262 	if (ret < 0 && ret != -EACCES) {
1263 		pm_runtime_put_autosuspend(connector->dev->dev);
1264 		return connector_status_disconnected;
1265 	}
1266 
1267 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1268 				     mstc->port);
1269 	if (ret != connector_status_connected)
1270 		goto out;
1271 
1272 out:
1273 	pm_runtime_mark_last_busy(connector->dev->dev);
1274 	pm_runtime_put_autosuspend(connector->dev->dev);
1275 	return ret;
1276 }
1277 
1278 static const struct drm_connector_helper_funcs
1279 nv50_mstc_help = {
1280 	.get_modes = nv50_mstc_get_modes,
1281 	.mode_valid = nv50_mstc_mode_valid,
1282 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1283 	.atomic_check = nv50_mstc_atomic_check,
1284 	.detect_ctx = nv50_mstc_detect,
1285 };
1286 
1287 static void
1288 nv50_mstc_destroy(struct drm_connector *connector)
1289 {
1290 	struct nv50_mstc *mstc = nv50_mstc(connector);
1291 
1292 	drm_connector_cleanup(&mstc->connector);
1293 	drm_dp_mst_put_port_malloc(mstc->port);
1294 
1295 	kfree(mstc);
1296 }
1297 
1298 static const struct drm_connector_funcs
1299 nv50_mstc = {
1300 	.reset = nouveau_conn_reset,
1301 	.fill_modes = drm_helper_probe_single_connector_modes,
1302 	.destroy = nv50_mstc_destroy,
1303 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1304 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1305 	.atomic_set_property = nouveau_conn_atomic_set_property,
1306 	.atomic_get_property = nouveau_conn_atomic_get_property,
1307 };
1308 
1309 static int
1310 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1311 	      const char *path, struct nv50_mstc **pmstc)
1312 {
1313 	struct drm_device *dev = mstm->outp->base.base.dev;
1314 	struct drm_crtc *crtc;
1315 	struct nv50_mstc *mstc;
1316 	int ret;
1317 
1318 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1319 		return -ENOMEM;
1320 	mstc->mstm = mstm;
1321 	mstc->port = port;
1322 
1323 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1324 				 DRM_MODE_CONNECTOR_DisplayPort);
1325 	if (ret) {
1326 		kfree(*pmstc);
1327 		*pmstc = NULL;
1328 		return ret;
1329 	}
1330 
1331 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1332 
1333 	mstc->connector.funcs->reset(&mstc->connector);
1334 	nouveau_conn_attach_properties(&mstc->connector);
1335 
1336 	drm_for_each_crtc(crtc, dev) {
1337 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1338 			continue;
1339 
1340 		drm_connector_attach_encoder(&mstc->connector,
1341 					     &nv50_head(crtc)->msto->encoder);
1342 	}
1343 
1344 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1345 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1346 	drm_connector_set_path_property(&mstc->connector, path);
1347 	drm_dp_mst_get_port_malloc(port);
1348 	return 0;
1349 }
1350 
1351 static void
1352 nv50_mstm_cleanup(struct drm_atomic_state *state,
1353 		  struct drm_dp_mst_topology_state *mst_state,
1354 		  struct nv50_mstm *mstm)
1355 {
1356 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1357 	struct drm_encoder *encoder;
1358 
1359 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1360 	drm_dp_check_act_status(&mstm->mgr);
1361 
1362 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1363 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1364 			struct nv50_msto *msto = nv50_msto(encoder);
1365 			struct nv50_mstc *mstc = msto->mstc;
1366 			if (mstc && mstc->mstm == mstm)
1367 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1368 		}
1369 	}
1370 
1371 	mstm->modified = false;
1372 }
1373 
1374 static void
1375 nv50_mstm_prepare(struct drm_atomic_state *state,
1376 		  struct drm_dp_mst_topology_state *mst_state,
1377 		  struct nv50_mstm *mstm)
1378 {
1379 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1380 	struct drm_encoder *encoder;
1381 
1382 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1383 
1384 	/* Disable payloads first */
1385 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1386 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1387 			struct nv50_msto *msto = nv50_msto(encoder);
1388 			struct nv50_mstc *mstc = msto->mstc;
1389 			if (mstc && mstc->mstm == mstm && msto->disabled)
1390 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1391 		}
1392 	}
1393 
1394 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1395 	 * active) heads that may have had their VC slots shifted left after the previous step
1396 	 */
1397 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1398 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1399 			struct nv50_msto *msto = nv50_msto(encoder);
1400 			struct nv50_mstc *mstc = msto->mstc;
1401 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1402 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1403 		}
1404 	}
1405 
1406 	if (mstm->disabled) {
1407 		if (!mstm->links)
1408 			nv50_outp_release(mstm->outp);
1409 		mstm->disabled = false;
1410 	}
1411 }
1412 
1413 static struct drm_connector *
1414 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1415 			struct drm_dp_mst_port *port, const char *path)
1416 {
1417 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1418 	struct nv50_mstc *mstc;
1419 	int ret;
1420 
1421 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1422 	if (ret)
1423 		return NULL;
1424 
1425 	return &mstc->connector;
1426 }
1427 
1428 static const struct drm_dp_mst_topology_cbs
1429 nv50_mstm = {
1430 	.add_connector = nv50_mstm_add_connector,
1431 };
1432 
1433 bool
1434 nv50_mstm_service(struct nouveau_drm *drm,
1435 		  struct nouveau_connector *nv_connector,
1436 		  struct nv50_mstm *mstm)
1437 {
1438 	struct drm_dp_aux *aux = &nv_connector->aux;
1439 	bool handled = true, ret = true;
1440 	int rc;
1441 	u8 esi[8] = {};
1442 
1443 	while (handled) {
1444 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1445 		if (rc != 8) {
1446 			ret = false;
1447 			break;
1448 		}
1449 
1450 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1451 		if (!handled)
1452 			break;
1453 
1454 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1455 				       3);
1456 		if (rc != 3) {
1457 			ret = false;
1458 			break;
1459 		}
1460 	}
1461 
1462 	if (!ret)
1463 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1464 			 nv_connector->base.name, rc);
1465 
1466 	return ret;
1467 }
1468 
1469 void
1470 nv50_mstm_remove(struct nv50_mstm *mstm)
1471 {
1472 	mstm->is_mst = false;
1473 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1474 }
1475 
1476 static int
1477 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1478 {
1479 	struct nouveau_encoder *outp = mstm->outp;
1480 	struct {
1481 		struct nv50_disp_mthd_v1 base;
1482 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1483 	} args = {
1484 		.base.version = 1,
1485 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1486 		.base.hasht = outp->dcb->hasht,
1487 		.base.hashm = outp->dcb->hashm,
1488 		.mst.state = state,
1489 	};
1490 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1491 	struct nvif_object *disp = &drm->display->disp.object;
1492 
1493 	return nvif_mthd(disp, 0, &args, sizeof(args));
1494 }
1495 
1496 int
1497 nv50_mstm_detect(struct nouveau_encoder *outp)
1498 {
1499 	struct nv50_mstm *mstm = outp->dp.mstm;
1500 	struct drm_dp_aux *aux;
1501 	int ret;
1502 
1503 	if (!mstm || !mstm->can_mst)
1504 		return 0;
1505 
1506 	aux = mstm->mgr.aux;
1507 
1508 	/* Clear any leftover MST state we didn't set ourselves by first
1509 	 * disabling MST if it was already enabled
1510 	 */
1511 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	/* And start enabling */
1516 	ret = nv50_mstm_enable(mstm, true);
1517 	if (ret)
1518 		return ret;
1519 
1520 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1521 	if (ret) {
1522 		nv50_mstm_enable(mstm, false);
1523 		return ret;
1524 	}
1525 
1526 	mstm->is_mst = true;
1527 	return 1;
1528 }
1529 
1530 static void
1531 nv50_mstm_fini(struct nouveau_encoder *outp)
1532 {
1533 	struct nv50_mstm *mstm = outp->dp.mstm;
1534 
1535 	if (!mstm)
1536 		return;
1537 
1538 	/* Don't change the MST state of this connector until we've finished
1539 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1540 	 * path to protect mstm->is_mst without potentially deadlocking
1541 	 */
1542 	mutex_lock(&outp->dp.hpd_irq_lock);
1543 	mstm->suspended = true;
1544 	mutex_unlock(&outp->dp.hpd_irq_lock);
1545 
1546 	if (mstm->is_mst)
1547 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1548 }
1549 
1550 static void
1551 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1552 {
1553 	struct nv50_mstm *mstm = outp->dp.mstm;
1554 	int ret = 0;
1555 
1556 	if (!mstm)
1557 		return;
1558 
1559 	if (mstm->is_mst) {
1560 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1561 		if (ret == -1)
1562 			nv50_mstm_remove(mstm);
1563 	}
1564 
1565 	mutex_lock(&outp->dp.hpd_irq_lock);
1566 	mstm->suspended = false;
1567 	mutex_unlock(&outp->dp.hpd_irq_lock);
1568 
1569 	if (ret == -1)
1570 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1571 }
1572 
1573 static void
1574 nv50_mstm_del(struct nv50_mstm **pmstm)
1575 {
1576 	struct nv50_mstm *mstm = *pmstm;
1577 	if (mstm) {
1578 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1579 		kfree(*pmstm);
1580 		*pmstm = NULL;
1581 	}
1582 }
1583 
1584 static int
1585 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1586 	      int conn_base_id, struct nv50_mstm **pmstm)
1587 {
1588 	const int max_payloads = hweight8(outp->dcb->heads);
1589 	struct drm_device *dev = outp->base.base.dev;
1590 	struct nv50_mstm *mstm;
1591 	int ret;
1592 
1593 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1594 		return -ENOMEM;
1595 	mstm->outp = outp;
1596 	mstm->mgr.cbs = &nv50_mstm;
1597 
1598 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1599 					   max_payloads, conn_base_id);
1600 	if (ret)
1601 		return ret;
1602 
1603 	return 0;
1604 }
1605 
1606 /******************************************************************************
1607  * SOR
1608  *****************************************************************************/
1609 static void
1610 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1611 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1612 {
1613 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1614 	struct nv50_core *core = disp->core;
1615 
1616 	if (!asyh) {
1617 		nv_encoder->ctrl &= ~BIT(head);
1618 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1619 			nv_encoder->ctrl = 0;
1620 	} else {
1621 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1622 		nv_encoder->ctrl |= BIT(head);
1623 		asyh->or.depth = depth;
1624 	}
1625 
1626 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1627 }
1628 
1629 /* TODO: Should we extend this to PWM-only backlights?
1630  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1631  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1632  * fixed time delay from the vbios…
1633  */
1634 static void
1635 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1636 {
1637 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1638 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1639 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1640 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1641 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1642 	struct nouveau_backlight *backlight = nv_connector->backlight;
1643 #endif
1644 	struct drm_dp_aux *aux = &nv_connector->aux;
1645 	int ret;
1646 	u8 pwr;
1647 
1648 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1649 	if (backlight && backlight->uses_dpcd) {
1650 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1651 		if (ret < 0)
1652 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1653 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1654 	}
1655 #endif
1656 
1657 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1658 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1659 
1660 		if (ret == 0) {
1661 			pwr &= ~DP_SET_POWER_MASK;
1662 			pwr |=  DP_SET_POWER_D3;
1663 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1664 		}
1665 	}
1666 
1667 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1668 	nv50_audio_disable(encoder, nv_crtc);
1669 	nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1670 	nv50_outp_release(nv_encoder);
1671 	nv_encoder->crtc = NULL;
1672 }
1673 
1674 static void
1675 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1676 {
1677 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1678 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1679 	struct nv50_head_atom *asyh =
1680 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1681 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1682 	struct {
1683 		struct nv50_disp_mthd_v1 base;
1684 		struct nv50_disp_sor_lvds_script_v0 lvds;
1685 	} lvds = {
1686 		.base.version = 1,
1687 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1688 		.base.hasht   = nv_encoder->dcb->hasht,
1689 		.base.hashm   = nv_encoder->dcb->hashm,
1690 	};
1691 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1692 	struct drm_device *dev = encoder->dev;
1693 	struct nouveau_drm *drm = nouveau_drm(dev);
1694 	struct nouveau_connector *nv_connector;
1695 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1696 	struct nouveau_backlight *backlight;
1697 #endif
1698 	struct nvbios *bios = &drm->vbios;
1699 	bool hda = false;
1700 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1701 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1702 
1703 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1704 	nv_encoder->crtc = &nv_crtc->base;
1705 
1706 	if ((disp->disp->object.oclass == GT214_DISP ||
1707 	     disp->disp->object.oclass >= GF110_DISP) &&
1708 	    drm_detect_monitor_audio(nv_connector->edid))
1709 		hda = true;
1710 	nv50_outp_acquire(nv_encoder, hda);
1711 
1712 	switch (nv_encoder->dcb->type) {
1713 	case DCB_OUTPUT_TMDS:
1714 		if (nv_encoder->link & 1) {
1715 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1716 			/* Only enable dual-link if:
1717 			 *  - Need to (i.e. rate > 165MHz)
1718 			 *  - DCB says we can
1719 			 *  - Not an HDMI monitor, since there's no dual-link
1720 			 *    on HDMI.
1721 			 */
1722 			if (mode->clock >= 165000 &&
1723 			    nv_encoder->dcb->duallink_possible &&
1724 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1725 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1726 		} else {
1727 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1728 		}
1729 
1730 		nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1731 		break;
1732 	case DCB_OUTPUT_LVDS:
1733 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1734 
1735 		if (bios->fp_no_ddc) {
1736 			if (bios->fp.dual_link)
1737 				lvds.lvds.script |= 0x0100;
1738 			if (bios->fp.if_is_24bit)
1739 				lvds.lvds.script |= 0x0200;
1740 		} else {
1741 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1742 				if (((u8 *)nv_connector->edid)[121] == 2)
1743 					lvds.lvds.script |= 0x0100;
1744 			} else
1745 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1746 				lvds.lvds.script |= 0x0100;
1747 			}
1748 
1749 			if (lvds.lvds.script & 0x0100) {
1750 				if (bios->fp.strapless_is_24bit & 2)
1751 					lvds.lvds.script |= 0x0200;
1752 			} else {
1753 				if (bios->fp.strapless_is_24bit & 1)
1754 					lvds.lvds.script |= 0x0200;
1755 			}
1756 
1757 			if (asyh->or.bpc == 8)
1758 				lvds.lvds.script |= 0x0200;
1759 		}
1760 
1761 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1762 		break;
1763 	case DCB_OUTPUT_DP:
1764 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1765 
1766 		if (nv_encoder->link & 1)
1767 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1768 		else
1769 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1770 
1771 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1772 
1773 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1774 		backlight = nv_connector->backlight;
1775 		if (backlight && backlight->uses_dpcd)
1776 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1777 						 (u16)backlight->dev->props.brightness);
1778 #endif
1779 
1780 		break;
1781 	default:
1782 		BUG();
1783 		break;
1784 	}
1785 
1786 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1787 }
1788 
1789 static const struct drm_encoder_helper_funcs
1790 nv50_sor_help = {
1791 	.atomic_check = nv50_outp_atomic_check,
1792 	.atomic_enable = nv50_sor_atomic_enable,
1793 	.atomic_disable = nv50_sor_atomic_disable,
1794 };
1795 
1796 static void
1797 nv50_sor_destroy(struct drm_encoder *encoder)
1798 {
1799 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1800 
1801 	nvif_outp_dtor(&nv_encoder->outp);
1802 
1803 	nv50_mstm_del(&nv_encoder->dp.mstm);
1804 	drm_encoder_cleanup(encoder);
1805 
1806 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1807 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1808 
1809 	kfree(encoder);
1810 }
1811 
1812 static const struct drm_encoder_funcs
1813 nv50_sor_func = {
1814 	.destroy = nv50_sor_destroy,
1815 };
1816 
1817 bool nv50_has_mst(struct nouveau_drm *drm)
1818 {
1819 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1820 	u32 data;
1821 	u8 ver, hdr, cnt, len;
1822 
1823 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1824 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1825 }
1826 
1827 static int
1828 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1829 {
1830 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1831 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1832 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1833 	struct nouveau_encoder *nv_encoder;
1834 	struct drm_encoder *encoder;
1835 	struct nv50_disp *disp = nv50_disp(connector->dev);
1836 	int type, ret;
1837 
1838 	switch (dcbe->type) {
1839 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1840 	case DCB_OUTPUT_TMDS:
1841 	case DCB_OUTPUT_DP:
1842 	default:
1843 		type = DRM_MODE_ENCODER_TMDS;
1844 		break;
1845 	}
1846 
1847 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1848 	if (!nv_encoder)
1849 		return -ENOMEM;
1850 	nv_encoder->dcb = dcbe;
1851 	nv_encoder->update = nv50_sor_update;
1852 
1853 	encoder = to_drm_encoder(nv_encoder);
1854 	encoder->possible_crtcs = dcbe->heads;
1855 	encoder->possible_clones = 0;
1856 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1857 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1858 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1859 
1860 	drm_connector_attach_encoder(connector, encoder);
1861 
1862 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1863 	nv50_outp_dump_caps(drm, nv_encoder);
1864 
1865 	if (dcbe->type == DCB_OUTPUT_DP) {
1866 		struct nvkm_i2c_aux *aux =
1867 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1868 
1869 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1870 
1871 		if (aux) {
1872 			if (disp->disp->object.oclass < GF110_DISP) {
1873 				/* HW has no support for address-only
1874 				 * transactions, so we're required to
1875 				 * use custom I2C-over-AUX code.
1876 				 */
1877 				nv_encoder->i2c = &aux->i2c;
1878 			} else {
1879 				nv_encoder->i2c = &nv_connector->aux.ddc;
1880 			}
1881 			nv_encoder->aux = aux;
1882 		}
1883 
1884 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1885 		    nv50_has_mst(drm)) {
1886 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1887 					    16, nv_connector->base.base.id,
1888 					    &nv_encoder->dp.mstm);
1889 			if (ret)
1890 				return ret;
1891 		}
1892 	} else {
1893 		struct nvkm_i2c_bus *bus =
1894 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1895 		if (bus)
1896 			nv_encoder->i2c = &bus->i2c;
1897 	}
1898 
1899 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1900 }
1901 
1902 /******************************************************************************
1903  * PIOR
1904  *****************************************************************************/
1905 static int
1906 nv50_pior_atomic_check(struct drm_encoder *encoder,
1907 		       struct drm_crtc_state *crtc_state,
1908 		       struct drm_connector_state *conn_state)
1909 {
1910 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1911 	if (ret)
1912 		return ret;
1913 	crtc_state->adjusted_mode.clock *= 2;
1914 	return 0;
1915 }
1916 
1917 static void
1918 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1919 {
1920 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1921 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1922 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1923 
1924 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1925 	nv_encoder->crtc = NULL;
1926 	nv50_outp_release(nv_encoder);
1927 }
1928 
1929 static void
1930 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1931 {
1932 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1933 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1934 	struct nv50_head_atom *asyh =
1935 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1936 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1937 	u32 ctrl = 0;
1938 
1939 	switch (nv_crtc->index) {
1940 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1941 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1942 	default:
1943 		WARN_ON(1);
1944 		break;
1945 	}
1946 
1947 	nv50_outp_acquire(nv_encoder, false);
1948 
1949 	switch (asyh->or.bpc) {
1950 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1951 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1952 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1953 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1954 	}
1955 
1956 	switch (nv_encoder->dcb->type) {
1957 	case DCB_OUTPUT_TMDS:
1958 	case DCB_OUTPUT_DP:
1959 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1960 		break;
1961 	default:
1962 		BUG();
1963 		break;
1964 	}
1965 
1966 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1967 	nv_encoder->crtc = &nv_crtc->base;
1968 }
1969 
1970 static const struct drm_encoder_helper_funcs
1971 nv50_pior_help = {
1972 	.atomic_check = nv50_pior_atomic_check,
1973 	.atomic_enable = nv50_pior_atomic_enable,
1974 	.atomic_disable = nv50_pior_atomic_disable,
1975 };
1976 
1977 static void
1978 nv50_pior_destroy(struct drm_encoder *encoder)
1979 {
1980 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1981 
1982 	nvif_outp_dtor(&nv_encoder->outp);
1983 
1984 	drm_encoder_cleanup(encoder);
1985 	kfree(encoder);
1986 }
1987 
1988 static const struct drm_encoder_funcs
1989 nv50_pior_func = {
1990 	.destroy = nv50_pior_destroy,
1991 };
1992 
1993 static int
1994 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1995 {
1996 	struct drm_device *dev = connector->dev;
1997 	struct nouveau_drm *drm = nouveau_drm(dev);
1998 	struct nv50_disp *disp = nv50_disp(dev);
1999 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2000 	struct nvkm_i2c_bus *bus = NULL;
2001 	struct nvkm_i2c_aux *aux = NULL;
2002 	struct i2c_adapter *ddc;
2003 	struct nouveau_encoder *nv_encoder;
2004 	struct drm_encoder *encoder;
2005 	int type;
2006 
2007 	switch (dcbe->type) {
2008 	case DCB_OUTPUT_TMDS:
2009 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2010 		ddc  = bus ? &bus->i2c : NULL;
2011 		type = DRM_MODE_ENCODER_TMDS;
2012 		break;
2013 	case DCB_OUTPUT_DP:
2014 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2015 		ddc  = aux ? &aux->i2c : NULL;
2016 		type = DRM_MODE_ENCODER_TMDS;
2017 		break;
2018 	default:
2019 		return -ENODEV;
2020 	}
2021 
2022 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2023 	if (!nv_encoder)
2024 		return -ENOMEM;
2025 	nv_encoder->dcb = dcbe;
2026 	nv_encoder->i2c = ddc;
2027 	nv_encoder->aux = aux;
2028 
2029 	encoder = to_drm_encoder(nv_encoder);
2030 	encoder->possible_crtcs = dcbe->heads;
2031 	encoder->possible_clones = 0;
2032 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2033 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2034 	drm_encoder_helper_add(encoder, &nv50_pior_help);
2035 
2036 	drm_connector_attach_encoder(connector, encoder);
2037 
2038 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2039 	nv50_outp_dump_caps(drm, nv_encoder);
2040 
2041 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
2042 }
2043 
2044 /******************************************************************************
2045  * Atomic
2046  *****************************************************************************/
2047 
2048 static void
2049 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2050 {
2051 	struct drm_dp_mst_topology_mgr *mgr;
2052 	struct drm_dp_mst_topology_state *mst_state;
2053 	struct nouveau_drm *drm = nouveau_drm(state->dev);
2054 	struct nv50_disp *disp = nv50_disp(drm->dev);
2055 	struct nv50_core *core = disp->core;
2056 	struct nv50_mstm *mstm;
2057 	int i;
2058 
2059 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2060 
2061 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2062 		mstm = nv50_mstm(mgr);
2063 		if (mstm->modified)
2064 			nv50_mstm_prepare(state, mst_state, mstm);
2065 	}
2066 
2067 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2068 	core->func->update(core, interlock, true);
2069 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2070 				       disp->core->chan.base.device))
2071 		NV_ERROR(drm, "core notifier timeout\n");
2072 
2073 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2074 		mstm = nv50_mstm(mgr);
2075 		if (mstm->modified)
2076 			nv50_mstm_cleanup(state, mst_state, mstm);
2077 	}
2078 }
2079 
2080 static void
2081 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2082 {
2083 	struct drm_plane_state *new_plane_state;
2084 	struct drm_plane *plane;
2085 	int i;
2086 
2087 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2088 		struct nv50_wndw *wndw = nv50_wndw(plane);
2089 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2090 			if (wndw->func->update)
2091 				wndw->func->update(wndw, interlock);
2092 		}
2093 	}
2094 }
2095 
2096 static void
2097 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2098 {
2099 	struct drm_device *dev = state->dev;
2100 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2101 	struct drm_crtc *crtc;
2102 	struct drm_plane_state *new_plane_state;
2103 	struct drm_plane *plane;
2104 	struct nouveau_drm *drm = nouveau_drm(dev);
2105 	struct nv50_disp *disp = nv50_disp(dev);
2106 	struct nv50_atom *atom = nv50_atom(state);
2107 	struct nv50_core *core = disp->core;
2108 	struct nv50_outp_atom *outp, *outt;
2109 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2110 	int i;
2111 	bool flushed = false;
2112 
2113 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2114 	nv50_crc_atomic_stop_reporting(state);
2115 	drm_atomic_helper_wait_for_fences(dev, state, false);
2116 	drm_atomic_helper_wait_for_dependencies(state);
2117 	drm_dp_mst_atomic_wait_for_dependencies(state);
2118 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2119 	drm_atomic_helper_calc_timestamping_constants(state);
2120 
2121 	if (atom->lock_core)
2122 		mutex_lock(&disp->mutex);
2123 
2124 	/* Disable head(s). */
2125 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2126 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2127 		struct nv50_head *head = nv50_head(crtc);
2128 
2129 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2130 			  asyh->clr.mask, asyh->set.mask);
2131 
2132 		if (old_crtc_state->active && !new_crtc_state->active) {
2133 			pm_runtime_put_noidle(dev->dev);
2134 			drm_crtc_vblank_off(crtc);
2135 		}
2136 
2137 		if (asyh->clr.mask) {
2138 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2139 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2140 		}
2141 	}
2142 
2143 	/* Disable plane(s). */
2144 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2145 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2146 		struct nv50_wndw *wndw = nv50_wndw(plane);
2147 
2148 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2149 			  asyw->clr.mask, asyw->set.mask);
2150 		if (!asyw->clr.mask)
2151 			continue;
2152 
2153 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2154 	}
2155 
2156 	/* Disable output path(s). */
2157 	list_for_each_entry(outp, &atom->outp, head) {
2158 		const struct drm_encoder_helper_funcs *help;
2159 		struct drm_encoder *encoder;
2160 
2161 		encoder = outp->encoder;
2162 		help = encoder->helper_private;
2163 
2164 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2165 			  outp->clr.mask, outp->set.mask);
2166 
2167 		if (outp->clr.mask) {
2168 			help->atomic_disable(encoder, state);
2169 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2170 			if (outp->flush_disable) {
2171 				nv50_disp_atomic_commit_wndw(state, interlock);
2172 				nv50_disp_atomic_commit_core(state, interlock);
2173 				memset(interlock, 0x00, sizeof(interlock));
2174 
2175 				flushed = true;
2176 			}
2177 		}
2178 	}
2179 
2180 	/* Flush disable. */
2181 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2182 		if (atom->flush_disable) {
2183 			nv50_disp_atomic_commit_wndw(state, interlock);
2184 			nv50_disp_atomic_commit_core(state, interlock);
2185 			memset(interlock, 0x00, sizeof(interlock));
2186 
2187 			flushed = true;
2188 		}
2189 	}
2190 
2191 	if (flushed)
2192 		nv50_crc_atomic_release_notifier_contexts(state);
2193 	nv50_crc_atomic_init_notifier_contexts(state);
2194 
2195 	/* Update output path(s). */
2196 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2197 		const struct drm_encoder_helper_funcs *help;
2198 		struct drm_encoder *encoder;
2199 
2200 		encoder = outp->encoder;
2201 		help = encoder->helper_private;
2202 
2203 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2204 			  outp->set.mask, outp->clr.mask);
2205 
2206 		if (outp->set.mask) {
2207 			help->atomic_enable(encoder, state);
2208 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2209 		}
2210 
2211 		list_del(&outp->head);
2212 		kfree(outp);
2213 	}
2214 
2215 	/* Update head(s). */
2216 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2217 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2218 		struct nv50_head *head = nv50_head(crtc);
2219 
2220 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2221 			  asyh->set.mask, asyh->clr.mask);
2222 
2223 		if (asyh->set.mask) {
2224 			nv50_head_flush_set(head, asyh);
2225 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2226 		}
2227 
2228 		if (new_crtc_state->active) {
2229 			if (!old_crtc_state->active) {
2230 				drm_crtc_vblank_on(crtc);
2231 				pm_runtime_get_noresume(dev->dev);
2232 			}
2233 			if (new_crtc_state->event)
2234 				drm_crtc_vblank_get(crtc);
2235 		}
2236 	}
2237 
2238 	/* Update window->head assignment.
2239 	 *
2240 	 * This has to happen in an update that's not interlocked with
2241 	 * any window channels to avoid hitting HW error checks.
2242 	 *
2243 	 *TODO: Proper handling of window ownership (Turing apparently
2244 	 *      supports non-fixed mappings).
2245 	 */
2246 	if (core->assign_windows) {
2247 		core->func->wndw.owner(core);
2248 		nv50_disp_atomic_commit_core(state, interlock);
2249 		core->assign_windows = false;
2250 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2251 	}
2252 
2253 	/* Finish updating head(s)...
2254 	 *
2255 	 * NVD is rather picky about both where window assignments can change,
2256 	 * *and* about certain core and window channel states matching.
2257 	 *
2258 	 * The EFI GOP driver on newer GPUs configures window channels with a
2259 	 * different output format to what we do, and the core channel update
2260 	 * in the assign_windows case above would result in a state mismatch.
2261 	 *
2262 	 * Delay some of the head update until after that point to workaround
2263 	 * the issue.  This only affects the initial modeset.
2264 	 *
2265 	 * TODO: handle this better when adding flexible window mapping
2266 	 */
2267 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2268 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2269 		struct nv50_head *head = nv50_head(crtc);
2270 
2271 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2272 			  asyh->set.mask, asyh->clr.mask);
2273 
2274 		if (asyh->set.mask) {
2275 			nv50_head_flush_set_wndw(head, asyh);
2276 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2277 		}
2278 	}
2279 
2280 	/* Update plane(s). */
2281 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2282 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2283 		struct nv50_wndw *wndw = nv50_wndw(plane);
2284 
2285 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2286 			  asyw->set.mask, asyw->clr.mask);
2287 		if ( !asyw->set.mask &&
2288 		    (!asyw->clr.mask || atom->flush_disable))
2289 			continue;
2290 
2291 		nv50_wndw_flush_set(wndw, interlock, asyw);
2292 	}
2293 
2294 	/* Flush update. */
2295 	nv50_disp_atomic_commit_wndw(state, interlock);
2296 
2297 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2298 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2299 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2300 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2301 		    !atom->state.legacy_cursor_update)
2302 			nv50_disp_atomic_commit_core(state, interlock);
2303 		else
2304 			disp->core->func->update(disp->core, interlock, false);
2305 	}
2306 
2307 	if (atom->lock_core)
2308 		mutex_unlock(&disp->mutex);
2309 
2310 	/* Wait for HW to signal completion. */
2311 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2312 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2313 		struct nv50_wndw *wndw = nv50_wndw(plane);
2314 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2315 		if (ret)
2316 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2317 	}
2318 
2319 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2320 		if (new_crtc_state->event) {
2321 			unsigned long flags;
2322 			/* Get correct count/ts if racing with vblank irq */
2323 			if (new_crtc_state->active)
2324 				drm_crtc_accurate_vblank_count(crtc);
2325 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2326 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2327 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2328 
2329 			new_crtc_state->event = NULL;
2330 			if (new_crtc_state->active)
2331 				drm_crtc_vblank_put(crtc);
2332 		}
2333 	}
2334 
2335 	nv50_crc_atomic_start_reporting(state);
2336 	if (!flushed)
2337 		nv50_crc_atomic_release_notifier_contexts(state);
2338 
2339 	drm_atomic_helper_commit_hw_done(state);
2340 	drm_atomic_helper_cleanup_planes(dev, state);
2341 	drm_atomic_helper_commit_cleanup_done(state);
2342 	drm_atomic_state_put(state);
2343 
2344 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2345 	pm_runtime_mark_last_busy(dev->dev);
2346 	pm_runtime_put_autosuspend(dev->dev);
2347 }
2348 
2349 static void
2350 nv50_disp_atomic_commit_work(struct work_struct *work)
2351 {
2352 	struct drm_atomic_state *state =
2353 		container_of(work, typeof(*state), commit_work);
2354 	nv50_disp_atomic_commit_tail(state);
2355 }
2356 
2357 static int
2358 nv50_disp_atomic_commit(struct drm_device *dev,
2359 			struct drm_atomic_state *state, bool nonblock)
2360 {
2361 	struct drm_plane_state *new_plane_state;
2362 	struct drm_plane *plane;
2363 	int ret, i;
2364 
2365 	ret = pm_runtime_get_sync(dev->dev);
2366 	if (ret < 0 && ret != -EACCES) {
2367 		pm_runtime_put_autosuspend(dev->dev);
2368 		return ret;
2369 	}
2370 
2371 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2372 	if (ret)
2373 		goto done;
2374 
2375 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2376 
2377 	ret = drm_atomic_helper_prepare_planes(dev, state);
2378 	if (ret)
2379 		goto done;
2380 
2381 	if (!nonblock) {
2382 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2383 		if (ret)
2384 			goto err_cleanup;
2385 	}
2386 
2387 	ret = drm_atomic_helper_swap_state(state, true);
2388 	if (ret)
2389 		goto err_cleanup;
2390 
2391 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2392 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2393 		struct nv50_wndw *wndw = nv50_wndw(plane);
2394 
2395 		if (asyw->set.image)
2396 			nv50_wndw_ntfy_enable(wndw, asyw);
2397 	}
2398 
2399 	drm_atomic_state_get(state);
2400 
2401 	/*
2402 	 * Grab another RPM ref for the commit tail, which will release the
2403 	 * ref when it's finished
2404 	 */
2405 	pm_runtime_get_noresume(dev->dev);
2406 
2407 	if (nonblock)
2408 		queue_work(system_unbound_wq, &state->commit_work);
2409 	else
2410 		nv50_disp_atomic_commit_tail(state);
2411 
2412 err_cleanup:
2413 	if (ret)
2414 		drm_atomic_helper_cleanup_planes(dev, state);
2415 done:
2416 	pm_runtime_put_autosuspend(dev->dev);
2417 	return ret;
2418 }
2419 
2420 static struct nv50_outp_atom *
2421 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2422 {
2423 	struct nv50_outp_atom *outp;
2424 
2425 	list_for_each_entry(outp, &atom->outp, head) {
2426 		if (outp->encoder == encoder)
2427 			return outp;
2428 	}
2429 
2430 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2431 	if (!outp)
2432 		return ERR_PTR(-ENOMEM);
2433 
2434 	list_add(&outp->head, &atom->outp);
2435 	outp->encoder = encoder;
2436 	return outp;
2437 }
2438 
2439 static int
2440 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2441 				struct drm_connector_state *old_connector_state)
2442 {
2443 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2444 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2445 	struct drm_crtc *crtc;
2446 	struct nv50_outp_atom *outp;
2447 
2448 	if (!(crtc = old_connector_state->crtc))
2449 		return 0;
2450 
2451 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2452 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2453 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2454 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2455 		if (IS_ERR(outp))
2456 			return PTR_ERR(outp);
2457 
2458 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2459 			outp->flush_disable = true;
2460 			atom->flush_disable = true;
2461 		}
2462 		outp->clr.ctrl = true;
2463 		atom->lock_core = true;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static int
2470 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2471 				struct drm_connector_state *connector_state)
2472 {
2473 	struct drm_encoder *encoder = connector_state->best_encoder;
2474 	struct drm_crtc_state *new_crtc_state;
2475 	struct drm_crtc *crtc;
2476 	struct nv50_outp_atom *outp;
2477 
2478 	if (!(crtc = connector_state->crtc))
2479 		return 0;
2480 
2481 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2482 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2483 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2484 		if (IS_ERR(outp))
2485 			return PTR_ERR(outp);
2486 
2487 		outp->set.ctrl = true;
2488 		atom->lock_core = true;
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static int
2495 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2496 {
2497 	struct nv50_atom *atom = nv50_atom(state);
2498 	struct nv50_core *core = nv50_disp(dev)->core;
2499 	struct drm_connector_state *old_connector_state, *new_connector_state;
2500 	struct drm_connector *connector;
2501 	struct drm_crtc_state *new_crtc_state;
2502 	struct drm_crtc *crtc;
2503 	struct nv50_head *head;
2504 	struct nv50_head_atom *asyh;
2505 	int ret, i;
2506 
2507 	if (core->assign_windows && core->func->head->static_wndw_map) {
2508 		drm_for_each_crtc(crtc, dev) {
2509 			new_crtc_state = drm_atomic_get_crtc_state(state,
2510 								   crtc);
2511 			if (IS_ERR(new_crtc_state))
2512 				return PTR_ERR(new_crtc_state);
2513 
2514 			head = nv50_head(crtc);
2515 			asyh = nv50_head_atom(new_crtc_state);
2516 			core->func->head->static_wndw_map(head, asyh);
2517 		}
2518 	}
2519 
2520 	/* We need to handle colour management on a per-plane basis. */
2521 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2522 		if (new_crtc_state->color_mgmt_changed) {
2523 			ret = drm_atomic_add_affected_planes(state, crtc);
2524 			if (ret)
2525 				return ret;
2526 		}
2527 	}
2528 
2529 	ret = drm_atomic_helper_check(dev, state);
2530 	if (ret)
2531 		return ret;
2532 
2533 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2534 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2535 		if (ret)
2536 			return ret;
2537 
2538 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2539 		if (ret)
2540 			return ret;
2541 	}
2542 
2543 	ret = drm_dp_mst_atomic_check(state);
2544 	if (ret)
2545 		return ret;
2546 
2547 	nv50_crc_atomic_check_outp(atom);
2548 
2549 	return 0;
2550 }
2551 
2552 static void
2553 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2554 {
2555 	struct nv50_atom *atom = nv50_atom(state);
2556 	struct nv50_outp_atom *outp, *outt;
2557 
2558 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2559 		list_del(&outp->head);
2560 		kfree(outp);
2561 	}
2562 
2563 	drm_atomic_state_default_clear(state);
2564 }
2565 
2566 static void
2567 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2568 {
2569 	struct nv50_atom *atom = nv50_atom(state);
2570 	drm_atomic_state_default_release(&atom->state);
2571 	kfree(atom);
2572 }
2573 
2574 static struct drm_atomic_state *
2575 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2576 {
2577 	struct nv50_atom *atom;
2578 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2579 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2580 		kfree(atom);
2581 		return NULL;
2582 	}
2583 	INIT_LIST_HEAD(&atom->outp);
2584 	return &atom->state;
2585 }
2586 
2587 static const struct drm_mode_config_funcs
2588 nv50_disp_func = {
2589 	.fb_create = nouveau_user_framebuffer_create,
2590 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2591 	.atomic_check = nv50_disp_atomic_check,
2592 	.atomic_commit = nv50_disp_atomic_commit,
2593 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2594 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2595 	.atomic_state_free = nv50_disp_atomic_state_free,
2596 };
2597 
2598 static const struct drm_mode_config_helper_funcs
2599 nv50_disp_helper_func = {
2600 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2601 };
2602 
2603 /******************************************************************************
2604  * Init
2605  *****************************************************************************/
2606 
2607 static void
2608 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2609 {
2610 	struct nouveau_drm *drm = nouveau_drm(dev);
2611 	struct drm_encoder *encoder;
2612 
2613 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2614 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2615 			nv50_mstm_fini(nouveau_encoder(encoder));
2616 	}
2617 
2618 	if (!runtime)
2619 		cancel_work_sync(&drm->hpd_work);
2620 }
2621 
2622 static int
2623 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2624 {
2625 	struct nv50_core *core = nv50_disp(dev)->core;
2626 	struct drm_encoder *encoder;
2627 
2628 	if (resume || runtime)
2629 		core->func->init(core);
2630 
2631 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2632 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2633 			struct nouveau_encoder *nv_encoder =
2634 				nouveau_encoder(encoder);
2635 			nv50_mstm_init(nv_encoder, runtime);
2636 		}
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static void
2643 nv50_display_destroy(struct drm_device *dev)
2644 {
2645 	struct nv50_disp *disp = nv50_disp(dev);
2646 
2647 	nv50_audio_component_fini(nouveau_drm(dev));
2648 
2649 	nvif_object_unmap(&disp->caps);
2650 	nvif_object_dtor(&disp->caps);
2651 	nv50_core_del(&disp->core);
2652 
2653 	nouveau_bo_unmap(disp->sync);
2654 	if (disp->sync)
2655 		nouveau_bo_unpin(disp->sync);
2656 	nouveau_bo_ref(NULL, &disp->sync);
2657 
2658 	nouveau_display(dev)->priv = NULL;
2659 	kfree(disp);
2660 }
2661 
2662 int
2663 nv50_display_create(struct drm_device *dev)
2664 {
2665 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2666 	struct nouveau_drm *drm = nouveau_drm(dev);
2667 	struct dcb_table *dcb = &drm->vbios.dcb;
2668 	struct drm_connector *connector, *tmp;
2669 	struct nv50_disp *disp;
2670 	struct dcb_output *dcbe;
2671 	int crtcs, ret, i;
2672 	bool has_mst = nv50_has_mst(drm);
2673 
2674 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2675 	if (!disp)
2676 		return -ENOMEM;
2677 
2678 	mutex_init(&disp->mutex);
2679 
2680 	nouveau_display(dev)->priv = disp;
2681 	nouveau_display(dev)->dtor = nv50_display_destroy;
2682 	nouveau_display(dev)->init = nv50_display_init;
2683 	nouveau_display(dev)->fini = nv50_display_fini;
2684 	disp->disp = &nouveau_display(dev)->disp;
2685 	dev->mode_config.funcs = &nv50_disp_func;
2686 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2687 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2688 	dev->mode_config.normalize_zpos = true;
2689 
2690 	/* small shared memory area we use for notifiers and semaphores */
2691 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2692 			     NOUVEAU_GEM_DOMAIN_VRAM,
2693 			     0, 0x0000, NULL, NULL, &disp->sync);
2694 	if (!ret) {
2695 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2696 		if (!ret) {
2697 			ret = nouveau_bo_map(disp->sync);
2698 			if (ret)
2699 				nouveau_bo_unpin(disp->sync);
2700 		}
2701 		if (ret)
2702 			nouveau_bo_ref(NULL, &disp->sync);
2703 	}
2704 
2705 	if (ret)
2706 		goto out;
2707 
2708 	/* allocate master evo channel */
2709 	ret = nv50_core_new(drm, &disp->core);
2710 	if (ret)
2711 		goto out;
2712 
2713 	disp->core->func->init(disp->core);
2714 	if (disp->core->func->caps_init) {
2715 		ret = disp->core->func->caps_init(drm, disp);
2716 		if (ret)
2717 			goto out;
2718 	}
2719 
2720 	/* Assign the correct format modifiers */
2721 	if (disp->disp->object.oclass >= TU102_DISP)
2722 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2723 	else
2724 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2725 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2726 	else
2727 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2728 
2729 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2730 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2731 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2732 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2733 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2734 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2735 	 * large pages.
2736 	 */
2737 	if (disp->disp->object.oclass >= GM107_DISP) {
2738 		dev->mode_config.cursor_width = 256;
2739 		dev->mode_config.cursor_height = 256;
2740 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2741 		dev->mode_config.cursor_width = 128;
2742 		dev->mode_config.cursor_height = 128;
2743 	} else {
2744 		dev->mode_config.cursor_width = 64;
2745 		dev->mode_config.cursor_height = 64;
2746 	}
2747 
2748 	/* create crtc objects to represent the hw heads */
2749 	if (disp->disp->object.oclass >= GV100_DISP)
2750 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2751 	else
2752 	if (disp->disp->object.oclass >= GF110_DISP)
2753 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2754 	else
2755 		crtcs = 0x3;
2756 
2757 	for (i = 0; i < fls(crtcs); i++) {
2758 		struct nv50_head *head;
2759 
2760 		if (!(crtcs & (1 << i)))
2761 			continue;
2762 
2763 		head = nv50_head_create(dev, i);
2764 		if (IS_ERR(head)) {
2765 			ret = PTR_ERR(head);
2766 			goto out;
2767 		}
2768 
2769 		if (has_mst) {
2770 			head->msto = nv50_msto_new(dev, head, i);
2771 			if (IS_ERR(head->msto)) {
2772 				ret = PTR_ERR(head->msto);
2773 				head->msto = NULL;
2774 				goto out;
2775 			}
2776 
2777 			/*
2778 			 * FIXME: This is a hack to workaround the following
2779 			 * issues:
2780 			 *
2781 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2782 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2783 			 *
2784 			 * Once these issues are closed, this should be
2785 			 * removed
2786 			 */
2787 			head->msto->encoder.possible_crtcs = crtcs;
2788 		}
2789 	}
2790 
2791 	/* create encoder/connector objects based on VBIOS DCB table */
2792 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2793 		connector = nouveau_connector_create(dev, dcbe);
2794 		if (IS_ERR(connector))
2795 			continue;
2796 
2797 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2798 			switch (dcbe->type) {
2799 			case DCB_OUTPUT_TMDS:
2800 			case DCB_OUTPUT_LVDS:
2801 			case DCB_OUTPUT_DP:
2802 				ret = nv50_sor_create(connector, dcbe);
2803 				break;
2804 			case DCB_OUTPUT_ANALOG:
2805 				ret = nv50_dac_create(connector, dcbe);
2806 				break;
2807 			default:
2808 				ret = -ENODEV;
2809 				break;
2810 			}
2811 		} else {
2812 			ret = nv50_pior_create(connector, dcbe);
2813 		}
2814 
2815 		if (ret) {
2816 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2817 				     dcbe->location, dcbe->type,
2818 				     ffs(dcbe->or) - 1, ret);
2819 			ret = 0;
2820 		}
2821 	}
2822 
2823 	/* cull any connectors we created that don't have an encoder */
2824 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2825 		if (connector->possible_encoders)
2826 			continue;
2827 
2828 		NV_WARN(drm, "%s has no encoders, removing\n",
2829 			connector->name);
2830 		connector->funcs->destroy(connector);
2831 	}
2832 
2833 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2834 	dev->vblank_disable_immediate = true;
2835 
2836 	nv50_audio_component_init(drm);
2837 
2838 out:
2839 	if (ret)
2840 		nv50_display_destroy(dev);
2841 	return ret;
2842 }
2843 
2844 /******************************************************************************
2845  * Format modifiers
2846  *****************************************************************************/
2847 
2848 /****************************************************************
2849  *            Log2(block height) ----------------------------+  *
2850  *            Page Kind ----------------------------------+  |  *
2851  *            Gob Height/Page Kind Generation ------+     |  |  *
2852  *                          Sector layout -------+  |     |  |  *
2853  *                          Compression ------+  |  |     |  |  */
2854 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2855 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2856 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2857 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2858 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2859 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2860 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2861 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2862 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2863 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2864 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2865 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2866 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2867 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2868 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2869 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2870 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2871 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2872 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2873 	DRM_FORMAT_MOD_LINEAR,
2874 	DRM_FORMAT_MOD_INVALID
2875 };
2876 
2877 /****************************************************************
2878  *            Log2(block height) ----------------------------+  *
2879  *            Page Kind ----------------------------------+  |  *
2880  *            Gob Height/Page Kind Generation ------+     |  |  *
2881  *                          Sector layout -------+  |     |  |  *
2882  *                          Compression ------+  |  |     |  |  */
2883 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2884 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2885 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2886 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2887 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2888 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2889 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2890 	DRM_FORMAT_MOD_LINEAR,
2891 	DRM_FORMAT_MOD_INVALID
2892 };
2893