1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/hdmi.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_dp_helper.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_fb_helper.h>
37 #include <drm/drm_plane_helper.h>
38 #include <drm/drm_probe_helper.h>
39 #include <drm/drm_scdc_helper.h>
40 #include <drm/drm_vblank.h>
41 
42 #include <nvif/class.h>
43 #include <nvif/cl0002.h>
44 #include <nvif/cl5070.h>
45 #include <nvif/cl507d.h>
46 #include <nvif/event.h>
47 
48 #include "nouveau_drv.h"
49 #include "nouveau_dma.h"
50 #include "nouveau_gem.h"
51 #include "nouveau_connector.h"
52 #include "nouveau_encoder.h"
53 #include "nouveau_fence.h"
54 #include "nouveau_fbcon.h"
55 
56 #include <subdev/bios/dp.h>
57 
58 /******************************************************************************
59  * Atomic state
60  *****************************************************************************/
61 
62 struct nv50_outp_atom {
63 	struct list_head head;
64 
65 	struct drm_encoder *encoder;
66 	bool flush_disable;
67 
68 	union nv50_outp_atom_mask {
69 		struct {
70 			bool ctrl:1;
71 		};
72 		u8 mask;
73 	} set, clr;
74 };
75 
76 /******************************************************************************
77  * EVO channel
78  *****************************************************************************/
79 
80 static int
81 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
82 		 const s32 *oclass, u8 head, void *data, u32 size,
83 		 struct nv50_chan *chan)
84 {
85 	struct nvif_sclass *sclass;
86 	int ret, i, n;
87 
88 	chan->device = device;
89 
90 	ret = n = nvif_object_sclass_get(disp, &sclass);
91 	if (ret < 0)
92 		return ret;
93 
94 	while (oclass[0]) {
95 		for (i = 0; i < n; i++) {
96 			if (sclass[i].oclass == oclass[0]) {
97 				ret = nvif_object_init(disp, 0, oclass[0],
98 						       data, size, &chan->user);
99 				if (ret == 0)
100 					nvif_object_map(&chan->user, NULL, 0);
101 				nvif_object_sclass_put(&sclass);
102 				return ret;
103 			}
104 		}
105 		oclass++;
106 	}
107 
108 	nvif_object_sclass_put(&sclass);
109 	return -ENOSYS;
110 }
111 
112 static void
113 nv50_chan_destroy(struct nv50_chan *chan)
114 {
115 	nvif_object_fini(&chan->user);
116 }
117 
118 /******************************************************************************
119  * DMA EVO channel
120  *****************************************************************************/
121 
122 void
123 nv50_dmac_destroy(struct nv50_dmac *dmac)
124 {
125 	nvif_object_fini(&dmac->vram);
126 	nvif_object_fini(&dmac->sync);
127 
128 	nv50_chan_destroy(&dmac->base);
129 
130 	nvif_mem_fini(&dmac->push);
131 }
132 
133 int
134 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
135 		 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
136 		 struct nv50_dmac *dmac)
137 {
138 	struct nouveau_cli *cli = (void *)device->object.client;
139 	struct nv50_disp_core_channel_dma_v0 *args = data;
140 	u8 type = NVIF_MEM_COHERENT;
141 	int ret;
142 
143 	mutex_init(&dmac->lock);
144 
145 	/* Pascal added support for 47-bit physical addresses, but some
146 	 * parts of EVO still only accept 40-bit PAs.
147 	 *
148 	 * To avoid issues on systems with large amounts of RAM, and on
149 	 * systems where an IOMMU maps pages at a high address, we need
150 	 * to allocate push buffers in VRAM instead.
151 	 *
152 	 * This appears to match NVIDIA's behaviour on Pascal.
153 	 */
154 	if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
155 		type |= NVIF_MEM_VRAM;
156 
157 	ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push);
158 	if (ret)
159 		return ret;
160 
161 	dmac->ptr = dmac->push.object.map.ptr;
162 
163 	args->pushbuf = nvif_handle(&dmac->push.object);
164 
165 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
166 			       &dmac->base);
167 	if (ret)
168 		return ret;
169 
170 	if (!syncbuf)
171 		return 0;
172 
173 	ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
174 			       &(struct nv_dma_v0) {
175 					.target = NV_DMA_V0_TARGET_VRAM,
176 					.access = NV_DMA_V0_ACCESS_RDWR,
177 					.start = syncbuf + 0x0000,
178 					.limit = syncbuf + 0x0fff,
179 			       }, sizeof(struct nv_dma_v0),
180 			       &dmac->sync);
181 	if (ret)
182 		return ret;
183 
184 	ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
185 			       &(struct nv_dma_v0) {
186 					.target = NV_DMA_V0_TARGET_VRAM,
187 					.access = NV_DMA_V0_ACCESS_RDWR,
188 					.start = 0,
189 					.limit = device->info.ram_user - 1,
190 			       }, sizeof(struct nv_dma_v0),
191 			       &dmac->vram);
192 	if (ret)
193 		return ret;
194 
195 	return ret;
196 }
197 
198 /******************************************************************************
199  * EVO channel helpers
200  *****************************************************************************/
201 static void
202 evo_flush(struct nv50_dmac *dmac)
203 {
204 	/* Push buffer fetches are not coherent with BAR1, we need to ensure
205 	 * writes have been flushed right through to VRAM before writing PUT.
206 	 */
207 	if (dmac->push.type & NVIF_MEM_VRAM) {
208 		struct nvif_device *device = dmac->base.device;
209 		nvif_wr32(&device->object, 0x070000, 0x00000001);
210 		nvif_msec(device, 2000,
211 			if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
212 				break;
213 		);
214 	}
215 }
216 
217 u32 *
218 evo_wait(struct nv50_dmac *evoc, int nr)
219 {
220 	struct nv50_dmac *dmac = evoc;
221 	struct nvif_device *device = dmac->base.device;
222 	u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
223 
224 	mutex_lock(&dmac->lock);
225 	if (put + nr >= (PAGE_SIZE / 4) - 8) {
226 		dmac->ptr[put] = 0x20000000;
227 		evo_flush(dmac);
228 
229 		nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
230 		if (nvif_msec(device, 2000,
231 			if (!nvif_rd32(&dmac->base.user, 0x0004))
232 				break;
233 		) < 0) {
234 			mutex_unlock(&dmac->lock);
235 			pr_err("nouveau: evo channel stalled\n");
236 			return NULL;
237 		}
238 
239 		put = 0;
240 	}
241 
242 	return dmac->ptr + put;
243 }
244 
245 void
246 evo_kick(u32 *push, struct nv50_dmac *evoc)
247 {
248 	struct nv50_dmac *dmac = evoc;
249 
250 	evo_flush(dmac);
251 
252 	nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
253 	mutex_unlock(&dmac->lock);
254 }
255 
256 /******************************************************************************
257  * Output path helpers
258  *****************************************************************************/
259 static void
260 nv50_outp_release(struct nouveau_encoder *nv_encoder)
261 {
262 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
263 	struct {
264 		struct nv50_disp_mthd_v1 base;
265 	} args = {
266 		.base.version = 1,
267 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
268 		.base.hasht  = nv_encoder->dcb->hasht,
269 		.base.hashm  = nv_encoder->dcb->hashm,
270 	};
271 
272 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
273 	nv_encoder->or = -1;
274 	nv_encoder->link = 0;
275 }
276 
277 static int
278 nv50_outp_acquire(struct nouveau_encoder *nv_encoder)
279 {
280 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
281 	struct nv50_disp *disp = nv50_disp(drm->dev);
282 	struct {
283 		struct nv50_disp_mthd_v1 base;
284 		struct nv50_disp_acquire_v0 info;
285 	} args = {
286 		.base.version = 1,
287 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
288 		.base.hasht  = nv_encoder->dcb->hasht,
289 		.base.hashm  = nv_encoder->dcb->hashm,
290 	};
291 	int ret;
292 
293 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
294 	if (ret) {
295 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
296 		return ret;
297 	}
298 
299 	nv_encoder->or = args.info.or;
300 	nv_encoder->link = args.info.link;
301 	return 0;
302 }
303 
304 static int
305 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
306 			    struct drm_crtc_state *crtc_state,
307 			    struct drm_connector_state *conn_state,
308 			    struct drm_display_mode *native_mode)
309 {
310 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
311 	struct drm_display_mode *mode = &crtc_state->mode;
312 	struct drm_connector *connector = conn_state->connector;
313 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
314 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
315 
316 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
317 	asyc->scaler.full = false;
318 	if (!native_mode)
319 		return 0;
320 
321 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
322 		switch (connector->connector_type) {
323 		case DRM_MODE_CONNECTOR_LVDS:
324 		case DRM_MODE_CONNECTOR_eDP:
325 			/* Don't force scaler for EDID modes with
326 			 * same size as the native one (e.g. different
327 			 * refresh rate)
328 			 */
329 			if (adjusted_mode->hdisplay == native_mode->hdisplay &&
330 			    adjusted_mode->vdisplay == native_mode->vdisplay &&
331 			    adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
332 				break;
333 			mode = native_mode;
334 			asyc->scaler.full = true;
335 			break;
336 		default:
337 			break;
338 		}
339 	} else {
340 		mode = native_mode;
341 	}
342 
343 	if (!drm_mode_equal(adjusted_mode, mode)) {
344 		drm_mode_copy(adjusted_mode, mode);
345 		crtc_state->mode_changed = true;
346 	}
347 
348 	return 0;
349 }
350 
351 static int
352 nv50_outp_atomic_check(struct drm_encoder *encoder,
353 		       struct drm_crtc_state *crtc_state,
354 		       struct drm_connector_state *conn_state)
355 {
356 	struct nouveau_connector *nv_connector =
357 		nouveau_connector(conn_state->connector);
358 	return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
359 					   nv_connector->native_mode);
360 }
361 
362 /******************************************************************************
363  * DAC
364  *****************************************************************************/
365 static void
366 nv50_dac_disable(struct drm_encoder *encoder)
367 {
368 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
369 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
370 	if (nv_encoder->crtc)
371 		core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL);
372 	nv_encoder->crtc = NULL;
373 	nv50_outp_release(nv_encoder);
374 }
375 
376 static void
377 nv50_dac_enable(struct drm_encoder *encoder)
378 {
379 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
380 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
381 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
382 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
383 
384 	nv50_outp_acquire(nv_encoder);
385 
386 	core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh);
387 	asyh->or.depth = 0;
388 
389 	nv_encoder->crtc = encoder->crtc;
390 }
391 
392 static enum drm_connector_status
393 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
394 {
395 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
396 	struct nv50_disp *disp = nv50_disp(encoder->dev);
397 	struct {
398 		struct nv50_disp_mthd_v1 base;
399 		struct nv50_disp_dac_load_v0 load;
400 	} args = {
401 		.base.version = 1,
402 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
403 		.base.hasht  = nv_encoder->dcb->hasht,
404 		.base.hashm  = nv_encoder->dcb->hashm,
405 	};
406 	int ret;
407 
408 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
409 	if (args.load.data == 0)
410 		args.load.data = 340;
411 
412 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
413 	if (ret || !args.load.load)
414 		return connector_status_disconnected;
415 
416 	return connector_status_connected;
417 }
418 
419 static const struct drm_encoder_helper_funcs
420 nv50_dac_help = {
421 	.atomic_check = nv50_outp_atomic_check,
422 	.enable = nv50_dac_enable,
423 	.disable = nv50_dac_disable,
424 	.detect = nv50_dac_detect
425 };
426 
427 static void
428 nv50_dac_destroy(struct drm_encoder *encoder)
429 {
430 	drm_encoder_cleanup(encoder);
431 	kfree(encoder);
432 }
433 
434 static const struct drm_encoder_funcs
435 nv50_dac_func = {
436 	.destroy = nv50_dac_destroy,
437 };
438 
439 static int
440 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
441 {
442 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
443 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
444 	struct nvkm_i2c_bus *bus;
445 	struct nouveau_encoder *nv_encoder;
446 	struct drm_encoder *encoder;
447 	int type = DRM_MODE_ENCODER_DAC;
448 
449 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
450 	if (!nv_encoder)
451 		return -ENOMEM;
452 	nv_encoder->dcb = dcbe;
453 
454 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
455 	if (bus)
456 		nv_encoder->i2c = &bus->i2c;
457 
458 	encoder = to_drm_encoder(nv_encoder);
459 	encoder->possible_crtcs = dcbe->heads;
460 	encoder->possible_clones = 0;
461 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
462 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
463 	drm_encoder_helper_add(encoder, &nv50_dac_help);
464 
465 	drm_connector_attach_encoder(connector, encoder);
466 	return 0;
467 }
468 
469 /******************************************************************************
470  * Audio
471  *****************************************************************************/
472 static void
473 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
474 {
475 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
476 	struct nv50_disp *disp = nv50_disp(encoder->dev);
477 	struct {
478 		struct nv50_disp_mthd_v1 base;
479 		struct nv50_disp_sor_hda_eld_v0 eld;
480 	} args = {
481 		.base.version = 1,
482 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
483 		.base.hasht   = nv_encoder->dcb->hasht,
484 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
485 				(0x0100 << nv_crtc->index),
486 	};
487 
488 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
489 }
490 
491 static void
492 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
493 {
494 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
495 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
496 	struct nouveau_connector *nv_connector;
497 	struct nv50_disp *disp = nv50_disp(encoder->dev);
498 	struct __packed {
499 		struct {
500 			struct nv50_disp_mthd_v1 mthd;
501 			struct nv50_disp_sor_hda_eld_v0 eld;
502 		} base;
503 		u8 data[sizeof(nv_connector->base.eld)];
504 	} args = {
505 		.base.mthd.version = 1,
506 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
507 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
508 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
509 				     (0x0100 << nv_crtc->index),
510 	};
511 
512 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
513 	if (!drm_detect_monitor_audio(nv_connector->edid))
514 		return;
515 
516 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
517 
518 	nvif_mthd(&disp->disp->object, 0, &args,
519 		  sizeof(args.base) + drm_eld_size(args.data));
520 }
521 
522 /******************************************************************************
523  * HDMI
524  *****************************************************************************/
525 static void
526 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
527 {
528 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
529 	struct nv50_disp *disp = nv50_disp(encoder->dev);
530 	struct {
531 		struct nv50_disp_mthd_v1 base;
532 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
533 	} args = {
534 		.base.version = 1,
535 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
536 		.base.hasht  = nv_encoder->dcb->hasht,
537 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
538 			       (0x0100 << nv_crtc->index),
539 	};
540 
541 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
542 }
543 
544 static void
545 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
546 {
547 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
548 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
549 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
550 	struct nv50_disp *disp = nv50_disp(encoder->dev);
551 	struct {
552 		struct nv50_disp_mthd_v1 base;
553 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
554 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
555 	} args = {
556 		.base.version = 1,
557 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
558 		.base.hasht  = nv_encoder->dcb->hasht,
559 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
560 			       (0x0100 << nv_crtc->index),
561 		.pwr.state = 1,
562 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
563 	};
564 	struct nouveau_connector *nv_connector;
565 	struct drm_hdmi_info *hdmi;
566 	u32 max_ac_packet;
567 	union hdmi_infoframe avi_frame;
568 	union hdmi_infoframe vendor_frame;
569 	bool high_tmds_clock_ratio = false, scrambling = false;
570 	u8 config;
571 	int ret;
572 	int size;
573 
574 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
575 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
576 		return;
577 
578 	hdmi = &nv_connector->base.display_info.hdmi;
579 
580 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
581 						       &nv_connector->base, mode);
582 	if (!ret) {
583 		/* We have an AVI InfoFrame, populate it to the display */
584 		args.pwr.avi_infoframe_length
585 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
586 	}
587 
588 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
589 							  &nv_connector->base, mode);
590 	if (!ret) {
591 		/* We have a Vendor InfoFrame, populate it to the display */
592 		args.pwr.vendor_infoframe_length
593 			= hdmi_infoframe_pack(&vendor_frame,
594 					      args.infoframes
595 					      + args.pwr.avi_infoframe_length,
596 					      17);
597 	}
598 
599 	max_ac_packet  = mode->htotal - mode->hdisplay;
600 	max_ac_packet -= args.pwr.rekey;
601 	max_ac_packet -= 18; /* constant from tegra */
602 	args.pwr.max_ac_packet = max_ac_packet / 32;
603 
604 	if (hdmi->scdc.scrambling.supported) {
605 		high_tmds_clock_ratio = mode->clock > 340000;
606 		scrambling = high_tmds_clock_ratio ||
607 			hdmi->scdc.scrambling.low_rates;
608 	}
609 
610 	args.pwr.scdc =
611 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
612 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
613 
614 	size = sizeof(args.base)
615 		+ sizeof(args.pwr)
616 		+ args.pwr.avi_infoframe_length
617 		+ args.pwr.vendor_infoframe_length;
618 	nvif_mthd(&disp->disp->object, 0, &args, size);
619 
620 	nv50_audio_enable(encoder, mode);
621 
622 	/* If SCDC is supported by the downstream monitor, update
623 	 * divider / scrambling settings to what we programmed above.
624 	 */
625 	if (!hdmi->scdc.scrambling.supported)
626 		return;
627 
628 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
629 	if (ret < 0) {
630 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
631 		return;
632 	}
633 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
634 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
635 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
636 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
637 	if (ret < 0)
638 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
639 			 config, ret);
640 }
641 
642 /******************************************************************************
643  * MST
644  *****************************************************************************/
645 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
646 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
647 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
648 
649 struct nv50_mstm {
650 	struct nouveau_encoder *outp;
651 
652 	struct drm_dp_mst_topology_mgr mgr;
653 	struct nv50_msto *msto[4];
654 
655 	bool modified;
656 	bool disabled;
657 	int links;
658 };
659 
660 struct nv50_mstc {
661 	struct nv50_mstm *mstm;
662 	struct drm_dp_mst_port *port;
663 	struct drm_connector connector;
664 
665 	struct drm_display_mode *native;
666 	struct edid *edid;
667 };
668 
669 struct nv50_msto {
670 	struct drm_encoder encoder;
671 
672 	struct nv50_head *head;
673 	struct nv50_mstc *mstc;
674 	bool disabled;
675 };
676 
677 static struct drm_dp_payload *
678 nv50_msto_payload(struct nv50_msto *msto)
679 {
680 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
681 	struct nv50_mstc *mstc = msto->mstc;
682 	struct nv50_mstm *mstm = mstc->mstm;
683 	int vcpi = mstc->port->vcpi.vcpi, i;
684 
685 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
686 
687 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
688 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
689 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
690 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
691 			  mstm->outp->base.base.name, i, payload->vcpi,
692 			  payload->start_slot, payload->num_slots);
693 	}
694 
695 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
696 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
697 		if (payload->vcpi == vcpi)
698 			return payload;
699 	}
700 
701 	return NULL;
702 }
703 
704 static void
705 nv50_msto_cleanup(struct nv50_msto *msto)
706 {
707 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
708 	struct nv50_mstc *mstc = msto->mstc;
709 	struct nv50_mstm *mstm = mstc->mstm;
710 
711 	if (!msto->disabled)
712 		return;
713 
714 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
715 
716 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
717 
718 	msto->mstc = NULL;
719 	msto->head = NULL;
720 	msto->disabled = false;
721 }
722 
723 static void
724 nv50_msto_prepare(struct nv50_msto *msto)
725 {
726 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
727 	struct nv50_mstc *mstc = msto->mstc;
728 	struct nv50_mstm *mstm = mstc->mstm;
729 	struct {
730 		struct nv50_disp_mthd_v1 base;
731 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
732 	} args = {
733 		.base.version = 1,
734 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
735 		.base.hasht  = mstm->outp->dcb->hasht,
736 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
737 			       (0x0100 << msto->head->base.index),
738 	};
739 
740 	mutex_lock(&mstm->mgr.payload_lock);
741 
742 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
743 	if (mstc->port->vcpi.vcpi > 0) {
744 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
745 		if (payload) {
746 			args.vcpi.start_slot = payload->start_slot;
747 			args.vcpi.num_slots = payload->num_slots;
748 			args.vcpi.pbn = mstc->port->vcpi.pbn;
749 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
750 		}
751 	}
752 
753 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
754 		  msto->encoder.name, msto->head->base.base.name,
755 		  args.vcpi.start_slot, args.vcpi.num_slots,
756 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
757 
758 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
759 	mutex_unlock(&mstm->mgr.payload_lock);
760 }
761 
762 static int
763 nv50_msto_atomic_check(struct drm_encoder *encoder,
764 		       struct drm_crtc_state *crtc_state,
765 		       struct drm_connector_state *conn_state)
766 {
767 	struct drm_atomic_state *state = crtc_state->state;
768 	struct drm_connector *connector = conn_state->connector;
769 	struct nv50_mstc *mstc = nv50_mstc(connector);
770 	struct nv50_mstm *mstm = mstc->mstm;
771 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
772 	int slots;
773 
774 	if (crtc_state->mode_changed || crtc_state->connectors_changed) {
775 		/*
776 		 * When restoring duplicated states, we need to make sure that
777 		 * the bw remains the same and avoid recalculating it, as the
778 		 * connector's bpc may have changed after the state was
779 		 * duplicated
780 		 */
781 		if (!state->duplicated) {
782 			const int bpp = connector->display_info.bpc * 3;
783 			const int clock = crtc_state->adjusted_mode.clock;
784 
785 			asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, bpp);
786 		}
787 
788 		slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr,
789 						      mstc->port,
790 						      asyh->dp.pbn);
791 		if (slots < 0)
792 			return slots;
793 
794 		asyh->dp.tu = slots;
795 	}
796 
797 	return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
798 					   mstc->native);
799 }
800 
801 static void
802 nv50_msto_enable(struct drm_encoder *encoder)
803 {
804 	struct nv50_head *head = nv50_head(encoder->crtc);
805 	struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state);
806 	struct nv50_msto *msto = nv50_msto(encoder);
807 	struct nv50_mstc *mstc = NULL;
808 	struct nv50_mstm *mstm = NULL;
809 	struct drm_connector *connector;
810 	struct drm_connector_list_iter conn_iter;
811 	u8 proto, depth;
812 	bool r;
813 
814 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
815 	drm_for_each_connector_iter(connector, &conn_iter) {
816 		if (connector->state->best_encoder == &msto->encoder) {
817 			mstc = nv50_mstc(connector);
818 			mstm = mstc->mstm;
819 			break;
820 		}
821 	}
822 	drm_connector_list_iter_end(&conn_iter);
823 
824 	if (WARN_ON(!mstc))
825 		return;
826 
827 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn,
828 				     armh->dp.tu);
829 	if (!r)
830 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
831 
832 	if (!mstm->links++)
833 		nv50_outp_acquire(mstm->outp);
834 
835 	if (mstm->outp->link & 1)
836 		proto = 0x8;
837 	else
838 		proto = 0x9;
839 
840 	switch (mstc->connector.display_info.bpc) {
841 	case  6: depth = 0x2; break;
842 	case  8: depth = 0x5; break;
843 	case 10:
844 	default: depth = 0x6; break;
845 	}
846 
847 	mstm->outp->update(mstm->outp, head->base.index, armh, proto, depth);
848 
849 	msto->head = head;
850 	msto->mstc = mstc;
851 	mstm->modified = true;
852 }
853 
854 static void
855 nv50_msto_disable(struct drm_encoder *encoder)
856 {
857 	struct nv50_msto *msto = nv50_msto(encoder);
858 	struct nv50_mstc *mstc = msto->mstc;
859 	struct nv50_mstm *mstm = mstc->mstm;
860 
861 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
862 
863 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
864 	mstm->modified = true;
865 	if (!--mstm->links)
866 		mstm->disabled = true;
867 	msto->disabled = true;
868 }
869 
870 static const struct drm_encoder_helper_funcs
871 nv50_msto_help = {
872 	.disable = nv50_msto_disable,
873 	.enable = nv50_msto_enable,
874 	.atomic_check = nv50_msto_atomic_check,
875 };
876 
877 static void
878 nv50_msto_destroy(struct drm_encoder *encoder)
879 {
880 	struct nv50_msto *msto = nv50_msto(encoder);
881 	drm_encoder_cleanup(&msto->encoder);
882 	kfree(msto);
883 }
884 
885 static const struct drm_encoder_funcs
886 nv50_msto = {
887 	.destroy = nv50_msto_destroy,
888 };
889 
890 static int
891 nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
892 	      struct nv50_msto **pmsto)
893 {
894 	struct nv50_msto *msto;
895 	int ret;
896 
897 	if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
898 		return -ENOMEM;
899 
900 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
901 			       DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
902 	if (ret) {
903 		kfree(*pmsto);
904 		*pmsto = NULL;
905 		return ret;
906 	}
907 
908 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
909 	msto->encoder.possible_crtcs = heads;
910 	return 0;
911 }
912 
913 static struct drm_encoder *
914 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
915 			      struct drm_connector_state *connector_state)
916 {
917 	struct nv50_head *head = nv50_head(connector_state->crtc);
918 	struct nv50_mstc *mstc = nv50_mstc(connector);
919 
920 	return &mstc->mstm->msto[head->base.index]->encoder;
921 }
922 
923 static struct drm_encoder *
924 nv50_mstc_best_encoder(struct drm_connector *connector)
925 {
926 	struct nv50_mstc *mstc = nv50_mstc(connector);
927 
928 	return &mstc->mstm->msto[0]->encoder;
929 }
930 
931 static enum drm_mode_status
932 nv50_mstc_mode_valid(struct drm_connector *connector,
933 		     struct drm_display_mode *mode)
934 {
935 	return MODE_OK;
936 }
937 
938 static int
939 nv50_mstc_get_modes(struct drm_connector *connector)
940 {
941 	struct nv50_mstc *mstc = nv50_mstc(connector);
942 	int ret = 0;
943 
944 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
945 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
946 	if (mstc->edid)
947 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
948 
949 	if (!mstc->connector.display_info.bpc)
950 		mstc->connector.display_info.bpc = 8;
951 
952 	if (mstc->native)
953 		drm_mode_destroy(mstc->connector.dev, mstc->native);
954 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
955 	return ret;
956 }
957 
958 static int
959 nv50_mstc_atomic_check(struct drm_connector *connector,
960 		       struct drm_atomic_state *state)
961 {
962 	struct nv50_mstc *mstc = nv50_mstc(connector);
963 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
964 	struct drm_connector_state *new_conn_state =
965 		drm_atomic_get_new_connector_state(state, connector);
966 	struct drm_connector_state *old_conn_state =
967 		drm_atomic_get_old_connector_state(state, connector);
968 	struct drm_crtc_state *crtc_state;
969 	struct drm_crtc *new_crtc = new_conn_state->crtc;
970 
971 	if (!old_conn_state->crtc)
972 		return 0;
973 
974 	/* We only want to free VCPI if this state disables the CRTC on this
975 	 * connector
976 	 */
977 	if (new_crtc) {
978 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
979 
980 		if (!crtc_state ||
981 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
982 		    crtc_state->enable)
983 			return 0;
984 	}
985 
986 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
987 }
988 
989 static const struct drm_connector_helper_funcs
990 nv50_mstc_help = {
991 	.get_modes = nv50_mstc_get_modes,
992 	.mode_valid = nv50_mstc_mode_valid,
993 	.best_encoder = nv50_mstc_best_encoder,
994 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
995 	.atomic_check = nv50_mstc_atomic_check,
996 };
997 
998 static enum drm_connector_status
999 nv50_mstc_detect(struct drm_connector *connector, bool force)
1000 {
1001 	struct nv50_mstc *mstc = nv50_mstc(connector);
1002 	enum drm_connector_status conn_status;
1003 	int ret;
1004 
1005 	if (drm_connector_is_unregistered(connector))
1006 		return connector_status_disconnected;
1007 
1008 	ret = pm_runtime_get_sync(connector->dev->dev);
1009 	if (ret < 0 && ret != -EACCES)
1010 		return connector_status_disconnected;
1011 
1012 	conn_status = drm_dp_mst_detect_port(connector, mstc->port->mgr,
1013 					     mstc->port);
1014 
1015 	pm_runtime_mark_last_busy(connector->dev->dev);
1016 	pm_runtime_put_autosuspend(connector->dev->dev);
1017 	return conn_status;
1018 }
1019 
1020 static void
1021 nv50_mstc_destroy(struct drm_connector *connector)
1022 {
1023 	struct nv50_mstc *mstc = nv50_mstc(connector);
1024 
1025 	drm_connector_cleanup(&mstc->connector);
1026 	drm_dp_mst_put_port_malloc(mstc->port);
1027 
1028 	kfree(mstc);
1029 }
1030 
1031 static const struct drm_connector_funcs
1032 nv50_mstc = {
1033 	.reset = nouveau_conn_reset,
1034 	.detect = nv50_mstc_detect,
1035 	.fill_modes = drm_helper_probe_single_connector_modes,
1036 	.destroy = nv50_mstc_destroy,
1037 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1038 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1039 	.atomic_set_property = nouveau_conn_atomic_set_property,
1040 	.atomic_get_property = nouveau_conn_atomic_get_property,
1041 };
1042 
1043 static int
1044 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1045 	      const char *path, struct nv50_mstc **pmstc)
1046 {
1047 	struct drm_device *dev = mstm->outp->base.base.dev;
1048 	struct nv50_mstc *mstc;
1049 	int ret, i;
1050 
1051 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1052 		return -ENOMEM;
1053 	mstc->mstm = mstm;
1054 	mstc->port = port;
1055 
1056 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1057 				 DRM_MODE_CONNECTOR_DisplayPort);
1058 	if (ret) {
1059 		kfree(*pmstc);
1060 		*pmstc = NULL;
1061 		return ret;
1062 	}
1063 
1064 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1065 
1066 	mstc->connector.funcs->reset(&mstc->connector);
1067 	nouveau_conn_attach_properties(&mstc->connector);
1068 
1069 	for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++)
1070 		drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
1071 
1072 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1073 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1074 	drm_connector_set_path_property(&mstc->connector, path);
1075 	drm_dp_mst_get_port_malloc(port);
1076 	return 0;
1077 }
1078 
1079 static void
1080 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1081 {
1082 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1083 	struct drm_encoder *encoder;
1084 	int ret;
1085 
1086 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1087 	ret = drm_dp_check_act_status(&mstm->mgr);
1088 
1089 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1090 
1091 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1092 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1093 			struct nv50_msto *msto = nv50_msto(encoder);
1094 			struct nv50_mstc *mstc = msto->mstc;
1095 			if (mstc && mstc->mstm == mstm)
1096 				nv50_msto_cleanup(msto);
1097 		}
1098 	}
1099 
1100 	mstm->modified = false;
1101 }
1102 
1103 static void
1104 nv50_mstm_prepare(struct nv50_mstm *mstm)
1105 {
1106 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1107 	struct drm_encoder *encoder;
1108 	int ret;
1109 
1110 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1111 	ret = drm_dp_update_payload_part1(&mstm->mgr);
1112 
1113 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1114 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1115 			struct nv50_msto *msto = nv50_msto(encoder);
1116 			struct nv50_mstc *mstc = msto->mstc;
1117 			if (mstc && mstc->mstm == mstm)
1118 				nv50_msto_prepare(msto);
1119 		}
1120 	}
1121 
1122 	if (mstm->disabled) {
1123 		if (!mstm->links)
1124 			nv50_outp_release(mstm->outp);
1125 		mstm->disabled = false;
1126 	}
1127 }
1128 
1129 static void
1130 nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
1131 			    struct drm_connector *connector)
1132 {
1133 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1134 	struct nv50_mstc *mstc = nv50_mstc(connector);
1135 
1136 	drm_connector_unregister(&mstc->connector);
1137 
1138 	drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
1139 
1140 	drm_connector_put(&mstc->connector);
1141 }
1142 
1143 static void
1144 nv50_mstm_register_connector(struct drm_connector *connector)
1145 {
1146 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1147 
1148 	drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
1149 
1150 	drm_connector_register(connector);
1151 }
1152 
1153 static struct drm_connector *
1154 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1155 			struct drm_dp_mst_port *port, const char *path)
1156 {
1157 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1158 	struct nv50_mstc *mstc;
1159 	int ret;
1160 
1161 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1162 	if (ret)
1163 		return NULL;
1164 
1165 	return &mstc->connector;
1166 }
1167 
1168 static const struct drm_dp_mst_topology_cbs
1169 nv50_mstm = {
1170 	.add_connector = nv50_mstm_add_connector,
1171 	.register_connector = nv50_mstm_register_connector,
1172 	.destroy_connector = nv50_mstm_destroy_connector,
1173 };
1174 
1175 void
1176 nv50_mstm_service(struct nv50_mstm *mstm)
1177 {
1178 	struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
1179 	bool handled = true;
1180 	int ret;
1181 	u8 esi[8] = {};
1182 
1183 	if (!aux)
1184 		return;
1185 
1186 	while (handled) {
1187 		ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1188 		if (ret != 8) {
1189 			drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1190 			return;
1191 		}
1192 
1193 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1194 		if (!handled)
1195 			break;
1196 
1197 		drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
1198 	}
1199 }
1200 
1201 void
1202 nv50_mstm_remove(struct nv50_mstm *mstm)
1203 {
1204 	if (mstm)
1205 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1206 }
1207 
1208 static int
1209 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
1210 {
1211 	struct nouveau_encoder *outp = mstm->outp;
1212 	struct {
1213 		struct nv50_disp_mthd_v1 base;
1214 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1215 	} args = {
1216 		.base.version = 1,
1217 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1218 		.base.hasht = outp->dcb->hasht,
1219 		.base.hashm = outp->dcb->hashm,
1220 		.mst.state = state,
1221 	};
1222 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1223 	struct nvif_object *disp = &drm->display->disp.object;
1224 	int ret;
1225 
1226 	if (dpcd >= 0x12) {
1227 		/* Even if we're enabling MST, start with disabling the
1228 		 * branching unit to clear any sink-side MST topology state
1229 		 * that wasn't set by us
1230 		 */
1231 		ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
1232 		if (ret < 0)
1233 			return ret;
1234 
1235 		if (state) {
1236 			/* Now, start initializing */
1237 			ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
1238 						 DP_MST_EN);
1239 			if (ret < 0)
1240 				return ret;
1241 		}
1242 	}
1243 
1244 	return nvif_mthd(disp, 0, &args, sizeof(args));
1245 }
1246 
1247 int
1248 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
1249 {
1250 	struct drm_dp_aux *aux;
1251 	int ret;
1252 	bool old_state, new_state;
1253 	u8 mstm_ctrl;
1254 
1255 	if (!mstm)
1256 		return 0;
1257 
1258 	mutex_lock(&mstm->mgr.lock);
1259 
1260 	old_state = mstm->mgr.mst_state;
1261 	new_state = old_state;
1262 	aux = mstm->mgr.aux;
1263 
1264 	if (old_state) {
1265 		/* Just check that the MST hub is still as we expect it */
1266 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
1267 		if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
1268 			DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
1269 			new_state = false;
1270 		}
1271 	} else if (dpcd[0] >= 0x12) {
1272 		ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
1273 		if (ret < 0)
1274 			goto probe_error;
1275 
1276 		if (!(dpcd[1] & DP_MST_CAP))
1277 			dpcd[0] = 0x11;
1278 		else
1279 			new_state = allow;
1280 	}
1281 
1282 	if (new_state == old_state) {
1283 		mutex_unlock(&mstm->mgr.lock);
1284 		return new_state;
1285 	}
1286 
1287 	ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
1288 	if (ret)
1289 		goto probe_error;
1290 
1291 	mutex_unlock(&mstm->mgr.lock);
1292 
1293 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
1294 	if (ret)
1295 		return nv50_mstm_enable(mstm, dpcd[0], 0);
1296 
1297 	return new_state;
1298 
1299 probe_error:
1300 	mutex_unlock(&mstm->mgr.lock);
1301 	return ret;
1302 }
1303 
1304 static void
1305 nv50_mstm_fini(struct nv50_mstm *mstm)
1306 {
1307 	if (mstm && mstm->mgr.mst_state)
1308 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1309 }
1310 
1311 static void
1312 nv50_mstm_init(struct nv50_mstm *mstm)
1313 {
1314 	int ret;
1315 
1316 	if (!mstm || !mstm->mgr.mst_state)
1317 		return;
1318 
1319 	ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr);
1320 	if (ret == -1) {
1321 		drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1322 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1323 	}
1324 }
1325 
1326 static void
1327 nv50_mstm_del(struct nv50_mstm **pmstm)
1328 {
1329 	struct nv50_mstm *mstm = *pmstm;
1330 	if (mstm) {
1331 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1332 		kfree(*pmstm);
1333 		*pmstm = NULL;
1334 	}
1335 }
1336 
1337 static int
1338 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1339 	      int conn_base_id, struct nv50_mstm **pmstm)
1340 {
1341 	const int max_payloads = hweight8(outp->dcb->heads);
1342 	struct drm_device *dev = outp->base.base.dev;
1343 	struct nv50_mstm *mstm;
1344 	int ret, i;
1345 	u8 dpcd;
1346 
1347 	/* This is a workaround for some monitors not functioning
1348 	 * correctly in MST mode on initial module load.  I think
1349 	 * some bad interaction with the VBIOS may be responsible.
1350 	 *
1351 	 * A good ol' off and on again seems to work here ;)
1352 	 */
1353 	ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
1354 	if (ret >= 0 && dpcd >= 0x12)
1355 		drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1356 
1357 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1358 		return -ENOMEM;
1359 	mstm->outp = outp;
1360 	mstm->mgr.cbs = &nv50_mstm;
1361 
1362 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1363 					   max_payloads, conn_base_id);
1364 	if (ret)
1365 		return ret;
1366 
1367 	for (i = 0; i < max_payloads; i++) {
1368 		ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
1369 				    i, &mstm->msto[i]);
1370 		if (ret)
1371 			return ret;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 /******************************************************************************
1378  * SOR
1379  *****************************************************************************/
1380 static void
1381 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1382 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1383 {
1384 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1385 	struct nv50_core *core = disp->core;
1386 
1387 	if (!asyh) {
1388 		nv_encoder->ctrl &= ~BIT(head);
1389 		if (!(nv_encoder->ctrl & 0x0000000f))
1390 			nv_encoder->ctrl = 0;
1391 	} else {
1392 		nv_encoder->ctrl |= proto << 8;
1393 		nv_encoder->ctrl |= BIT(head);
1394 		asyh->or.depth = depth;
1395 	}
1396 
1397 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1398 }
1399 
1400 static void
1401 nv50_sor_disable(struct drm_encoder *encoder)
1402 {
1403 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1404 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1405 
1406 	nv_encoder->crtc = NULL;
1407 
1408 	if (nv_crtc) {
1409 		struct nvkm_i2c_aux *aux = nv_encoder->aux;
1410 		u8 pwr;
1411 
1412 		if (aux) {
1413 			int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
1414 			if (ret == 0) {
1415 				pwr &= ~DP_SET_POWER_MASK;
1416 				pwr |=  DP_SET_POWER_D3;
1417 				nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
1418 			}
1419 		}
1420 
1421 		nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1422 		nv50_audio_disable(encoder, nv_crtc);
1423 		nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1424 		nv50_outp_release(nv_encoder);
1425 	}
1426 }
1427 
1428 static void
1429 nv50_sor_enable(struct drm_encoder *encoder)
1430 {
1431 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1432 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1433 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1434 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1435 	struct {
1436 		struct nv50_disp_mthd_v1 base;
1437 		struct nv50_disp_sor_lvds_script_v0 lvds;
1438 	} lvds = {
1439 		.base.version = 1,
1440 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1441 		.base.hasht   = nv_encoder->dcb->hasht,
1442 		.base.hashm   = nv_encoder->dcb->hashm,
1443 	};
1444 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1445 	struct drm_device *dev = encoder->dev;
1446 	struct nouveau_drm *drm = nouveau_drm(dev);
1447 	struct nouveau_connector *nv_connector;
1448 	struct nvbios *bios = &drm->vbios;
1449 	u8 proto = 0xf;
1450 	u8 depth = 0x0;
1451 
1452 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1453 	nv_encoder->crtc = encoder->crtc;
1454 	nv50_outp_acquire(nv_encoder);
1455 
1456 	switch (nv_encoder->dcb->type) {
1457 	case DCB_OUTPUT_TMDS:
1458 		if (nv_encoder->link & 1) {
1459 			proto = 0x1;
1460 			/* Only enable dual-link if:
1461 			 *  - Need to (i.e. rate > 165MHz)
1462 			 *  - DCB says we can
1463 			 *  - Not an HDMI monitor, since there's no dual-link
1464 			 *    on HDMI.
1465 			 */
1466 			if (mode->clock >= 165000 &&
1467 			    nv_encoder->dcb->duallink_possible &&
1468 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1469 				proto |= 0x4;
1470 		} else {
1471 			proto = 0x2;
1472 		}
1473 
1474 		nv50_hdmi_enable(&nv_encoder->base.base, mode);
1475 		break;
1476 	case DCB_OUTPUT_LVDS:
1477 		proto = 0x0;
1478 
1479 		if (bios->fp_no_ddc) {
1480 			if (bios->fp.dual_link)
1481 				lvds.lvds.script |= 0x0100;
1482 			if (bios->fp.if_is_24bit)
1483 				lvds.lvds.script |= 0x0200;
1484 		} else {
1485 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1486 				if (((u8 *)nv_connector->edid)[121] == 2)
1487 					lvds.lvds.script |= 0x0100;
1488 			} else
1489 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1490 				lvds.lvds.script |= 0x0100;
1491 			}
1492 
1493 			if (lvds.lvds.script & 0x0100) {
1494 				if (bios->fp.strapless_is_24bit & 2)
1495 					lvds.lvds.script |= 0x0200;
1496 			} else {
1497 				if (bios->fp.strapless_is_24bit & 1)
1498 					lvds.lvds.script |= 0x0200;
1499 			}
1500 
1501 			if (nv_connector->base.display_info.bpc == 8)
1502 				lvds.lvds.script |= 0x0200;
1503 		}
1504 
1505 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1506 		break;
1507 	case DCB_OUTPUT_DP:
1508 		if (nv_connector->base.display_info.bpc == 6)
1509 			depth = 0x2;
1510 		else
1511 		if (nv_connector->base.display_info.bpc == 8)
1512 			depth = 0x5;
1513 		else
1514 			depth = 0x6;
1515 
1516 		if (nv_encoder->link & 1)
1517 			proto = 0x8;
1518 		else
1519 			proto = 0x9;
1520 
1521 		nv50_audio_enable(encoder, mode);
1522 		break;
1523 	default:
1524 		BUG();
1525 		break;
1526 	}
1527 
1528 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1529 }
1530 
1531 static const struct drm_encoder_helper_funcs
1532 nv50_sor_help = {
1533 	.atomic_check = nv50_outp_atomic_check,
1534 	.enable = nv50_sor_enable,
1535 	.disable = nv50_sor_disable,
1536 };
1537 
1538 static void
1539 nv50_sor_destroy(struct drm_encoder *encoder)
1540 {
1541 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1542 	nv50_mstm_del(&nv_encoder->dp.mstm);
1543 	drm_encoder_cleanup(encoder);
1544 	kfree(encoder);
1545 }
1546 
1547 static const struct drm_encoder_funcs
1548 nv50_sor_func = {
1549 	.destroy = nv50_sor_destroy,
1550 };
1551 
1552 static int
1553 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1554 {
1555 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1556 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1557 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1558 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1559 	struct nouveau_encoder *nv_encoder;
1560 	struct drm_encoder *encoder;
1561 	u8 ver, hdr, cnt, len;
1562 	u32 data;
1563 	int type, ret;
1564 
1565 	switch (dcbe->type) {
1566 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1567 	case DCB_OUTPUT_TMDS:
1568 	case DCB_OUTPUT_DP:
1569 	default:
1570 		type = DRM_MODE_ENCODER_TMDS;
1571 		break;
1572 	}
1573 
1574 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1575 	if (!nv_encoder)
1576 		return -ENOMEM;
1577 	nv_encoder->dcb = dcbe;
1578 	nv_encoder->update = nv50_sor_update;
1579 
1580 	encoder = to_drm_encoder(nv_encoder);
1581 	encoder->possible_crtcs = dcbe->heads;
1582 	encoder->possible_clones = 0;
1583 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1584 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1585 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1586 
1587 	drm_connector_attach_encoder(connector, encoder);
1588 
1589 	if (dcbe->type == DCB_OUTPUT_DP) {
1590 		struct nv50_disp *disp = nv50_disp(encoder->dev);
1591 		struct nvkm_i2c_aux *aux =
1592 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1593 		if (aux) {
1594 			if (disp->disp->object.oclass < GF110_DISP) {
1595 				/* HW has no support for address-only
1596 				 * transactions, so we're required to
1597 				 * use custom I2C-over-AUX code.
1598 				 */
1599 				nv_encoder->i2c = &aux->i2c;
1600 			} else {
1601 				nv_encoder->i2c = &nv_connector->aux.ddc;
1602 			}
1603 			nv_encoder->aux = aux;
1604 		}
1605 
1606 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1607 		    (data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) &&
1608 		    ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) {
1609 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
1610 					    nv_connector->base.base.id,
1611 					    &nv_encoder->dp.mstm);
1612 			if (ret)
1613 				return ret;
1614 		}
1615 	} else {
1616 		struct nvkm_i2c_bus *bus =
1617 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1618 		if (bus)
1619 			nv_encoder->i2c = &bus->i2c;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 /******************************************************************************
1626  * PIOR
1627  *****************************************************************************/
1628 static int
1629 nv50_pior_atomic_check(struct drm_encoder *encoder,
1630 		       struct drm_crtc_state *crtc_state,
1631 		       struct drm_connector_state *conn_state)
1632 {
1633 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1634 	if (ret)
1635 		return ret;
1636 	crtc_state->adjusted_mode.clock *= 2;
1637 	return 0;
1638 }
1639 
1640 static void
1641 nv50_pior_disable(struct drm_encoder *encoder)
1642 {
1643 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1644 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1645 	if (nv_encoder->crtc)
1646 		core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL);
1647 	nv_encoder->crtc = NULL;
1648 	nv50_outp_release(nv_encoder);
1649 }
1650 
1651 static void
1652 nv50_pior_enable(struct drm_encoder *encoder)
1653 {
1654 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1655 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1656 	struct nouveau_connector *nv_connector;
1657 	struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1658 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1659 	u8 owner = 1 << nv_crtc->index;
1660 	u8 proto;
1661 
1662 	nv50_outp_acquire(nv_encoder);
1663 
1664 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1665 	switch (nv_connector->base.display_info.bpc) {
1666 	case 10: asyh->or.depth = 0x6; break;
1667 	case  8: asyh->or.depth = 0x5; break;
1668 	case  6: asyh->or.depth = 0x2; break;
1669 	default: asyh->or.depth = 0x0; break;
1670 	}
1671 
1672 	switch (nv_encoder->dcb->type) {
1673 	case DCB_OUTPUT_TMDS:
1674 	case DCB_OUTPUT_DP:
1675 		proto = 0x0;
1676 		break;
1677 	default:
1678 		BUG();
1679 		break;
1680 	}
1681 
1682 	core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh);
1683 	nv_encoder->crtc = encoder->crtc;
1684 }
1685 
1686 static const struct drm_encoder_helper_funcs
1687 nv50_pior_help = {
1688 	.atomic_check = nv50_pior_atomic_check,
1689 	.enable = nv50_pior_enable,
1690 	.disable = nv50_pior_disable,
1691 };
1692 
1693 static void
1694 nv50_pior_destroy(struct drm_encoder *encoder)
1695 {
1696 	drm_encoder_cleanup(encoder);
1697 	kfree(encoder);
1698 }
1699 
1700 static const struct drm_encoder_funcs
1701 nv50_pior_func = {
1702 	.destroy = nv50_pior_destroy,
1703 };
1704 
1705 static int
1706 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1707 {
1708 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1709 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1710 	struct nvkm_i2c_bus *bus = NULL;
1711 	struct nvkm_i2c_aux *aux = NULL;
1712 	struct i2c_adapter *ddc;
1713 	struct nouveau_encoder *nv_encoder;
1714 	struct drm_encoder *encoder;
1715 	int type;
1716 
1717 	switch (dcbe->type) {
1718 	case DCB_OUTPUT_TMDS:
1719 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1720 		ddc  = bus ? &bus->i2c : NULL;
1721 		type = DRM_MODE_ENCODER_TMDS;
1722 		break;
1723 	case DCB_OUTPUT_DP:
1724 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1725 		ddc  = aux ? &aux->i2c : NULL;
1726 		type = DRM_MODE_ENCODER_TMDS;
1727 		break;
1728 	default:
1729 		return -ENODEV;
1730 	}
1731 
1732 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1733 	if (!nv_encoder)
1734 		return -ENOMEM;
1735 	nv_encoder->dcb = dcbe;
1736 	nv_encoder->i2c = ddc;
1737 	nv_encoder->aux = aux;
1738 
1739 	encoder = to_drm_encoder(nv_encoder);
1740 	encoder->possible_crtcs = dcbe->heads;
1741 	encoder->possible_clones = 0;
1742 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1743 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1744 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1745 
1746 	drm_connector_attach_encoder(connector, encoder);
1747 	return 0;
1748 }
1749 
1750 /******************************************************************************
1751  * Atomic
1752  *****************************************************************************/
1753 
1754 static void
1755 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1756 {
1757 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1758 	struct nv50_disp *disp = nv50_disp(drm->dev);
1759 	struct nv50_core *core = disp->core;
1760 	struct nv50_mstm *mstm;
1761 	struct drm_encoder *encoder;
1762 
1763 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1764 
1765 	drm_for_each_encoder(encoder, drm->dev) {
1766 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1767 			mstm = nouveau_encoder(encoder)->dp.mstm;
1768 			if (mstm && mstm->modified)
1769 				nv50_mstm_prepare(mstm);
1770 		}
1771 	}
1772 
1773 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1774 	core->func->update(core, interlock, true);
1775 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1776 				       disp->core->chan.base.device))
1777 		NV_ERROR(drm, "core notifier timeout\n");
1778 
1779 	drm_for_each_encoder(encoder, drm->dev) {
1780 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1781 			mstm = nouveau_encoder(encoder)->dp.mstm;
1782 			if (mstm && mstm->modified)
1783 				nv50_mstm_cleanup(mstm);
1784 		}
1785 	}
1786 }
1787 
1788 static void
1789 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1790 {
1791 	struct drm_plane_state *new_plane_state;
1792 	struct drm_plane *plane;
1793 	int i;
1794 
1795 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1796 		struct nv50_wndw *wndw = nv50_wndw(plane);
1797 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1798 			if (wndw->func->update)
1799 				wndw->func->update(wndw, interlock);
1800 		}
1801 	}
1802 }
1803 
1804 static void
1805 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1806 {
1807 	struct drm_device *dev = state->dev;
1808 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1809 	struct drm_crtc *crtc;
1810 	struct drm_plane_state *new_plane_state;
1811 	struct drm_plane *plane;
1812 	struct nouveau_drm *drm = nouveau_drm(dev);
1813 	struct nv50_disp *disp = nv50_disp(dev);
1814 	struct nv50_atom *atom = nv50_atom(state);
1815 	struct nv50_outp_atom *outp, *outt;
1816 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1817 	int i;
1818 
1819 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
1820 	drm_atomic_helper_wait_for_fences(dev, state, false);
1821 	drm_atomic_helper_wait_for_dependencies(state);
1822 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
1823 
1824 	if (atom->lock_core)
1825 		mutex_lock(&disp->mutex);
1826 
1827 	/* Disable head(s). */
1828 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1829 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1830 		struct nv50_head *head = nv50_head(crtc);
1831 
1832 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
1833 			  asyh->clr.mask, asyh->set.mask);
1834 
1835 		if (old_crtc_state->active && !new_crtc_state->active) {
1836 			pm_runtime_put_noidle(dev->dev);
1837 			drm_crtc_vblank_off(crtc);
1838 		}
1839 
1840 		if (asyh->clr.mask) {
1841 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
1842 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1843 		}
1844 	}
1845 
1846 	/* Disable plane(s). */
1847 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1848 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1849 		struct nv50_wndw *wndw = nv50_wndw(plane);
1850 
1851 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
1852 			  asyw->clr.mask, asyw->set.mask);
1853 		if (!asyw->clr.mask)
1854 			continue;
1855 
1856 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
1857 	}
1858 
1859 	/* Disable output path(s). */
1860 	list_for_each_entry(outp, &atom->outp, head) {
1861 		const struct drm_encoder_helper_funcs *help;
1862 		struct drm_encoder *encoder;
1863 
1864 		encoder = outp->encoder;
1865 		help = encoder->helper_private;
1866 
1867 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
1868 			  outp->clr.mask, outp->set.mask);
1869 
1870 		if (outp->clr.mask) {
1871 			help->disable(encoder);
1872 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1873 			if (outp->flush_disable) {
1874 				nv50_disp_atomic_commit_wndw(state, interlock);
1875 				nv50_disp_atomic_commit_core(state, interlock);
1876 				memset(interlock, 0x00, sizeof(interlock));
1877 			}
1878 		}
1879 	}
1880 
1881 	/* Flush disable. */
1882 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1883 		if (atom->flush_disable) {
1884 			nv50_disp_atomic_commit_wndw(state, interlock);
1885 			nv50_disp_atomic_commit_core(state, interlock);
1886 			memset(interlock, 0x00, sizeof(interlock));
1887 		}
1888 	}
1889 
1890 	/* Update output path(s). */
1891 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
1892 		const struct drm_encoder_helper_funcs *help;
1893 		struct drm_encoder *encoder;
1894 
1895 		encoder = outp->encoder;
1896 		help = encoder->helper_private;
1897 
1898 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
1899 			  outp->set.mask, outp->clr.mask);
1900 
1901 		if (outp->set.mask) {
1902 			help->enable(encoder);
1903 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1904 		}
1905 
1906 		list_del(&outp->head);
1907 		kfree(outp);
1908 	}
1909 
1910 	/* Update head(s). */
1911 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1912 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1913 		struct nv50_head *head = nv50_head(crtc);
1914 
1915 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
1916 			  asyh->set.mask, asyh->clr.mask);
1917 
1918 		if (asyh->set.mask) {
1919 			nv50_head_flush_set(head, asyh);
1920 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1921 		}
1922 
1923 		if (new_crtc_state->active) {
1924 			if (!old_crtc_state->active) {
1925 				drm_crtc_vblank_on(crtc);
1926 				pm_runtime_get_noresume(dev->dev);
1927 			}
1928 			if (new_crtc_state->event)
1929 				drm_crtc_vblank_get(crtc);
1930 		}
1931 	}
1932 
1933 	/* Update plane(s). */
1934 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1935 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1936 		struct nv50_wndw *wndw = nv50_wndw(plane);
1937 
1938 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
1939 			  asyw->set.mask, asyw->clr.mask);
1940 		if ( !asyw->set.mask &&
1941 		    (!asyw->clr.mask || atom->flush_disable))
1942 			continue;
1943 
1944 		nv50_wndw_flush_set(wndw, interlock, asyw);
1945 	}
1946 
1947 	/* Flush update. */
1948 	nv50_disp_atomic_commit_wndw(state, interlock);
1949 
1950 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1951 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
1952 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
1953 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
1954 		    !atom->state.legacy_cursor_update)
1955 			nv50_disp_atomic_commit_core(state, interlock);
1956 		else
1957 			disp->core->func->update(disp->core, interlock, false);
1958 	}
1959 
1960 	if (atom->lock_core)
1961 		mutex_unlock(&disp->mutex);
1962 
1963 	/* Wait for HW to signal completion. */
1964 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1965 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1966 		struct nv50_wndw *wndw = nv50_wndw(plane);
1967 		int ret = nv50_wndw_wait_armed(wndw, asyw);
1968 		if (ret)
1969 			NV_ERROR(drm, "%s: timeout\n", plane->name);
1970 	}
1971 
1972 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
1973 		if (new_crtc_state->event) {
1974 			unsigned long flags;
1975 			/* Get correct count/ts if racing with vblank irq */
1976 			if (new_crtc_state->active)
1977 				drm_crtc_accurate_vblank_count(crtc);
1978 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
1979 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
1980 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1981 
1982 			new_crtc_state->event = NULL;
1983 			if (new_crtc_state->active)
1984 				drm_crtc_vblank_put(crtc);
1985 		}
1986 	}
1987 
1988 	drm_atomic_helper_commit_hw_done(state);
1989 	drm_atomic_helper_cleanup_planes(dev, state);
1990 	drm_atomic_helper_commit_cleanup_done(state);
1991 	drm_atomic_state_put(state);
1992 
1993 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
1994 	pm_runtime_mark_last_busy(dev->dev);
1995 	pm_runtime_put_autosuspend(dev->dev);
1996 }
1997 
1998 static void
1999 nv50_disp_atomic_commit_work(struct work_struct *work)
2000 {
2001 	struct drm_atomic_state *state =
2002 		container_of(work, typeof(*state), commit_work);
2003 	nv50_disp_atomic_commit_tail(state);
2004 }
2005 
2006 static int
2007 nv50_disp_atomic_commit(struct drm_device *dev,
2008 			struct drm_atomic_state *state, bool nonblock)
2009 {
2010 	struct drm_plane_state *new_plane_state;
2011 	struct drm_plane *plane;
2012 	int ret, i;
2013 
2014 	ret = pm_runtime_get_sync(dev->dev);
2015 	if (ret < 0 && ret != -EACCES)
2016 		return ret;
2017 
2018 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2019 	if (ret)
2020 		goto done;
2021 
2022 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2023 
2024 	ret = drm_atomic_helper_prepare_planes(dev, state);
2025 	if (ret)
2026 		goto done;
2027 
2028 	if (!nonblock) {
2029 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2030 		if (ret)
2031 			goto err_cleanup;
2032 	}
2033 
2034 	ret = drm_atomic_helper_swap_state(state, true);
2035 	if (ret)
2036 		goto err_cleanup;
2037 
2038 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2039 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2040 		struct nv50_wndw *wndw = nv50_wndw(plane);
2041 
2042 		if (asyw->set.image)
2043 			nv50_wndw_ntfy_enable(wndw, asyw);
2044 	}
2045 
2046 	drm_atomic_state_get(state);
2047 
2048 	/*
2049 	 * Grab another RPM ref for the commit tail, which will release the
2050 	 * ref when it's finished
2051 	 */
2052 	pm_runtime_get_noresume(dev->dev);
2053 
2054 	if (nonblock)
2055 		queue_work(system_unbound_wq, &state->commit_work);
2056 	else
2057 		nv50_disp_atomic_commit_tail(state);
2058 
2059 err_cleanup:
2060 	if (ret)
2061 		drm_atomic_helper_cleanup_planes(dev, state);
2062 done:
2063 	pm_runtime_put_autosuspend(dev->dev);
2064 	return ret;
2065 }
2066 
2067 static struct nv50_outp_atom *
2068 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2069 {
2070 	struct nv50_outp_atom *outp;
2071 
2072 	list_for_each_entry(outp, &atom->outp, head) {
2073 		if (outp->encoder == encoder)
2074 			return outp;
2075 	}
2076 
2077 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2078 	if (!outp)
2079 		return ERR_PTR(-ENOMEM);
2080 
2081 	list_add(&outp->head, &atom->outp);
2082 	outp->encoder = encoder;
2083 	return outp;
2084 }
2085 
2086 static int
2087 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2088 				struct drm_connector_state *old_connector_state)
2089 {
2090 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2091 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2092 	struct drm_crtc *crtc;
2093 	struct nv50_outp_atom *outp;
2094 
2095 	if (!(crtc = old_connector_state->crtc))
2096 		return 0;
2097 
2098 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2099 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2100 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2101 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2102 		if (IS_ERR(outp))
2103 			return PTR_ERR(outp);
2104 
2105 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2106 			outp->flush_disable = true;
2107 			atom->flush_disable = true;
2108 		}
2109 		outp->clr.ctrl = true;
2110 		atom->lock_core = true;
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 static int
2117 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2118 				struct drm_connector_state *connector_state)
2119 {
2120 	struct drm_encoder *encoder = connector_state->best_encoder;
2121 	struct drm_crtc_state *new_crtc_state;
2122 	struct drm_crtc *crtc;
2123 	struct nv50_outp_atom *outp;
2124 
2125 	if (!(crtc = connector_state->crtc))
2126 		return 0;
2127 
2128 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2129 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2130 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2131 		if (IS_ERR(outp))
2132 			return PTR_ERR(outp);
2133 
2134 		outp->set.ctrl = true;
2135 		atom->lock_core = true;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int
2142 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2143 {
2144 	struct nv50_atom *atom = nv50_atom(state);
2145 	struct drm_connector_state *old_connector_state, *new_connector_state;
2146 	struct drm_connector *connector;
2147 	struct drm_crtc_state *new_crtc_state;
2148 	struct drm_crtc *crtc;
2149 	int ret, i;
2150 
2151 	/* We need to handle colour management on a per-plane basis. */
2152 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2153 		if (new_crtc_state->color_mgmt_changed) {
2154 			ret = drm_atomic_add_affected_planes(state, crtc);
2155 			if (ret)
2156 				return ret;
2157 		}
2158 	}
2159 
2160 	ret = drm_atomic_helper_check(dev, state);
2161 	if (ret)
2162 		return ret;
2163 
2164 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2165 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2166 		if (ret)
2167 			return ret;
2168 
2169 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2170 		if (ret)
2171 			return ret;
2172 	}
2173 
2174 	ret = drm_dp_mst_atomic_check(state);
2175 	if (ret)
2176 		return ret;
2177 
2178 	return 0;
2179 }
2180 
2181 static void
2182 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2183 {
2184 	struct nv50_atom *atom = nv50_atom(state);
2185 	struct nv50_outp_atom *outp, *outt;
2186 
2187 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2188 		list_del(&outp->head);
2189 		kfree(outp);
2190 	}
2191 
2192 	drm_atomic_state_default_clear(state);
2193 }
2194 
2195 static void
2196 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2197 {
2198 	struct nv50_atom *atom = nv50_atom(state);
2199 	drm_atomic_state_default_release(&atom->state);
2200 	kfree(atom);
2201 }
2202 
2203 static struct drm_atomic_state *
2204 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2205 {
2206 	struct nv50_atom *atom;
2207 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2208 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2209 		kfree(atom);
2210 		return NULL;
2211 	}
2212 	INIT_LIST_HEAD(&atom->outp);
2213 	return &atom->state;
2214 }
2215 
2216 static const struct drm_mode_config_funcs
2217 nv50_disp_func = {
2218 	.fb_create = nouveau_user_framebuffer_create,
2219 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2220 	.atomic_check = nv50_disp_atomic_check,
2221 	.atomic_commit = nv50_disp_atomic_commit,
2222 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2223 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2224 	.atomic_state_free = nv50_disp_atomic_state_free,
2225 };
2226 
2227 /******************************************************************************
2228  * Init
2229  *****************************************************************************/
2230 
2231 static void
2232 nv50_display_fini(struct drm_device *dev, bool suspend)
2233 {
2234 	struct nouveau_encoder *nv_encoder;
2235 	struct drm_encoder *encoder;
2236 	struct drm_plane *plane;
2237 
2238 	drm_for_each_plane(plane, dev) {
2239 		struct nv50_wndw *wndw = nv50_wndw(plane);
2240 		if (plane->funcs != &nv50_wndw)
2241 			continue;
2242 		nv50_wndw_fini(wndw);
2243 	}
2244 
2245 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2246 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2247 			nv_encoder = nouveau_encoder(encoder);
2248 			nv50_mstm_fini(nv_encoder->dp.mstm);
2249 		}
2250 	}
2251 }
2252 
2253 static int
2254 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2255 {
2256 	struct nv50_core *core = nv50_disp(dev)->core;
2257 	struct drm_encoder *encoder;
2258 	struct drm_plane *plane;
2259 
2260 	core->func->init(core);
2261 
2262 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2263 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2264 			struct nouveau_encoder *nv_encoder =
2265 				nouveau_encoder(encoder);
2266 			nv50_mstm_init(nv_encoder->dp.mstm);
2267 		}
2268 	}
2269 
2270 	drm_for_each_plane(plane, dev) {
2271 		struct nv50_wndw *wndw = nv50_wndw(plane);
2272 		if (plane->funcs != &nv50_wndw)
2273 			continue;
2274 		nv50_wndw_init(wndw);
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static void
2281 nv50_display_destroy(struct drm_device *dev)
2282 {
2283 	struct nv50_disp *disp = nv50_disp(dev);
2284 
2285 	nv50_core_del(&disp->core);
2286 
2287 	nouveau_bo_unmap(disp->sync);
2288 	if (disp->sync)
2289 		nouveau_bo_unpin(disp->sync);
2290 	nouveau_bo_ref(NULL, &disp->sync);
2291 
2292 	nouveau_display(dev)->priv = NULL;
2293 	kfree(disp);
2294 }
2295 
2296 int
2297 nv50_display_create(struct drm_device *dev)
2298 {
2299 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2300 	struct nouveau_drm *drm = nouveau_drm(dev);
2301 	struct dcb_table *dcb = &drm->vbios.dcb;
2302 	struct drm_connector *connector, *tmp;
2303 	struct nv50_disp *disp;
2304 	struct dcb_output *dcbe;
2305 	int crtcs, ret, i;
2306 
2307 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2308 	if (!disp)
2309 		return -ENOMEM;
2310 
2311 	mutex_init(&disp->mutex);
2312 
2313 	nouveau_display(dev)->priv = disp;
2314 	nouveau_display(dev)->dtor = nv50_display_destroy;
2315 	nouveau_display(dev)->init = nv50_display_init;
2316 	nouveau_display(dev)->fini = nv50_display_fini;
2317 	disp->disp = &nouveau_display(dev)->disp;
2318 	dev->mode_config.funcs = &nv50_disp_func;
2319 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2320 	dev->mode_config.normalize_zpos = true;
2321 
2322 	/* small shared memory area we use for notifiers and semaphores */
2323 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2324 			     0, 0x0000, NULL, NULL, &disp->sync);
2325 	if (!ret) {
2326 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2327 		if (!ret) {
2328 			ret = nouveau_bo_map(disp->sync);
2329 			if (ret)
2330 				nouveau_bo_unpin(disp->sync);
2331 		}
2332 		if (ret)
2333 			nouveau_bo_ref(NULL, &disp->sync);
2334 	}
2335 
2336 	if (ret)
2337 		goto out;
2338 
2339 	/* allocate master evo channel */
2340 	ret = nv50_core_new(drm, &disp->core);
2341 	if (ret)
2342 		goto out;
2343 
2344 	/* create crtc objects to represent the hw heads */
2345 	if (disp->disp->object.oclass >= GV100_DISP)
2346 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2347 	else
2348 	if (disp->disp->object.oclass >= GF110_DISP)
2349 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2350 	else
2351 		crtcs = 0x3;
2352 
2353 	for (i = 0; i < fls(crtcs); i++) {
2354 		if (!(crtcs & (1 << i)))
2355 			continue;
2356 		ret = nv50_head_create(dev, i);
2357 		if (ret)
2358 			goto out;
2359 	}
2360 
2361 	/* create encoder/connector objects based on VBIOS DCB table */
2362 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2363 		connector = nouveau_connector_create(dev, dcbe);
2364 		if (IS_ERR(connector))
2365 			continue;
2366 
2367 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2368 			switch (dcbe->type) {
2369 			case DCB_OUTPUT_TMDS:
2370 			case DCB_OUTPUT_LVDS:
2371 			case DCB_OUTPUT_DP:
2372 				ret = nv50_sor_create(connector, dcbe);
2373 				break;
2374 			case DCB_OUTPUT_ANALOG:
2375 				ret = nv50_dac_create(connector, dcbe);
2376 				break;
2377 			default:
2378 				ret = -ENODEV;
2379 				break;
2380 			}
2381 		} else {
2382 			ret = nv50_pior_create(connector, dcbe);
2383 		}
2384 
2385 		if (ret) {
2386 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2387 				     dcbe->location, dcbe->type,
2388 				     ffs(dcbe->or) - 1, ret);
2389 			ret = 0;
2390 		}
2391 	}
2392 
2393 	/* cull any connectors we created that don't have an encoder */
2394 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2395 		if (connector->encoder_ids[0])
2396 			continue;
2397 
2398 		NV_WARN(drm, "%s has no encoders, removing\n",
2399 			connector->name);
2400 		connector->funcs->destroy(connector);
2401 	}
2402 
2403 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2404 	dev->vblank_disable_immediate = true;
2405 
2406 out:
2407 	if (ret)
2408 		nv50_display_destroy(dev);
2409 	return ret;
2410 }
2411