1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nv50_display.h"
68 
69 #include <subdev/bios/dp.h>
70 
71 /******************************************************************************
72  * EVO channel
73  *****************************************************************************/
74 
75 static int
76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 		 const s32 *oclass, u8 head, void *data, u32 size,
78 		 struct nv50_chan *chan)
79 {
80 	struct nvif_sclass *sclass;
81 	int ret, i, n;
82 
83 	chan->device = device;
84 
85 	ret = n = nvif_object_sclass_get(disp, &sclass);
86 	if (ret < 0)
87 		return ret;
88 
89 	while (oclass[0]) {
90 		for (i = 0; i < n; i++) {
91 			if (sclass[i].oclass == oclass[0]) {
92 				ret = nvif_object_ctor(disp, "kmsChan", 0,
93 						       oclass[0], data, size,
94 						       &chan->user);
95 				if (ret == 0)
96 					nvif_object_map(&chan->user, NULL, 0);
97 				nvif_object_sclass_put(&sclass);
98 				return ret;
99 			}
100 		}
101 		oclass++;
102 	}
103 
104 	nvif_object_sclass_put(&sclass);
105 	return -ENOSYS;
106 }
107 
108 static void
109 nv50_chan_destroy(struct nv50_chan *chan)
110 {
111 	nvif_object_dtor(&chan->user);
112 }
113 
114 /******************************************************************************
115  * DMA EVO channel
116  *****************************************************************************/
117 
118 void
119 nv50_dmac_destroy(struct nv50_dmac *dmac)
120 {
121 	nvif_object_dtor(&dmac->vram);
122 	nvif_object_dtor(&dmac->sync);
123 
124 	nv50_chan_destroy(&dmac->base);
125 
126 	nvif_mem_dtor(&dmac->_push.mem);
127 }
128 
129 static void
130 nv50_dmac_kick(struct nvif_push *push)
131 {
132 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
133 
134 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
135 	if (dmac->put != dmac->cur) {
136 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
137 		 * writes have been flushed right through to VRAM before writing PUT.
138 		 */
139 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 			struct nvif_device *device = dmac->base.device;
141 			nvif_wr32(&device->object, 0x070000, 0x00000001);
142 			nvif_msec(device, 2000,
143 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
144 					break;
145 			);
146 		}
147 
148 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 		dmac->put = dmac->cur;
150 	}
151 
152 	push->bgn = push->cur;
153 }
154 
155 static int
156 nv50_dmac_free(struct nv50_dmac *dmac)
157 {
158 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 		return get - dmac->cur - 5;
161 	return dmac->max - dmac->cur;
162 }
163 
164 static int
165 nv50_dmac_wind(struct nv50_dmac *dmac)
166 {
167 	/* Wait for GET to depart from the beginning of the push buffer to
168 	 * prevent writing PUT == GET, which would be ignored by HW.
169 	 */
170 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
171 	if (get == 0) {
172 		/* Corner-case, HW idle, but non-committed work pending. */
173 		if (dmac->put == 0)
174 			nv50_dmac_kick(dmac->push);
175 
176 		if (nvif_msec(dmac->base.device, 2000,
177 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
178 				break;
179 		) < 0)
180 			return -ETIMEDOUT;
181 	}
182 
183 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
184 	dmac->cur = 0;
185 	return 0;
186 }
187 
188 static int
189 nv50_dmac_wait(struct nvif_push *push, u32 size)
190 {
191 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
192 	int free;
193 
194 	if (WARN_ON(size > dmac->max))
195 		return -EINVAL;
196 
197 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
198 	if (dmac->cur + size >= dmac->max) {
199 		int ret = nv50_dmac_wind(dmac);
200 		if (ret)
201 			return ret;
202 
203 		push->cur = dmac->_push.mem.object.map.ptr;
204 		push->cur = push->cur + dmac->cur;
205 		nv50_dmac_kick(push);
206 	}
207 
208 	if (nvif_msec(dmac->base.device, 2000,
209 		if ((free = nv50_dmac_free(dmac)) >= size)
210 			break;
211 	) < 0) {
212 		WARN_ON(1);
213 		return -ETIMEDOUT;
214 	}
215 
216 	push->bgn = dmac->_push.mem.object.map.ptr;
217 	push->bgn = push->bgn + dmac->cur;
218 	push->cur = push->bgn;
219 	push->end = push->cur + free;
220 	return 0;
221 }
222 
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
226 
227 int
228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 		 struct nv50_dmac *dmac)
231 {
232 	struct nouveau_cli *cli = (void *)device->object.client;
233 	struct nvif_disp_chan_v0 *args = data;
234 	u8 type = NVIF_MEM_COHERENT;
235 	int ret;
236 
237 	mutex_init(&dmac->lock);
238 
239 	/* Pascal added support for 47-bit physical addresses, but some
240 	 * parts of EVO still only accept 40-bit PAs.
241 	 *
242 	 * To avoid issues on systems with large amounts of RAM, and on
243 	 * systems where an IOMMU maps pages at a high address, we need
244 	 * to allocate push buffers in VRAM instead.
245 	 *
246 	 * This appears to match NVIDIA's behaviour on Pascal.
247 	 */
248 	if ((nv50_dmac_vram_pushbuf > 0) ||
249 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 		type |= NVIF_MEM_VRAM;
251 
252 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
253 				&dmac->_push.mem);
254 	if (ret)
255 		return ret;
256 
257 	dmac->ptr = dmac->_push.mem.object.map.ptr;
258 	dmac->_push.wait = nv50_dmac_wait;
259 	dmac->_push.kick = nv50_dmac_kick;
260 	dmac->push = &dmac->_push;
261 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 	dmac->push->cur = dmac->push->bgn;
263 	dmac->push->end = dmac->push->bgn;
264 	dmac->max = 0x1000/4 - 1;
265 
266 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
267 	 * of the push buffer aren't able to be used safely.
268 	 */
269 	if (disp->oclass < GV100_DISP)
270 		dmac->max -= 12;
271 
272 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
273 
274 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 			       &dmac->base);
276 	if (ret)
277 		return ret;
278 
279 	if (syncbuf < 0)
280 		return 0;
281 
282 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 			       NV_DMA_IN_MEMORY,
284 			       &(struct nv_dma_v0) {
285 					.target = NV_DMA_V0_TARGET_VRAM,
286 					.access = NV_DMA_V0_ACCESS_RDWR,
287 					.start = syncbuf + 0x0000,
288 					.limit = syncbuf + 0x0fff,
289 			       }, sizeof(struct nv_dma_v0),
290 			       &dmac->sync);
291 	if (ret)
292 		return ret;
293 
294 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 			       NV_DMA_IN_MEMORY,
296 			       &(struct nv_dma_v0) {
297 					.target = NV_DMA_V0_TARGET_VRAM,
298 					.access = NV_DMA_V0_ACCESS_RDWR,
299 					.start = 0,
300 					.limit = device->info.ram_user - 1,
301 			       }, sizeof(struct nv_dma_v0),
302 			       &dmac->vram);
303 	if (ret)
304 		return ret;
305 
306 	return ret;
307 }
308 
309 /******************************************************************************
310  * Output path helpers
311  *****************************************************************************/
312 static void
313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 		    struct nouveau_encoder *outp)
315 {
316 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 		 outp->base.base.name, outp->caps.dp_interlace);
318 }
319 
320 static int
321 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
322 			    struct drm_crtc_state *crtc_state,
323 			    struct drm_connector_state *conn_state,
324 			    struct drm_display_mode *native_mode)
325 {
326 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
327 	struct drm_display_mode *mode = &crtc_state->mode;
328 	struct drm_connector *connector = conn_state->connector;
329 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
330 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
331 
332 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
333 	asyc->scaler.full = false;
334 	if (!native_mode)
335 		return 0;
336 
337 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
338 		switch (connector->connector_type) {
339 		case DRM_MODE_CONNECTOR_LVDS:
340 		case DRM_MODE_CONNECTOR_eDP:
341 			/* Don't force scaler for EDID modes with
342 			 * same size as the native one (e.g. different
343 			 * refresh rate)
344 			 */
345 			if (mode->hdisplay == native_mode->hdisplay &&
346 			    mode->vdisplay == native_mode->vdisplay &&
347 			    mode->type & DRM_MODE_TYPE_DRIVER)
348 				break;
349 			mode = native_mode;
350 			asyc->scaler.full = true;
351 			break;
352 		default:
353 			break;
354 		}
355 	} else {
356 		mode = native_mode;
357 	}
358 
359 	if (!drm_mode_equal(adjusted_mode, mode)) {
360 		drm_mode_copy(adjusted_mode, mode);
361 		crtc_state->mode_changed = true;
362 	}
363 
364 	return 0;
365 }
366 
367 static void
368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
369 {
370 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
371 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
372 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
373 	unsigned int max_rate, mode_rate;
374 
375 	switch (nv_encoder->dcb->type) {
376 	case DCB_OUTPUT_DP:
377 		max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
378 
379 		/* we don't support more than 10 anyway */
380 		asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
381 
382 		/* reduce the bpc until it works out */
383 		while (asyh->or.bpc > 6) {
384 			mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
385 			if (mode_rate <= max_rate)
386 				break;
387 
388 			asyh->or.bpc -= 2;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 }
395 
396 static int
397 nv50_outp_atomic_check(struct drm_encoder *encoder,
398 		       struct drm_crtc_state *crtc_state,
399 		       struct drm_connector_state *conn_state)
400 {
401 	struct drm_connector *connector = conn_state->connector;
402 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
403 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
404 	int ret;
405 
406 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
407 					  nv_connector->native_mode);
408 	if (ret)
409 		return ret;
410 
411 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
412 		asyh->or.bpc = connector->display_info.bpc;
413 
414 	/* We might have to reduce the bpc */
415 	nv50_outp_atomic_fix_depth(encoder, crtc_state);
416 
417 	return 0;
418 }
419 
420 struct nouveau_connector *
421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
422 {
423 	struct drm_connector *connector;
424 	struct drm_connector_state *connector_state;
425 	struct drm_encoder *encoder = to_drm_encoder(outp);
426 	int i;
427 
428 	for_each_new_connector_in_state(state, connector, connector_state, i) {
429 		if (connector_state->best_encoder == encoder)
430 			return nouveau_connector(connector);
431 	}
432 
433 	return NULL;
434 }
435 
436 struct nouveau_connector *
437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
438 {
439 	struct drm_connector *connector;
440 	struct drm_connector_state *connector_state;
441 	struct drm_encoder *encoder = to_drm_encoder(outp);
442 	int i;
443 
444 	for_each_old_connector_in_state(state, connector, connector_state, i) {
445 		if (connector_state->best_encoder == encoder)
446 			return nouveau_connector(connector);
447 	}
448 
449 	return NULL;
450 }
451 
452 static struct nouveau_crtc *
453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
454 {
455 	struct drm_crtc *crtc;
456 	struct drm_crtc_state *crtc_state;
457 	const u32 mask = drm_encoder_mask(&outp->base.base);
458 	int i;
459 
460 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
461 		if (crtc_state->encoder_mask & mask)
462 			return nouveau_crtc(crtc);
463 	}
464 
465 	return NULL;
466 }
467 
468 /******************************************************************************
469  * DAC
470  *****************************************************************************/
471 static void
472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
473 {
474 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
475 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
476 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
477 
478 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
479 	nv_encoder->crtc = NULL;
480 	nvif_outp_release(&nv_encoder->outp);
481 }
482 
483 static void
484 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
485 {
486 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
487 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
488 	struct nv50_head_atom *asyh =
489 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
490 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
491 	u32 ctrl = 0;
492 
493 	switch (nv_crtc->index) {
494 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
495 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
496 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
497 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
498 	default:
499 		WARN_ON(1);
500 		break;
501 	}
502 
503 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
504 
505 	nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
506 
507 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
508 	asyh->or.depth = 0;
509 
510 	nv_encoder->crtc = &nv_crtc->base;
511 }
512 
513 static enum drm_connector_status
514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
515 {
516 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
517 	u32 loadval;
518 	int ret;
519 
520 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
521 	if (loadval == 0)
522 		loadval = 340;
523 
524 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
525 	if (ret <= 0)
526 		return connector_status_disconnected;
527 
528 	return connector_status_connected;
529 }
530 
531 static const struct drm_encoder_helper_funcs
532 nv50_dac_help = {
533 	.atomic_check = nv50_outp_atomic_check,
534 	.atomic_enable = nv50_dac_atomic_enable,
535 	.atomic_disable = nv50_dac_atomic_disable,
536 	.detect = nv50_dac_detect
537 };
538 
539 static void
540 nv50_dac_destroy(struct drm_encoder *encoder)
541 {
542 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
543 
544 	nvif_outp_dtor(&nv_encoder->outp);
545 
546 	drm_encoder_cleanup(encoder);
547 	kfree(encoder);
548 }
549 
550 static const struct drm_encoder_funcs
551 nv50_dac_func = {
552 	.destroy = nv50_dac_destroy,
553 };
554 
555 static int
556 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
557 {
558 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
559 	struct nv50_disp *disp = nv50_disp(connector->dev);
560 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
561 	struct nvkm_i2c_bus *bus;
562 	struct nouveau_encoder *nv_encoder;
563 	struct drm_encoder *encoder;
564 	int type = DRM_MODE_ENCODER_DAC;
565 
566 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
567 	if (!nv_encoder)
568 		return -ENOMEM;
569 	nv_encoder->dcb = dcbe;
570 
571 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
572 	if (bus)
573 		nv_encoder->i2c = &bus->i2c;
574 
575 	encoder = to_drm_encoder(nv_encoder);
576 	encoder->possible_crtcs = dcbe->heads;
577 	encoder->possible_clones = 0;
578 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
579 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
580 	drm_encoder_helper_add(encoder, &nv50_dac_help);
581 
582 	drm_connector_attach_encoder(connector, encoder);
583 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
584 }
585 
586 /*
587  * audio component binding for ELD notification
588  */
589 static void
590 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
591 				int dev_id)
592 {
593 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
594 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
595 						 port, dev_id);
596 }
597 
598 static int
599 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
600 			     bool *enabled, unsigned char *buf, int max_bytes)
601 {
602 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
603 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
604 	struct drm_encoder *encoder;
605 	struct nouveau_encoder *nv_encoder;
606 	struct nouveau_crtc *nv_crtc;
607 	int ret = 0;
608 
609 	*enabled = false;
610 
611 	mutex_lock(&drm->audio.lock);
612 
613 	drm_for_each_encoder(encoder, drm->dev) {
614 		struct nouveau_connector *nv_connector = NULL;
615 
616 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
617 			continue; /* TODO */
618 
619 		nv_encoder = nouveau_encoder(encoder);
620 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
621 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
622 
623 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
624 			continue;
625 
626 		*enabled = nv_encoder->audio.enabled;
627 		if (*enabled) {
628 			ret = drm_eld_size(nv_connector->base.eld);
629 			memcpy(buf, nv_connector->base.eld,
630 			       min(max_bytes, ret));
631 		}
632 		break;
633 	}
634 
635 	mutex_unlock(&drm->audio.lock);
636 
637 	return ret;
638 }
639 
640 static const struct drm_audio_component_ops nv50_audio_component_ops = {
641 	.get_eld = nv50_audio_component_get_eld,
642 };
643 
644 static int
645 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
646 			  void *data)
647 {
648 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
649 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
650 	struct drm_audio_component *acomp = data;
651 
652 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
653 		return -ENOMEM;
654 
655 	drm_modeset_lock_all(drm_dev);
656 	acomp->ops = &nv50_audio_component_ops;
657 	acomp->dev = kdev;
658 	drm->audio.component = acomp;
659 	drm_modeset_unlock_all(drm_dev);
660 	return 0;
661 }
662 
663 static void
664 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
665 			    void *data)
666 {
667 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
668 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
669 	struct drm_audio_component *acomp = data;
670 
671 	drm_modeset_lock_all(drm_dev);
672 	drm->audio.component = NULL;
673 	acomp->ops = NULL;
674 	acomp->dev = NULL;
675 	drm_modeset_unlock_all(drm_dev);
676 }
677 
678 static const struct component_ops nv50_audio_component_bind_ops = {
679 	.bind   = nv50_audio_component_bind,
680 	.unbind = nv50_audio_component_unbind,
681 };
682 
683 static void
684 nv50_audio_component_init(struct nouveau_drm *drm)
685 {
686 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
687 		return;
688 
689 	drm->audio.component_registered = true;
690 	mutex_init(&drm->audio.lock);
691 }
692 
693 static void
694 nv50_audio_component_fini(struct nouveau_drm *drm)
695 {
696 	if (!drm->audio.component_registered)
697 		return;
698 
699 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
700 	drm->audio.component_registered = false;
701 	mutex_destroy(&drm->audio.lock);
702 }
703 
704 /******************************************************************************
705  * Audio
706  *****************************************************************************/
707 static bool
708 nv50_audio_supported(struct drm_encoder *encoder)
709 {
710 	struct nv50_disp *disp = nv50_disp(encoder->dev);
711 
712 	if (disp->disp->object.oclass <= GT200_DISP ||
713 	    disp->disp->object.oclass == GT206_DISP)
714 		return false;
715 
716 	return true;
717 }
718 
719 static void
720 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
721 {
722 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
723 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
724 	struct nvif_outp *outp = &nv_encoder->outp;
725 
726 	if (!nv50_audio_supported(encoder))
727 		return;
728 
729 	mutex_lock(&drm->audio.lock);
730 	if (nv_encoder->audio.enabled) {
731 		nv_encoder->audio.enabled = false;
732 		nv_encoder->audio.connector = NULL;
733 		nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
734 	}
735 	mutex_unlock(&drm->audio.lock);
736 
737 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
738 }
739 
740 static void
741 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
742 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
743 		  struct drm_display_mode *mode)
744 {
745 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
746 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
747 	struct nvif_outp *outp = &nv_encoder->outp;
748 
749 	if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
750 		return;
751 
752 	mutex_lock(&drm->audio.lock);
753 
754 	nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
755 			  drm_eld_size(nv_connector->base.eld));
756 	nv_encoder->audio.enabled = true;
757 	nv_encoder->audio.connector = &nv_connector->base;
758 
759 	mutex_unlock(&drm->audio.lock);
760 
761 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
762 }
763 
764 /******************************************************************************
765  * HDMI
766  *****************************************************************************/
767 static void
768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
769 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
770 		 struct drm_display_mode *mode, bool hda)
771 {
772 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
773 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
774 	struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
775 	union hdmi_infoframe infoframe = { 0 };
776 	const u8 rekey = 56; /* binary driver, and tegra, constant */
777 	u8 scdc = 0;
778 	u32 max_ac_packet;
779 	struct {
780 		struct nvif_outp_infoframe_v0 infoframe;
781 		u8 data[17];
782 	} args = { 0 };
783 	int ret, size;
784 
785 	max_ac_packet  = mode->htotal - mode->hdisplay;
786 	max_ac_packet -= rekey;
787 	max_ac_packet -= 18; /* constant from tegra */
788 	max_ac_packet /= 32;
789 
790 	if (hdmi->scdc.scrambling.supported) {
791 		const bool high_tmds_clock_ratio = mode->clock > 340000;
792 
793 		ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
794 		if (ret < 0) {
795 			NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
796 			return;
797 		}
798 
799 		scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
800 		if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
801 			scdc |= SCDC_SCRAMBLING_ENABLE;
802 		if (high_tmds_clock_ratio)
803 			scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
804 
805 		ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
806 		if (ret < 0)
807 			NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
808 				 scdc, ret);
809 	}
810 
811 	ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true,
812 				     max_ac_packet, rekey, scdc, hda);
813 	if (ret)
814 		return;
815 
816 	/* AVI InfoFrame. */
817 	args.infoframe.version = 0;
818 	args.infoframe.head = nv_crtc->index;
819 
820 	if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
821 		drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
822 						   HDMI_QUANTIZATION_RANGE_FULL);
823 
824 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
825 	} else {
826 		size = 0;
827 	}
828 
829 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
830 
831 	/* Vendor InfoFrame. */
832 	memset(&args.data, 0, sizeof(args.data));
833 	if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
834 							 &nv_connector->base, mode))
835 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
836 	else
837 		size = 0;
838 
839 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
840 
841 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
842 }
843 
844 /******************************************************************************
845  * MST
846  *****************************************************************************/
847 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
848 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
849 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
850 
851 struct nv50_mstc {
852 	struct nv50_mstm *mstm;
853 	struct drm_dp_mst_port *port;
854 	struct drm_connector connector;
855 
856 	struct drm_display_mode *native;
857 	struct edid *edid;
858 };
859 
860 struct nv50_msto {
861 	struct drm_encoder encoder;
862 
863 	/* head is statically assigned on msto creation */
864 	struct nv50_head *head;
865 	struct nv50_mstc *mstc;
866 	bool disabled;
867 	bool enabled;
868 };
869 
870 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
871 {
872 	struct nv50_msto *msto;
873 
874 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
875 		return nouveau_encoder(encoder);
876 
877 	msto = nv50_msto(encoder);
878 	if (!msto->mstc)
879 		return NULL;
880 	return msto->mstc->mstm->outp;
881 }
882 
883 static void
884 nv50_msto_cleanup(struct drm_atomic_state *state,
885 		  struct drm_dp_mst_topology_state *mst_state,
886 		  struct drm_dp_mst_topology_mgr *mgr,
887 		  struct nv50_msto *msto)
888 {
889 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
890 	struct drm_dp_mst_atomic_payload *payload =
891 		drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
892 
893 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
894 
895 	if (msto->disabled) {
896 		msto->mstc = NULL;
897 		msto->disabled = false;
898 	} else if (msto->enabled) {
899 		drm_dp_add_payload_part2(mgr, state, payload);
900 		msto->enabled = false;
901 	}
902 }
903 
904 static void
905 nv50_msto_prepare(struct drm_atomic_state *state,
906 		  struct drm_dp_mst_topology_state *mst_state,
907 		  struct drm_dp_mst_topology_mgr *mgr,
908 		  struct nv50_msto *msto)
909 {
910 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
911 	struct nv50_mstc *mstc = msto->mstc;
912 	struct nv50_mstm *mstm = mstc->mstm;
913 	struct drm_dp_mst_topology_state *old_mst_state;
914 	struct drm_dp_mst_atomic_payload *payload, *old_payload;
915 
916 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
917 
918 	old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr);
919 
920 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
921 	old_payload = drm_atomic_get_mst_payload_state(old_mst_state, mstc->port);
922 
923 	// TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
924 	if (msto->disabled) {
925 		drm_dp_remove_payload(mgr, mst_state, old_payload, payload);
926 
927 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
928 	} else {
929 		if (msto->enabled)
930 			drm_dp_add_payload_part1(mgr, mst_state, payload);
931 
932 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
933 				      payload->vc_start_slot, payload->time_slots,
934 				      payload->pbn, payload->time_slots * mst_state->pbn_div);
935 	}
936 }
937 
938 static int
939 nv50_msto_atomic_check(struct drm_encoder *encoder,
940 		       struct drm_crtc_state *crtc_state,
941 		       struct drm_connector_state *conn_state)
942 {
943 	struct drm_atomic_state *state = crtc_state->state;
944 	struct drm_connector *connector = conn_state->connector;
945 	struct drm_dp_mst_topology_state *mst_state;
946 	struct nv50_mstc *mstc = nv50_mstc(connector);
947 	struct nv50_mstm *mstm = mstc->mstm;
948 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
949 	int slots;
950 	int ret;
951 
952 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
953 					  mstc->native);
954 	if (ret)
955 		return ret;
956 
957 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
958 		return 0;
959 
960 	/*
961 	 * When restoring duplicated states, we need to make sure that the bw
962 	 * remains the same and avoid recalculating it, as the connector's bpc
963 	 * may have changed after the state was duplicated
964 	 */
965 	if (!state->duplicated) {
966 		const int clock = crtc_state->adjusted_mode.clock;
967 
968 		asyh->or.bpc = connector->display_info.bpc;
969 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
970 						    false);
971 	}
972 
973 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
974 	if (IS_ERR(mst_state))
975 		return PTR_ERR(mst_state);
976 
977 	if (!mst_state->pbn_div) {
978 		struct nouveau_encoder *outp = mstc->mstm->outp;
979 
980 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
981 							      outp->dp.link_bw, outp->dp.link_nr);
982 	}
983 
984 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
985 	if (slots < 0)
986 		return slots;
987 
988 	asyh->dp.tu = slots;
989 
990 	return 0;
991 }
992 
993 static u8
994 nv50_dp_bpc_to_depth(unsigned int bpc)
995 {
996 	switch (bpc) {
997 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
998 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
999 	case 10:
1000 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1001 	}
1002 }
1003 
1004 static void
1005 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1006 {
1007 	struct nv50_msto *msto = nv50_msto(encoder);
1008 	struct nv50_head *head = msto->head;
1009 	struct nv50_head_atom *asyh =
1010 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1011 	struct nv50_mstc *mstc = NULL;
1012 	struct nv50_mstm *mstm = NULL;
1013 	struct drm_connector *connector;
1014 	struct drm_connector_list_iter conn_iter;
1015 	u8 proto;
1016 
1017 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1018 	drm_for_each_connector_iter(connector, &conn_iter) {
1019 		if (connector->state->best_encoder == &msto->encoder) {
1020 			mstc = nv50_mstc(connector);
1021 			mstm = mstc->mstm;
1022 			break;
1023 		}
1024 	}
1025 	drm_connector_list_iter_end(&conn_iter);
1026 
1027 	if (WARN_ON(!mstc))
1028 		return;
1029 
1030 	if (!mstm->links++) {
1031 		/*XXX: MST audio. */
1032 		nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true);
1033 	}
1034 
1035 	if (mstm->outp->outp.or.link & 1)
1036 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1037 	else
1038 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1039 
1040 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1041 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1042 
1043 	msto->mstc = mstc;
1044 	msto->enabled = true;
1045 	mstm->modified = true;
1046 }
1047 
1048 static void
1049 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1050 {
1051 	struct nv50_msto *msto = nv50_msto(encoder);
1052 	struct nv50_mstc *mstc = msto->mstc;
1053 	struct nv50_mstm *mstm = mstc->mstm;
1054 
1055 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1056 	mstm->modified = true;
1057 	if (!--mstm->links)
1058 		mstm->disabled = true;
1059 	msto->disabled = true;
1060 }
1061 
1062 static const struct drm_encoder_helper_funcs
1063 nv50_msto_help = {
1064 	.atomic_disable = nv50_msto_atomic_disable,
1065 	.atomic_enable = nv50_msto_atomic_enable,
1066 	.atomic_check = nv50_msto_atomic_check,
1067 };
1068 
1069 static void
1070 nv50_msto_destroy(struct drm_encoder *encoder)
1071 {
1072 	struct nv50_msto *msto = nv50_msto(encoder);
1073 	drm_encoder_cleanup(&msto->encoder);
1074 	kfree(msto);
1075 }
1076 
1077 static const struct drm_encoder_funcs
1078 nv50_msto = {
1079 	.destroy = nv50_msto_destroy,
1080 };
1081 
1082 static struct nv50_msto *
1083 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1084 {
1085 	struct nv50_msto *msto;
1086 	int ret;
1087 
1088 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1089 	if (!msto)
1090 		return ERR_PTR(-ENOMEM);
1091 
1092 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1093 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1094 	if (ret) {
1095 		kfree(msto);
1096 		return ERR_PTR(ret);
1097 	}
1098 
1099 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1100 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1101 	msto->head = head;
1102 	return msto;
1103 }
1104 
1105 static struct drm_encoder *
1106 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1107 			      struct drm_atomic_state *state)
1108 {
1109 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1110 											 connector);
1111 	struct nv50_mstc *mstc = nv50_mstc(connector);
1112 	struct drm_crtc *crtc = connector_state->crtc;
1113 
1114 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1115 		return NULL;
1116 
1117 	return &nv50_head(crtc)->msto->encoder;
1118 }
1119 
1120 static enum drm_mode_status
1121 nv50_mstc_mode_valid(struct drm_connector *connector,
1122 		     struct drm_display_mode *mode)
1123 {
1124 	struct nv50_mstc *mstc = nv50_mstc(connector);
1125 	struct nouveau_encoder *outp = mstc->mstm->outp;
1126 
1127 	/* TODO: calculate the PBN from the dotclock and validate against the
1128 	 * MSTB's max possible PBN
1129 	 */
1130 
1131 	return nv50_dp_mode_valid(outp, mode, NULL);
1132 }
1133 
1134 static int
1135 nv50_mstc_get_modes(struct drm_connector *connector)
1136 {
1137 	struct nv50_mstc *mstc = nv50_mstc(connector);
1138 	int ret = 0;
1139 
1140 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1141 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1142 	if (mstc->edid)
1143 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1144 
1145 	/*
1146 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1147 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1148 	 * to properly fix this by dynamically selecting the highest possible
1149 	 * bpc that would fit in the topology
1150 	 */
1151 	if (connector->display_info.bpc)
1152 		connector->display_info.bpc =
1153 			clamp(connector->display_info.bpc, 6U, 8U);
1154 	else
1155 		connector->display_info.bpc = 8;
1156 
1157 	if (mstc->native)
1158 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1159 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1160 	return ret;
1161 }
1162 
1163 static int
1164 nv50_mstc_atomic_check(struct drm_connector *connector,
1165 		       struct drm_atomic_state *state)
1166 {
1167 	struct nv50_mstc *mstc = nv50_mstc(connector);
1168 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1169 
1170 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1171 }
1172 
1173 static int
1174 nv50_mstc_detect(struct drm_connector *connector,
1175 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1176 {
1177 	struct nv50_mstc *mstc = nv50_mstc(connector);
1178 	int ret;
1179 
1180 	if (drm_connector_is_unregistered(connector))
1181 		return connector_status_disconnected;
1182 
1183 	ret = pm_runtime_get_sync(connector->dev->dev);
1184 	if (ret < 0 && ret != -EACCES) {
1185 		pm_runtime_put_autosuspend(connector->dev->dev);
1186 		return connector_status_disconnected;
1187 	}
1188 
1189 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1190 				     mstc->port);
1191 	if (ret != connector_status_connected)
1192 		goto out;
1193 
1194 out:
1195 	pm_runtime_mark_last_busy(connector->dev->dev);
1196 	pm_runtime_put_autosuspend(connector->dev->dev);
1197 	return ret;
1198 }
1199 
1200 static const struct drm_connector_helper_funcs
1201 nv50_mstc_help = {
1202 	.get_modes = nv50_mstc_get_modes,
1203 	.mode_valid = nv50_mstc_mode_valid,
1204 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1205 	.atomic_check = nv50_mstc_atomic_check,
1206 	.detect_ctx = nv50_mstc_detect,
1207 };
1208 
1209 static void
1210 nv50_mstc_destroy(struct drm_connector *connector)
1211 {
1212 	struct nv50_mstc *mstc = nv50_mstc(connector);
1213 
1214 	drm_connector_cleanup(&mstc->connector);
1215 	drm_dp_mst_put_port_malloc(mstc->port);
1216 
1217 	kfree(mstc);
1218 }
1219 
1220 static const struct drm_connector_funcs
1221 nv50_mstc = {
1222 	.reset = nouveau_conn_reset,
1223 	.fill_modes = drm_helper_probe_single_connector_modes,
1224 	.destroy = nv50_mstc_destroy,
1225 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1226 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1227 	.atomic_set_property = nouveau_conn_atomic_set_property,
1228 	.atomic_get_property = nouveau_conn_atomic_get_property,
1229 };
1230 
1231 static int
1232 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1233 	      const char *path, struct nv50_mstc **pmstc)
1234 {
1235 	struct drm_device *dev = mstm->outp->base.base.dev;
1236 	struct drm_crtc *crtc;
1237 	struct nv50_mstc *mstc;
1238 	int ret;
1239 
1240 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1241 		return -ENOMEM;
1242 	mstc->mstm = mstm;
1243 	mstc->port = port;
1244 
1245 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1246 				 DRM_MODE_CONNECTOR_DisplayPort);
1247 	if (ret) {
1248 		kfree(*pmstc);
1249 		*pmstc = NULL;
1250 		return ret;
1251 	}
1252 
1253 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1254 
1255 	mstc->connector.funcs->reset(&mstc->connector);
1256 	nouveau_conn_attach_properties(&mstc->connector);
1257 
1258 	drm_for_each_crtc(crtc, dev) {
1259 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1260 			continue;
1261 
1262 		drm_connector_attach_encoder(&mstc->connector,
1263 					     &nv50_head(crtc)->msto->encoder);
1264 	}
1265 
1266 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1267 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1268 	drm_connector_set_path_property(&mstc->connector, path);
1269 	drm_dp_mst_get_port_malloc(port);
1270 	return 0;
1271 }
1272 
1273 static void
1274 nv50_mstm_cleanup(struct drm_atomic_state *state,
1275 		  struct drm_dp_mst_topology_state *mst_state,
1276 		  struct nv50_mstm *mstm)
1277 {
1278 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1279 	struct drm_encoder *encoder;
1280 
1281 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1282 	drm_dp_check_act_status(&mstm->mgr);
1283 
1284 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1285 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1286 			struct nv50_msto *msto = nv50_msto(encoder);
1287 			struct nv50_mstc *mstc = msto->mstc;
1288 			if (mstc && mstc->mstm == mstm)
1289 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1290 		}
1291 	}
1292 
1293 	mstm->modified = false;
1294 }
1295 
1296 static void
1297 nv50_mstm_prepare(struct drm_atomic_state *state,
1298 		  struct drm_dp_mst_topology_state *mst_state,
1299 		  struct nv50_mstm *mstm)
1300 {
1301 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1302 	struct drm_encoder *encoder;
1303 
1304 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1305 
1306 	/* Disable payloads first */
1307 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1308 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1309 			struct nv50_msto *msto = nv50_msto(encoder);
1310 			struct nv50_mstc *mstc = msto->mstc;
1311 			if (mstc && mstc->mstm == mstm && msto->disabled)
1312 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1313 		}
1314 	}
1315 
1316 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1317 	 * active) heads that may have had their VC slots shifted left after the previous step
1318 	 */
1319 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1320 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1321 			struct nv50_msto *msto = nv50_msto(encoder);
1322 			struct nv50_mstc *mstc = msto->mstc;
1323 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1324 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1325 		}
1326 	}
1327 
1328 	if (mstm->disabled) {
1329 		if (!mstm->links)
1330 			nvif_outp_release(&mstm->outp->outp);
1331 		mstm->disabled = false;
1332 	}
1333 }
1334 
1335 static struct drm_connector *
1336 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1337 			struct drm_dp_mst_port *port, const char *path)
1338 {
1339 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1340 	struct nv50_mstc *mstc;
1341 	int ret;
1342 
1343 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1344 	if (ret)
1345 		return NULL;
1346 
1347 	return &mstc->connector;
1348 }
1349 
1350 static const struct drm_dp_mst_topology_cbs
1351 nv50_mstm = {
1352 	.add_connector = nv50_mstm_add_connector,
1353 };
1354 
1355 bool
1356 nv50_mstm_service(struct nouveau_drm *drm,
1357 		  struct nouveau_connector *nv_connector,
1358 		  struct nv50_mstm *mstm)
1359 {
1360 	struct drm_dp_aux *aux = &nv_connector->aux;
1361 	bool handled = true, ret = true;
1362 	int rc;
1363 	u8 esi[8] = {};
1364 
1365 	while (handled) {
1366 		u8 ack[8] = {};
1367 
1368 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1369 		if (rc != 8) {
1370 			ret = false;
1371 			break;
1372 		}
1373 
1374 		drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1375 		if (!handled)
1376 			break;
1377 
1378 		rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1379 
1380 		if (rc != 1) {
1381 			ret = false;
1382 			break;
1383 		}
1384 
1385 		drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1386 	}
1387 
1388 	if (!ret)
1389 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1390 			 nv_connector->base.name, rc);
1391 
1392 	return ret;
1393 }
1394 
1395 void
1396 nv50_mstm_remove(struct nv50_mstm *mstm)
1397 {
1398 	mstm->is_mst = false;
1399 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1400 }
1401 
1402 int
1403 nv50_mstm_detect(struct nouveau_encoder *outp)
1404 {
1405 	struct nv50_mstm *mstm = outp->dp.mstm;
1406 	struct drm_dp_aux *aux;
1407 	int ret;
1408 
1409 	if (!mstm || !mstm->can_mst)
1410 		return 0;
1411 
1412 	aux = mstm->mgr.aux;
1413 
1414 	/* Clear any leftover MST state we didn't set ourselves by first
1415 	 * disabling MST if it was already enabled
1416 	 */
1417 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1418 	if (ret < 0)
1419 		return ret;
1420 
1421 	/* And start enabling */
1422 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1423 	if (ret)
1424 		return ret;
1425 
1426 	mstm->is_mst = true;
1427 	return 1;
1428 }
1429 
1430 static void
1431 nv50_mstm_fini(struct nouveau_encoder *outp)
1432 {
1433 	struct nv50_mstm *mstm = outp->dp.mstm;
1434 
1435 	if (!mstm)
1436 		return;
1437 
1438 	/* Don't change the MST state of this connector until we've finished
1439 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1440 	 * path to protect mstm->is_mst without potentially deadlocking
1441 	 */
1442 	mutex_lock(&outp->dp.hpd_irq_lock);
1443 	mstm->suspended = true;
1444 	mutex_unlock(&outp->dp.hpd_irq_lock);
1445 
1446 	if (mstm->is_mst)
1447 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1448 }
1449 
1450 static void
1451 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1452 {
1453 	struct nv50_mstm *mstm = outp->dp.mstm;
1454 	int ret = 0;
1455 
1456 	if (!mstm)
1457 		return;
1458 
1459 	if (mstm->is_mst) {
1460 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1461 		if (ret == -1)
1462 			nv50_mstm_remove(mstm);
1463 	}
1464 
1465 	mutex_lock(&outp->dp.hpd_irq_lock);
1466 	mstm->suspended = false;
1467 	mutex_unlock(&outp->dp.hpd_irq_lock);
1468 
1469 	if (ret == -1)
1470 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1471 }
1472 
1473 static void
1474 nv50_mstm_del(struct nv50_mstm **pmstm)
1475 {
1476 	struct nv50_mstm *mstm = *pmstm;
1477 	if (mstm) {
1478 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1479 		kfree(*pmstm);
1480 		*pmstm = NULL;
1481 	}
1482 }
1483 
1484 static int
1485 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1486 	      int conn_base_id, struct nv50_mstm **pmstm)
1487 {
1488 	const int max_payloads = hweight8(outp->dcb->heads);
1489 	struct drm_device *dev = outp->base.base.dev;
1490 	struct nv50_mstm *mstm;
1491 	int ret;
1492 
1493 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1494 		return -ENOMEM;
1495 	mstm->outp = outp;
1496 	mstm->mgr.cbs = &nv50_mstm;
1497 
1498 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1499 					   max_payloads, conn_base_id);
1500 	if (ret)
1501 		return ret;
1502 
1503 	return 0;
1504 }
1505 
1506 /******************************************************************************
1507  * SOR
1508  *****************************************************************************/
1509 static void
1510 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1511 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1512 {
1513 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1514 	struct nv50_core *core = disp->core;
1515 
1516 	if (!asyh) {
1517 		nv_encoder->ctrl &= ~BIT(head);
1518 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1519 			nv_encoder->ctrl = 0;
1520 	} else {
1521 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1522 		nv_encoder->ctrl |= BIT(head);
1523 		asyh->or.depth = depth;
1524 	}
1525 
1526 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1527 }
1528 
1529 /* TODO: Should we extend this to PWM-only backlights?
1530  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1531  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1532  * fixed time delay from the vbios…
1533  */
1534 static void
1535 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1536 {
1537 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1538 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1539 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1540 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1541 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1542 	struct nouveau_backlight *backlight = nv_connector->backlight;
1543 #endif
1544 	struct drm_dp_aux *aux = &nv_connector->aux;
1545 	int ret;
1546 	u8 pwr;
1547 
1548 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1549 	if (backlight && backlight->uses_dpcd) {
1550 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1551 		if (ret < 0)
1552 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1553 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1554 	}
1555 #endif
1556 
1557 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1558 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1559 
1560 		if (ret == 0) {
1561 			pwr &= ~DP_SET_POWER_MASK;
1562 			pwr |=  DP_SET_POWER_D3;
1563 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1564 		}
1565 	}
1566 
1567 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1568 	nv50_audio_disable(encoder, nv_crtc);
1569 	nvif_outp_release(&nv_encoder->outp);
1570 	nv_encoder->crtc = NULL;
1571 }
1572 
1573 static void
1574 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1575 {
1576 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1577 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1578 	struct nv50_head_atom *asyh =
1579 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1580 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1581 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1582 	struct nvif_outp *outp = &nv_encoder->outp;
1583 	struct drm_device *dev = encoder->dev;
1584 	struct nouveau_drm *drm = nouveau_drm(dev);
1585 	struct nouveau_connector *nv_connector;
1586 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1587 	struct nouveau_backlight *backlight;
1588 #endif
1589 	struct nvbios *bios = &drm->vbios;
1590 	bool lvds_dual = false, lvds_8bpc = false, hda = false;
1591 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1592 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1593 
1594 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1595 	nv_encoder->crtc = &nv_crtc->base;
1596 
1597 	if ((disp->disp->object.oclass == GT214_DISP ||
1598 	     disp->disp->object.oclass >= GF110_DISP) &&
1599 	    drm_detect_monitor_audio(nv_connector->edid))
1600 		hda = true;
1601 
1602 	switch (nv_encoder->dcb->type) {
1603 	case DCB_OUTPUT_TMDS:
1604 		if (disp->disp->object.oclass == NV50_DISP ||
1605 		    !drm_detect_hdmi_monitor(nv_connector->edid))
1606 			nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false);
1607 		else
1608 			nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1609 
1610 		if (nv_encoder->outp.or.link & 1) {
1611 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1612 			/* Only enable dual-link if:
1613 			 *  - Need to (i.e. rate > 165MHz)
1614 			 *  - DCB says we can
1615 			 *  - Not an HDMI monitor, since there's no dual-link
1616 			 *    on HDMI.
1617 			 */
1618 			if (mode->clock >= 165000 &&
1619 			    nv_encoder->dcb->duallink_possible &&
1620 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1621 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1622 		} else {
1623 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1624 		}
1625 		break;
1626 	case DCB_OUTPUT_LVDS:
1627 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1628 
1629 		if (bios->fp_no_ddc) {
1630 			lvds_dual = bios->fp.dual_link;
1631 			lvds_8bpc = bios->fp.if_is_24bit;
1632 		} else {
1633 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1634 				if (((u8 *)nv_connector->edid)[121] == 2)
1635 					lvds_dual = true;
1636 			} else
1637 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1638 				lvds_dual = true;
1639 			}
1640 
1641 			if (lvds_dual) {
1642 				if (bios->fp.strapless_is_24bit & 2)
1643 					lvds_8bpc = true;
1644 			} else {
1645 				if (bios->fp.strapless_is_24bit & 1)
1646 					lvds_8bpc = true;
1647 			}
1648 
1649 			if (asyh->or.bpc == 8)
1650 				lvds_8bpc = true;
1651 		}
1652 
1653 		nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1654 		break;
1655 	case DCB_OUTPUT_DP:
1656 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false);
1657 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1658 
1659 		if (nv_encoder->outp.or.link & 1)
1660 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1661 		else
1662 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1663 
1664 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1665 
1666 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1667 		backlight = nv_connector->backlight;
1668 		if (backlight && backlight->uses_dpcd)
1669 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1670 						 (u16)backlight->dev->props.brightness);
1671 #endif
1672 
1673 		break;
1674 	default:
1675 		BUG();
1676 		break;
1677 	}
1678 
1679 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1680 }
1681 
1682 static const struct drm_encoder_helper_funcs
1683 nv50_sor_help = {
1684 	.atomic_check = nv50_outp_atomic_check,
1685 	.atomic_enable = nv50_sor_atomic_enable,
1686 	.atomic_disable = nv50_sor_atomic_disable,
1687 };
1688 
1689 static void
1690 nv50_sor_destroy(struct drm_encoder *encoder)
1691 {
1692 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1693 
1694 	nvif_outp_dtor(&nv_encoder->outp);
1695 
1696 	nv50_mstm_del(&nv_encoder->dp.mstm);
1697 	drm_encoder_cleanup(encoder);
1698 
1699 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1700 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1701 
1702 	kfree(encoder);
1703 }
1704 
1705 static const struct drm_encoder_funcs
1706 nv50_sor_func = {
1707 	.destroy = nv50_sor_destroy,
1708 };
1709 
1710 bool nv50_has_mst(struct nouveau_drm *drm)
1711 {
1712 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1713 	u32 data;
1714 	u8 ver, hdr, cnt, len;
1715 
1716 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1717 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1718 }
1719 
1720 static int
1721 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1722 {
1723 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1724 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1725 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1726 	struct nouveau_encoder *nv_encoder;
1727 	struct drm_encoder *encoder;
1728 	struct nv50_disp *disp = nv50_disp(connector->dev);
1729 	int type, ret;
1730 
1731 	switch (dcbe->type) {
1732 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1733 	case DCB_OUTPUT_TMDS:
1734 	case DCB_OUTPUT_DP:
1735 	default:
1736 		type = DRM_MODE_ENCODER_TMDS;
1737 		break;
1738 	}
1739 
1740 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1741 	if (!nv_encoder)
1742 		return -ENOMEM;
1743 	nv_encoder->dcb = dcbe;
1744 	nv_encoder->update = nv50_sor_update;
1745 
1746 	encoder = to_drm_encoder(nv_encoder);
1747 	encoder->possible_crtcs = dcbe->heads;
1748 	encoder->possible_clones = 0;
1749 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1750 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1751 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1752 
1753 	drm_connector_attach_encoder(connector, encoder);
1754 
1755 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1756 	nv50_outp_dump_caps(drm, nv_encoder);
1757 
1758 	if (dcbe->type == DCB_OUTPUT_DP) {
1759 		struct nvkm_i2c_aux *aux =
1760 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1761 
1762 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1763 
1764 		if (aux) {
1765 			if (disp->disp->object.oclass < GF110_DISP) {
1766 				/* HW has no support for address-only
1767 				 * transactions, so we're required to
1768 				 * use custom I2C-over-AUX code.
1769 				 */
1770 				nv_encoder->i2c = &aux->i2c;
1771 			} else {
1772 				nv_encoder->i2c = &nv_connector->aux.ddc;
1773 			}
1774 			nv_encoder->aux = aux;
1775 		}
1776 
1777 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1778 		    nv50_has_mst(drm)) {
1779 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1780 					    16, nv_connector->base.base.id,
1781 					    &nv_encoder->dp.mstm);
1782 			if (ret)
1783 				return ret;
1784 		}
1785 	} else {
1786 		struct nvkm_i2c_bus *bus =
1787 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1788 		if (bus)
1789 			nv_encoder->i2c = &bus->i2c;
1790 	}
1791 
1792 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1793 }
1794 
1795 /******************************************************************************
1796  * PIOR
1797  *****************************************************************************/
1798 static int
1799 nv50_pior_atomic_check(struct drm_encoder *encoder,
1800 		       struct drm_crtc_state *crtc_state,
1801 		       struct drm_connector_state *conn_state)
1802 {
1803 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1804 	if (ret)
1805 		return ret;
1806 	crtc_state->adjusted_mode.clock *= 2;
1807 	return 0;
1808 }
1809 
1810 static void
1811 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1812 {
1813 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1814 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1815 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1816 
1817 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1818 	nv_encoder->crtc = NULL;
1819 	nvif_outp_release(&nv_encoder->outp);
1820 }
1821 
1822 static void
1823 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1824 {
1825 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1826 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1827 	struct nv50_head_atom *asyh =
1828 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1829 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1830 	u32 ctrl = 0;
1831 
1832 	switch (nv_crtc->index) {
1833 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1834 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1835 	default:
1836 		WARN_ON(1);
1837 		break;
1838 	}
1839 
1840 	switch (asyh->or.bpc) {
1841 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1842 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1843 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1844 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1845 	}
1846 
1847 	switch (nv_encoder->dcb->type) {
1848 	case DCB_OUTPUT_TMDS:
1849 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1850 		nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false);
1851 		break;
1852 	case DCB_OUTPUT_DP:
1853 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1854 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false);
1855 		break;
1856 	default:
1857 		BUG();
1858 		break;
1859 	}
1860 
1861 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1862 	nv_encoder->crtc = &nv_crtc->base;
1863 }
1864 
1865 static const struct drm_encoder_helper_funcs
1866 nv50_pior_help = {
1867 	.atomic_check = nv50_pior_atomic_check,
1868 	.atomic_enable = nv50_pior_atomic_enable,
1869 	.atomic_disable = nv50_pior_atomic_disable,
1870 };
1871 
1872 static void
1873 nv50_pior_destroy(struct drm_encoder *encoder)
1874 {
1875 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1876 
1877 	nvif_outp_dtor(&nv_encoder->outp);
1878 
1879 	drm_encoder_cleanup(encoder);
1880 
1881 	mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1882 	kfree(encoder);
1883 }
1884 
1885 static const struct drm_encoder_funcs
1886 nv50_pior_func = {
1887 	.destroy = nv50_pior_destroy,
1888 };
1889 
1890 static int
1891 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1892 {
1893 	struct drm_device *dev = connector->dev;
1894 	struct nouveau_drm *drm = nouveau_drm(dev);
1895 	struct nv50_disp *disp = nv50_disp(dev);
1896 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1897 	struct nvkm_i2c_bus *bus = NULL;
1898 	struct nvkm_i2c_aux *aux = NULL;
1899 	struct i2c_adapter *ddc;
1900 	struct nouveau_encoder *nv_encoder;
1901 	struct drm_encoder *encoder;
1902 	int type;
1903 
1904 	switch (dcbe->type) {
1905 	case DCB_OUTPUT_TMDS:
1906 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1907 		ddc  = bus ? &bus->i2c : NULL;
1908 		type = DRM_MODE_ENCODER_TMDS;
1909 		break;
1910 	case DCB_OUTPUT_DP:
1911 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1912 		ddc  = aux ? &aux->i2c : NULL;
1913 		type = DRM_MODE_ENCODER_TMDS;
1914 		break;
1915 	default:
1916 		return -ENODEV;
1917 	}
1918 
1919 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1920 	if (!nv_encoder)
1921 		return -ENOMEM;
1922 	nv_encoder->dcb = dcbe;
1923 	nv_encoder->i2c = ddc;
1924 	nv_encoder->aux = aux;
1925 
1926 	mutex_init(&nv_encoder->dp.hpd_irq_lock);
1927 
1928 	encoder = to_drm_encoder(nv_encoder);
1929 	encoder->possible_crtcs = dcbe->heads;
1930 	encoder->possible_clones = 0;
1931 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1932 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1933 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1934 
1935 	drm_connector_attach_encoder(connector, encoder);
1936 
1937 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1938 	nv50_outp_dump_caps(drm, nv_encoder);
1939 
1940 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1941 }
1942 
1943 /******************************************************************************
1944  * Atomic
1945  *****************************************************************************/
1946 
1947 static void
1948 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1949 {
1950 	struct drm_dp_mst_topology_mgr *mgr;
1951 	struct drm_dp_mst_topology_state *mst_state;
1952 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1953 	struct nv50_disp *disp = nv50_disp(drm->dev);
1954 	struct nv50_core *core = disp->core;
1955 	struct nv50_mstm *mstm;
1956 	int i;
1957 
1958 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1959 
1960 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1961 		mstm = nv50_mstm(mgr);
1962 		if (mstm->modified)
1963 			nv50_mstm_prepare(state, mst_state, mstm);
1964 	}
1965 
1966 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1967 	core->func->update(core, interlock, true);
1968 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1969 				       disp->core->chan.base.device))
1970 		NV_ERROR(drm, "core notifier timeout\n");
1971 
1972 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1973 		mstm = nv50_mstm(mgr);
1974 		if (mstm->modified)
1975 			nv50_mstm_cleanup(state, mst_state, mstm);
1976 	}
1977 }
1978 
1979 static void
1980 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1981 {
1982 	struct drm_plane_state *new_plane_state;
1983 	struct drm_plane *plane;
1984 	int i;
1985 
1986 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1987 		struct nv50_wndw *wndw = nv50_wndw(plane);
1988 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1989 			if (wndw->func->update)
1990 				wndw->func->update(wndw, interlock);
1991 		}
1992 	}
1993 }
1994 
1995 static void
1996 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1997 {
1998 	struct drm_device *dev = state->dev;
1999 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2000 	struct drm_crtc *crtc;
2001 	struct drm_plane_state *new_plane_state;
2002 	struct drm_plane *plane;
2003 	struct nouveau_drm *drm = nouveau_drm(dev);
2004 	struct nv50_disp *disp = nv50_disp(dev);
2005 	struct nv50_atom *atom = nv50_atom(state);
2006 	struct nv50_core *core = disp->core;
2007 	struct nv50_outp_atom *outp, *outt;
2008 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2009 	int i;
2010 	bool flushed = false;
2011 
2012 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2013 	nv50_crc_atomic_stop_reporting(state);
2014 	drm_atomic_helper_wait_for_fences(dev, state, false);
2015 	drm_atomic_helper_wait_for_dependencies(state);
2016 	drm_dp_mst_atomic_wait_for_dependencies(state);
2017 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2018 	drm_atomic_helper_calc_timestamping_constants(state);
2019 
2020 	if (atom->lock_core)
2021 		mutex_lock(&disp->mutex);
2022 
2023 	/* Disable head(s). */
2024 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2025 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2026 		struct nv50_head *head = nv50_head(crtc);
2027 
2028 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2029 			  asyh->clr.mask, asyh->set.mask);
2030 
2031 		if (old_crtc_state->active && !new_crtc_state->active) {
2032 			pm_runtime_put_noidle(dev->dev);
2033 			drm_crtc_vblank_off(crtc);
2034 		}
2035 
2036 		if (asyh->clr.mask) {
2037 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2038 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2039 		}
2040 	}
2041 
2042 	/* Disable plane(s). */
2043 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2044 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2045 		struct nv50_wndw *wndw = nv50_wndw(plane);
2046 
2047 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2048 			  asyw->clr.mask, asyw->set.mask);
2049 		if (!asyw->clr.mask)
2050 			continue;
2051 
2052 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2053 	}
2054 
2055 	/* Disable output path(s). */
2056 	list_for_each_entry(outp, &atom->outp, head) {
2057 		const struct drm_encoder_helper_funcs *help;
2058 		struct drm_encoder *encoder;
2059 
2060 		encoder = outp->encoder;
2061 		help = encoder->helper_private;
2062 
2063 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2064 			  outp->clr.mask, outp->set.mask);
2065 
2066 		if (outp->clr.mask) {
2067 			help->atomic_disable(encoder, state);
2068 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2069 			if (outp->flush_disable) {
2070 				nv50_disp_atomic_commit_wndw(state, interlock);
2071 				nv50_disp_atomic_commit_core(state, interlock);
2072 				memset(interlock, 0x00, sizeof(interlock));
2073 
2074 				flushed = true;
2075 			}
2076 		}
2077 	}
2078 
2079 	/* Flush disable. */
2080 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2081 		if (atom->flush_disable) {
2082 			nv50_disp_atomic_commit_wndw(state, interlock);
2083 			nv50_disp_atomic_commit_core(state, interlock);
2084 			memset(interlock, 0x00, sizeof(interlock));
2085 
2086 			flushed = true;
2087 		}
2088 	}
2089 
2090 	if (flushed)
2091 		nv50_crc_atomic_release_notifier_contexts(state);
2092 	nv50_crc_atomic_init_notifier_contexts(state);
2093 
2094 	/* Update output path(s). */
2095 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2096 		const struct drm_encoder_helper_funcs *help;
2097 		struct drm_encoder *encoder;
2098 
2099 		encoder = outp->encoder;
2100 		help = encoder->helper_private;
2101 
2102 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2103 			  outp->set.mask, outp->clr.mask);
2104 
2105 		if (outp->set.mask) {
2106 			help->atomic_enable(encoder, state);
2107 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2108 		}
2109 
2110 		list_del(&outp->head);
2111 		kfree(outp);
2112 	}
2113 
2114 	/* Update head(s). */
2115 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2116 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2117 		struct nv50_head *head = nv50_head(crtc);
2118 
2119 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2120 			  asyh->set.mask, asyh->clr.mask);
2121 
2122 		if (asyh->set.mask) {
2123 			nv50_head_flush_set(head, asyh);
2124 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2125 		}
2126 
2127 		if (new_crtc_state->active) {
2128 			if (!old_crtc_state->active) {
2129 				drm_crtc_vblank_on(crtc);
2130 				pm_runtime_get_noresume(dev->dev);
2131 			}
2132 			if (new_crtc_state->event)
2133 				drm_crtc_vblank_get(crtc);
2134 		}
2135 	}
2136 
2137 	/* Update window->head assignment.
2138 	 *
2139 	 * This has to happen in an update that's not interlocked with
2140 	 * any window channels to avoid hitting HW error checks.
2141 	 *
2142 	 *TODO: Proper handling of window ownership (Turing apparently
2143 	 *      supports non-fixed mappings).
2144 	 */
2145 	if (core->assign_windows) {
2146 		core->func->wndw.owner(core);
2147 		nv50_disp_atomic_commit_core(state, interlock);
2148 		core->assign_windows = false;
2149 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2150 	}
2151 
2152 	/* Finish updating head(s)...
2153 	 *
2154 	 * NVD is rather picky about both where window assignments can change,
2155 	 * *and* about certain core and window channel states matching.
2156 	 *
2157 	 * The EFI GOP driver on newer GPUs configures window channels with a
2158 	 * different output format to what we do, and the core channel update
2159 	 * in the assign_windows case above would result in a state mismatch.
2160 	 *
2161 	 * Delay some of the head update until after that point to workaround
2162 	 * the issue.  This only affects the initial modeset.
2163 	 *
2164 	 * TODO: handle this better when adding flexible window mapping
2165 	 */
2166 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2167 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2168 		struct nv50_head *head = nv50_head(crtc);
2169 
2170 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2171 			  asyh->set.mask, asyh->clr.mask);
2172 
2173 		if (asyh->set.mask) {
2174 			nv50_head_flush_set_wndw(head, asyh);
2175 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2176 		}
2177 	}
2178 
2179 	/* Update plane(s). */
2180 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2181 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2182 		struct nv50_wndw *wndw = nv50_wndw(plane);
2183 
2184 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2185 			  asyw->set.mask, asyw->clr.mask);
2186 		if ( !asyw->set.mask &&
2187 		    (!asyw->clr.mask || atom->flush_disable))
2188 			continue;
2189 
2190 		nv50_wndw_flush_set(wndw, interlock, asyw);
2191 	}
2192 
2193 	/* Flush update. */
2194 	nv50_disp_atomic_commit_wndw(state, interlock);
2195 
2196 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2197 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2198 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2199 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2200 		    !atom->state.legacy_cursor_update)
2201 			nv50_disp_atomic_commit_core(state, interlock);
2202 		else
2203 			disp->core->func->update(disp->core, interlock, false);
2204 	}
2205 
2206 	if (atom->lock_core)
2207 		mutex_unlock(&disp->mutex);
2208 
2209 	/* Wait for HW to signal completion. */
2210 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2211 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2212 		struct nv50_wndw *wndw = nv50_wndw(plane);
2213 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2214 		if (ret)
2215 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2216 	}
2217 
2218 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2219 		if (new_crtc_state->event) {
2220 			unsigned long flags;
2221 			/* Get correct count/ts if racing with vblank irq */
2222 			if (new_crtc_state->active)
2223 				drm_crtc_accurate_vblank_count(crtc);
2224 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2225 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2226 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2227 
2228 			new_crtc_state->event = NULL;
2229 			if (new_crtc_state->active)
2230 				drm_crtc_vblank_put(crtc);
2231 		}
2232 	}
2233 
2234 	nv50_crc_atomic_start_reporting(state);
2235 	if (!flushed)
2236 		nv50_crc_atomic_release_notifier_contexts(state);
2237 
2238 	drm_atomic_helper_commit_hw_done(state);
2239 	drm_atomic_helper_cleanup_planes(dev, state);
2240 	drm_atomic_helper_commit_cleanup_done(state);
2241 	drm_atomic_state_put(state);
2242 
2243 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2244 	pm_runtime_mark_last_busy(dev->dev);
2245 	pm_runtime_put_autosuspend(dev->dev);
2246 }
2247 
2248 static void
2249 nv50_disp_atomic_commit_work(struct work_struct *work)
2250 {
2251 	struct drm_atomic_state *state =
2252 		container_of(work, typeof(*state), commit_work);
2253 	nv50_disp_atomic_commit_tail(state);
2254 }
2255 
2256 static int
2257 nv50_disp_atomic_commit(struct drm_device *dev,
2258 			struct drm_atomic_state *state, bool nonblock)
2259 {
2260 	struct drm_plane_state *new_plane_state;
2261 	struct drm_plane *plane;
2262 	int ret, i;
2263 
2264 	ret = pm_runtime_get_sync(dev->dev);
2265 	if (ret < 0 && ret != -EACCES) {
2266 		pm_runtime_put_autosuspend(dev->dev);
2267 		return ret;
2268 	}
2269 
2270 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2271 	if (ret)
2272 		goto done;
2273 
2274 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2275 
2276 	ret = drm_atomic_helper_prepare_planes(dev, state);
2277 	if (ret)
2278 		goto done;
2279 
2280 	if (!nonblock) {
2281 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2282 		if (ret)
2283 			goto err_cleanup;
2284 	}
2285 
2286 	ret = drm_atomic_helper_swap_state(state, true);
2287 	if (ret)
2288 		goto err_cleanup;
2289 
2290 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2291 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2292 		struct nv50_wndw *wndw = nv50_wndw(plane);
2293 
2294 		if (asyw->set.image)
2295 			nv50_wndw_ntfy_enable(wndw, asyw);
2296 	}
2297 
2298 	drm_atomic_state_get(state);
2299 
2300 	/*
2301 	 * Grab another RPM ref for the commit tail, which will release the
2302 	 * ref when it's finished
2303 	 */
2304 	pm_runtime_get_noresume(dev->dev);
2305 
2306 	if (nonblock)
2307 		queue_work(system_unbound_wq, &state->commit_work);
2308 	else
2309 		nv50_disp_atomic_commit_tail(state);
2310 
2311 err_cleanup:
2312 	if (ret)
2313 		drm_atomic_helper_cleanup_planes(dev, state);
2314 done:
2315 	pm_runtime_put_autosuspend(dev->dev);
2316 	return ret;
2317 }
2318 
2319 static struct nv50_outp_atom *
2320 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2321 {
2322 	struct nv50_outp_atom *outp;
2323 
2324 	list_for_each_entry(outp, &atom->outp, head) {
2325 		if (outp->encoder == encoder)
2326 			return outp;
2327 	}
2328 
2329 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2330 	if (!outp)
2331 		return ERR_PTR(-ENOMEM);
2332 
2333 	list_add(&outp->head, &atom->outp);
2334 	outp->encoder = encoder;
2335 	return outp;
2336 }
2337 
2338 static int
2339 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2340 				struct drm_connector_state *old_connector_state)
2341 {
2342 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2343 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2344 	struct drm_crtc *crtc;
2345 	struct nv50_outp_atom *outp;
2346 
2347 	if (!(crtc = old_connector_state->crtc))
2348 		return 0;
2349 
2350 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2351 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2352 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2353 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2354 		if (IS_ERR(outp))
2355 			return PTR_ERR(outp);
2356 
2357 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2358 			outp->flush_disable = true;
2359 			atom->flush_disable = true;
2360 		}
2361 		outp->clr.ctrl = true;
2362 		atom->lock_core = true;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static int
2369 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2370 				struct drm_connector_state *connector_state)
2371 {
2372 	struct drm_encoder *encoder = connector_state->best_encoder;
2373 	struct drm_crtc_state *new_crtc_state;
2374 	struct drm_crtc *crtc;
2375 	struct nv50_outp_atom *outp;
2376 
2377 	if (!(crtc = connector_state->crtc))
2378 		return 0;
2379 
2380 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2381 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2382 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2383 		if (IS_ERR(outp))
2384 			return PTR_ERR(outp);
2385 
2386 		outp->set.ctrl = true;
2387 		atom->lock_core = true;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int
2394 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2395 {
2396 	struct nv50_atom *atom = nv50_atom(state);
2397 	struct nv50_core *core = nv50_disp(dev)->core;
2398 	struct drm_connector_state *old_connector_state, *new_connector_state;
2399 	struct drm_connector *connector;
2400 	struct drm_crtc_state *new_crtc_state;
2401 	struct drm_crtc *crtc;
2402 	struct nv50_head *head;
2403 	struct nv50_head_atom *asyh;
2404 	int ret, i;
2405 
2406 	if (core->assign_windows && core->func->head->static_wndw_map) {
2407 		drm_for_each_crtc(crtc, dev) {
2408 			new_crtc_state = drm_atomic_get_crtc_state(state,
2409 								   crtc);
2410 			if (IS_ERR(new_crtc_state))
2411 				return PTR_ERR(new_crtc_state);
2412 
2413 			head = nv50_head(crtc);
2414 			asyh = nv50_head_atom(new_crtc_state);
2415 			core->func->head->static_wndw_map(head, asyh);
2416 		}
2417 	}
2418 
2419 	/* We need to handle colour management on a per-plane basis. */
2420 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2421 		if (new_crtc_state->color_mgmt_changed) {
2422 			ret = drm_atomic_add_affected_planes(state, crtc);
2423 			if (ret)
2424 				return ret;
2425 		}
2426 	}
2427 
2428 	ret = drm_atomic_helper_check(dev, state);
2429 	if (ret)
2430 		return ret;
2431 
2432 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2433 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2434 		if (ret)
2435 			return ret;
2436 
2437 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2438 		if (ret)
2439 			return ret;
2440 	}
2441 
2442 	ret = drm_dp_mst_atomic_check(state);
2443 	if (ret)
2444 		return ret;
2445 
2446 	nv50_crc_atomic_check_outp(atom);
2447 
2448 	return 0;
2449 }
2450 
2451 static void
2452 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2453 {
2454 	struct nv50_atom *atom = nv50_atom(state);
2455 	struct nv50_outp_atom *outp, *outt;
2456 
2457 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2458 		list_del(&outp->head);
2459 		kfree(outp);
2460 	}
2461 
2462 	drm_atomic_state_default_clear(state);
2463 }
2464 
2465 static void
2466 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2467 {
2468 	struct nv50_atom *atom = nv50_atom(state);
2469 	drm_atomic_state_default_release(&atom->state);
2470 	kfree(atom);
2471 }
2472 
2473 static struct drm_atomic_state *
2474 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2475 {
2476 	struct nv50_atom *atom;
2477 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2478 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2479 		kfree(atom);
2480 		return NULL;
2481 	}
2482 	INIT_LIST_HEAD(&atom->outp);
2483 	return &atom->state;
2484 }
2485 
2486 static const struct drm_mode_config_funcs
2487 nv50_disp_func = {
2488 	.fb_create = nouveau_user_framebuffer_create,
2489 	.output_poll_changed = drm_fb_helper_output_poll_changed,
2490 	.atomic_check = nv50_disp_atomic_check,
2491 	.atomic_commit = nv50_disp_atomic_commit,
2492 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2493 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2494 	.atomic_state_free = nv50_disp_atomic_state_free,
2495 };
2496 
2497 static const struct drm_mode_config_helper_funcs
2498 nv50_disp_helper_func = {
2499 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2500 };
2501 
2502 /******************************************************************************
2503  * Init
2504  *****************************************************************************/
2505 
2506 static void
2507 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2508 {
2509 	struct nouveau_drm *drm = nouveau_drm(dev);
2510 	struct drm_encoder *encoder;
2511 
2512 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2513 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2514 			nv50_mstm_fini(nouveau_encoder(encoder));
2515 	}
2516 
2517 	if (!runtime)
2518 		cancel_work_sync(&drm->hpd_work);
2519 }
2520 
2521 static int
2522 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2523 {
2524 	struct nv50_core *core = nv50_disp(dev)->core;
2525 	struct drm_encoder *encoder;
2526 
2527 	if (resume || runtime)
2528 		core->func->init(core);
2529 
2530 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2531 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2532 			struct nouveau_encoder *nv_encoder =
2533 				nouveau_encoder(encoder);
2534 			nv50_mstm_init(nv_encoder, runtime);
2535 		}
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static void
2542 nv50_display_destroy(struct drm_device *dev)
2543 {
2544 	struct nv50_disp *disp = nv50_disp(dev);
2545 
2546 	nv50_audio_component_fini(nouveau_drm(dev));
2547 
2548 	nvif_object_unmap(&disp->caps);
2549 	nvif_object_dtor(&disp->caps);
2550 	nv50_core_del(&disp->core);
2551 
2552 	nouveau_bo_unmap(disp->sync);
2553 	if (disp->sync)
2554 		nouveau_bo_unpin(disp->sync);
2555 	nouveau_bo_ref(NULL, &disp->sync);
2556 
2557 	nouveau_display(dev)->priv = NULL;
2558 	kfree(disp);
2559 }
2560 
2561 int
2562 nv50_display_create(struct drm_device *dev)
2563 {
2564 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2565 	struct nouveau_drm *drm = nouveau_drm(dev);
2566 	struct dcb_table *dcb = &drm->vbios.dcb;
2567 	struct drm_connector *connector, *tmp;
2568 	struct nv50_disp *disp;
2569 	struct dcb_output *dcbe;
2570 	int crtcs, ret, i;
2571 	bool has_mst = nv50_has_mst(drm);
2572 
2573 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2574 	if (!disp)
2575 		return -ENOMEM;
2576 
2577 	mutex_init(&disp->mutex);
2578 
2579 	nouveau_display(dev)->priv = disp;
2580 	nouveau_display(dev)->dtor = nv50_display_destroy;
2581 	nouveau_display(dev)->init = nv50_display_init;
2582 	nouveau_display(dev)->fini = nv50_display_fini;
2583 	disp->disp = &nouveau_display(dev)->disp;
2584 	dev->mode_config.funcs = &nv50_disp_func;
2585 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2586 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2587 	dev->mode_config.normalize_zpos = true;
2588 
2589 	/* small shared memory area we use for notifiers and semaphores */
2590 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2591 			     NOUVEAU_GEM_DOMAIN_VRAM,
2592 			     0, 0x0000, NULL, NULL, &disp->sync);
2593 	if (!ret) {
2594 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2595 		if (!ret) {
2596 			ret = nouveau_bo_map(disp->sync);
2597 			if (ret)
2598 				nouveau_bo_unpin(disp->sync);
2599 		}
2600 		if (ret)
2601 			nouveau_bo_ref(NULL, &disp->sync);
2602 	}
2603 
2604 	if (ret)
2605 		goto out;
2606 
2607 	/* allocate master evo channel */
2608 	ret = nv50_core_new(drm, &disp->core);
2609 	if (ret)
2610 		goto out;
2611 
2612 	disp->core->func->init(disp->core);
2613 	if (disp->core->func->caps_init) {
2614 		ret = disp->core->func->caps_init(drm, disp);
2615 		if (ret)
2616 			goto out;
2617 	}
2618 
2619 	/* Assign the correct format modifiers */
2620 	if (disp->disp->object.oclass >= TU102_DISP)
2621 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2622 	else
2623 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2624 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2625 	else
2626 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2627 
2628 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2629 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2630 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2631 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2632 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2633 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2634 	 * large pages.
2635 	 */
2636 	if (disp->disp->object.oclass >= GM107_DISP) {
2637 		dev->mode_config.cursor_width = 256;
2638 		dev->mode_config.cursor_height = 256;
2639 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2640 		dev->mode_config.cursor_width = 128;
2641 		dev->mode_config.cursor_height = 128;
2642 	} else {
2643 		dev->mode_config.cursor_width = 64;
2644 		dev->mode_config.cursor_height = 64;
2645 	}
2646 
2647 	/* create crtc objects to represent the hw heads */
2648 	if (disp->disp->object.oclass >= GV100_DISP)
2649 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2650 	else
2651 	if (disp->disp->object.oclass >= GF110_DISP)
2652 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2653 	else
2654 		crtcs = 0x3;
2655 
2656 	for (i = 0; i < fls(crtcs); i++) {
2657 		struct nv50_head *head;
2658 
2659 		if (!(crtcs & (1 << i)))
2660 			continue;
2661 
2662 		head = nv50_head_create(dev, i);
2663 		if (IS_ERR(head)) {
2664 			ret = PTR_ERR(head);
2665 			goto out;
2666 		}
2667 
2668 		if (has_mst) {
2669 			head->msto = nv50_msto_new(dev, head, i);
2670 			if (IS_ERR(head->msto)) {
2671 				ret = PTR_ERR(head->msto);
2672 				head->msto = NULL;
2673 				goto out;
2674 			}
2675 
2676 			/*
2677 			 * FIXME: This is a hack to workaround the following
2678 			 * issues:
2679 			 *
2680 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2681 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2682 			 *
2683 			 * Once these issues are closed, this should be
2684 			 * removed
2685 			 */
2686 			head->msto->encoder.possible_crtcs = crtcs;
2687 		}
2688 	}
2689 
2690 	/* create encoder/connector objects based on VBIOS DCB table */
2691 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2692 		connector = nouveau_connector_create(dev, dcbe);
2693 		if (IS_ERR(connector))
2694 			continue;
2695 
2696 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2697 			switch (dcbe->type) {
2698 			case DCB_OUTPUT_TMDS:
2699 			case DCB_OUTPUT_LVDS:
2700 			case DCB_OUTPUT_DP:
2701 				ret = nv50_sor_create(connector, dcbe);
2702 				break;
2703 			case DCB_OUTPUT_ANALOG:
2704 				ret = nv50_dac_create(connector, dcbe);
2705 				break;
2706 			default:
2707 				ret = -ENODEV;
2708 				break;
2709 			}
2710 		} else {
2711 			ret = nv50_pior_create(connector, dcbe);
2712 		}
2713 
2714 		if (ret) {
2715 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2716 				     dcbe->location, dcbe->type,
2717 				     ffs(dcbe->or) - 1, ret);
2718 			ret = 0;
2719 		}
2720 	}
2721 
2722 	/* cull any connectors we created that don't have an encoder */
2723 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2724 		if (connector->possible_encoders)
2725 			continue;
2726 
2727 		NV_WARN(drm, "%s has no encoders, removing\n",
2728 			connector->name);
2729 		connector->funcs->destroy(connector);
2730 	}
2731 
2732 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2733 	dev->vblank_disable_immediate = true;
2734 
2735 	nv50_audio_component_init(drm);
2736 
2737 out:
2738 	if (ret)
2739 		nv50_display_destroy(dev);
2740 	return ret;
2741 }
2742 
2743 /******************************************************************************
2744  * Format modifiers
2745  *****************************************************************************/
2746 
2747 /****************************************************************
2748  *            Log2(block height) ----------------------------+  *
2749  *            Page Kind ----------------------------------+  |  *
2750  *            Gob Height/Page Kind Generation ------+     |  |  *
2751  *                          Sector layout -------+  |     |  |  *
2752  *                          Compression ------+  |  |     |  |  */
2753 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2754 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2755 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2756 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2757 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2758 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2759 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2760 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2761 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2762 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2763 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2764 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2765 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2766 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2767 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2768 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2769 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2770 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2771 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2772 	DRM_FORMAT_MOD_LINEAR,
2773 	DRM_FORMAT_MOD_INVALID
2774 };
2775 
2776 /****************************************************************
2777  *            Log2(block height) ----------------------------+  *
2778  *            Page Kind ----------------------------------+  |  *
2779  *            Gob Height/Page Kind Generation ------+     |  |  *
2780  *                          Sector layout -------+  |     |  |  *
2781  *                          Compression ------+  |  |     |  |  */
2782 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2783 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2784 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2785 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2786 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2787 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2788 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2789 	DRM_FORMAT_MOD_LINEAR,
2790 	DRM_FORMAT_MOD_INVALID
2791 };
2792