1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fb_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_vblank.h> 44 45 #include <nvif/push507c.h> 46 47 #include <nvif/class.h> 48 #include <nvif/cl0002.h> 49 #include <nvif/event.h> 50 #include <nvif/if0012.h> 51 #include <nvif/if0014.h> 52 #include <nvif/timer.h> 53 54 #include <nvhw/class/cl507c.h> 55 #include <nvhw/class/cl507d.h> 56 #include <nvhw/class/cl837d.h> 57 #include <nvhw/class/cl887d.h> 58 #include <nvhw/class/cl907d.h> 59 #include <nvhw/class/cl917d.h> 60 61 #include "nouveau_drv.h" 62 #include "nouveau_dma.h" 63 #include "nouveau_gem.h" 64 #include "nouveau_connector.h" 65 #include "nouveau_encoder.h" 66 #include "nouveau_fence.h" 67 #include "nv50_display.h" 68 69 #include <subdev/bios/dp.h> 70 71 /****************************************************************************** 72 * EVO channel 73 *****************************************************************************/ 74 75 static int 76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 77 const s32 *oclass, u8 head, void *data, u32 size, 78 struct nv50_chan *chan) 79 { 80 struct nvif_sclass *sclass; 81 int ret, i, n; 82 83 chan->device = device; 84 85 ret = n = nvif_object_sclass_get(disp, &sclass); 86 if (ret < 0) 87 return ret; 88 89 while (oclass[0]) { 90 for (i = 0; i < n; i++) { 91 if (sclass[i].oclass == oclass[0]) { 92 ret = nvif_object_ctor(disp, "kmsChan", 0, 93 oclass[0], data, size, 94 &chan->user); 95 if (ret == 0) 96 nvif_object_map(&chan->user, NULL, 0); 97 nvif_object_sclass_put(&sclass); 98 return ret; 99 } 100 } 101 oclass++; 102 } 103 104 nvif_object_sclass_put(&sclass); 105 return -ENOSYS; 106 } 107 108 static void 109 nv50_chan_destroy(struct nv50_chan *chan) 110 { 111 nvif_object_dtor(&chan->user); 112 } 113 114 /****************************************************************************** 115 * DMA EVO channel 116 *****************************************************************************/ 117 118 void 119 nv50_dmac_destroy(struct nv50_dmac *dmac) 120 { 121 nvif_object_dtor(&dmac->vram); 122 nvif_object_dtor(&dmac->sync); 123 124 nv50_chan_destroy(&dmac->base); 125 126 nvif_mem_dtor(&dmac->_push.mem); 127 } 128 129 static void 130 nv50_dmac_kick(struct nvif_push *push) 131 { 132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 133 134 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 135 if (dmac->put != dmac->cur) { 136 /* Push buffer fetches are not coherent with BAR1, we need to ensure 137 * writes have been flushed right through to VRAM before writing PUT. 138 */ 139 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 140 struct nvif_device *device = dmac->base.device; 141 nvif_wr32(&device->object, 0x070000, 0x00000001); 142 nvif_msec(device, 2000, 143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 144 break; 145 ); 146 } 147 148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 149 dmac->put = dmac->cur; 150 } 151 152 push->bgn = push->cur; 153 } 154 155 static int 156 nv50_dmac_free(struct nv50_dmac *dmac) 157 { 158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 160 return get - dmac->cur - 5; 161 return dmac->max - dmac->cur; 162 } 163 164 static int 165 nv50_dmac_wind(struct nv50_dmac *dmac) 166 { 167 /* Wait for GET to depart from the beginning of the push buffer to 168 * prevent writing PUT == GET, which would be ignored by HW. 169 */ 170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 171 if (get == 0) { 172 /* Corner-case, HW idle, but non-committed work pending. */ 173 if (dmac->put == 0) 174 nv50_dmac_kick(dmac->push); 175 176 if (nvif_msec(dmac->base.device, 2000, 177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 178 break; 179 ) < 0) 180 return -ETIMEDOUT; 181 } 182 183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 184 dmac->cur = 0; 185 return 0; 186 } 187 188 static int 189 nv50_dmac_wait(struct nvif_push *push, u32 size) 190 { 191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 192 int free; 193 194 if (WARN_ON(size > dmac->max)) 195 return -EINVAL; 196 197 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 198 if (dmac->cur + size >= dmac->max) { 199 int ret = nv50_dmac_wind(dmac); 200 if (ret) 201 return ret; 202 203 push->cur = dmac->_push.mem.object.map.ptr; 204 push->cur = push->cur + dmac->cur; 205 nv50_dmac_kick(push); 206 } 207 208 if (nvif_msec(dmac->base.device, 2000, 209 if ((free = nv50_dmac_free(dmac)) >= size) 210 break; 211 ) < 0) { 212 WARN_ON(1); 213 return -ETIMEDOUT; 214 } 215 216 push->bgn = dmac->_push.mem.object.map.ptr; 217 push->bgn = push->bgn + dmac->cur; 218 push->cur = push->bgn; 219 push->end = push->cur + free; 220 return 0; 221 } 222 223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 224 static int nv50_dmac_vram_pushbuf = -1; 225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 226 227 int 228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 230 struct nv50_dmac *dmac) 231 { 232 struct nouveau_cli *cli = (void *)device->object.client; 233 struct nvif_disp_chan_v0 *args = data; 234 u8 type = NVIF_MEM_COHERENT; 235 int ret; 236 237 mutex_init(&dmac->lock); 238 239 /* Pascal added support for 47-bit physical addresses, but some 240 * parts of EVO still only accept 40-bit PAs. 241 * 242 * To avoid issues on systems with large amounts of RAM, and on 243 * systems where an IOMMU maps pages at a high address, we need 244 * to allocate push buffers in VRAM instead. 245 * 246 * This appears to match NVIDIA's behaviour on Pascal. 247 */ 248 if ((nv50_dmac_vram_pushbuf > 0) || 249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 250 type |= NVIF_MEM_VRAM; 251 252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 253 &dmac->_push.mem); 254 if (ret) 255 return ret; 256 257 dmac->ptr = dmac->_push.mem.object.map.ptr; 258 dmac->_push.wait = nv50_dmac_wait; 259 dmac->_push.kick = nv50_dmac_kick; 260 dmac->push = &dmac->_push; 261 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 262 dmac->push->cur = dmac->push->bgn; 263 dmac->push->end = dmac->push->bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static int 321 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 322 struct drm_crtc_state *crtc_state, 323 struct drm_connector_state *conn_state, 324 struct drm_display_mode *native_mode) 325 { 326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 327 struct drm_display_mode *mode = &crtc_state->mode; 328 struct drm_connector *connector = conn_state->connector; 329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 330 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 331 332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 333 asyc->scaler.full = false; 334 if (!native_mode) 335 return 0; 336 337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 338 switch (connector->connector_type) { 339 case DRM_MODE_CONNECTOR_LVDS: 340 case DRM_MODE_CONNECTOR_eDP: 341 /* Don't force scaler for EDID modes with 342 * same size as the native one (e.g. different 343 * refresh rate) 344 */ 345 if (mode->hdisplay == native_mode->hdisplay && 346 mode->vdisplay == native_mode->vdisplay && 347 mode->type & DRM_MODE_TYPE_DRIVER) 348 break; 349 mode = native_mode; 350 asyc->scaler.full = true; 351 break; 352 default: 353 break; 354 } 355 } else { 356 mode = native_mode; 357 } 358 359 if (!drm_mode_equal(adjusted_mode, mode)) { 360 drm_mode_copy(adjusted_mode, mode); 361 crtc_state->mode_changed = true; 362 } 363 364 return 0; 365 } 366 367 static void 368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 369 { 370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 372 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 373 unsigned int max_rate, mode_rate; 374 375 switch (nv_encoder->dcb->type) { 376 case DCB_OUTPUT_DP: 377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 378 379 /* we don't support more than 10 anyway */ 380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 381 382 /* reduce the bpc until it works out */ 383 while (asyh->or.bpc > 6) { 384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 385 if (mode_rate <= max_rate) 386 break; 387 388 asyh->or.bpc -= 2; 389 } 390 break; 391 default: 392 break; 393 } 394 } 395 396 static int 397 nv50_outp_atomic_check(struct drm_encoder *encoder, 398 struct drm_crtc_state *crtc_state, 399 struct drm_connector_state *conn_state) 400 { 401 struct drm_connector *connector = conn_state->connector; 402 struct nouveau_connector *nv_connector = nouveau_connector(connector); 403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 404 int ret; 405 406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 407 nv_connector->native_mode); 408 if (ret) 409 return ret; 410 411 if (crtc_state->mode_changed || crtc_state->connectors_changed) 412 asyh->or.bpc = connector->display_info.bpc; 413 414 /* We might have to reduce the bpc */ 415 nv50_outp_atomic_fix_depth(encoder, crtc_state); 416 417 return 0; 418 } 419 420 struct nouveau_connector * 421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 422 { 423 struct drm_connector *connector; 424 struct drm_connector_state *connector_state; 425 struct drm_encoder *encoder = to_drm_encoder(outp); 426 int i; 427 428 for_each_new_connector_in_state(state, connector, connector_state, i) { 429 if (connector_state->best_encoder == encoder) 430 return nouveau_connector(connector); 431 } 432 433 return NULL; 434 } 435 436 struct nouveau_connector * 437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 438 { 439 struct drm_connector *connector; 440 struct drm_connector_state *connector_state; 441 struct drm_encoder *encoder = to_drm_encoder(outp); 442 int i; 443 444 for_each_old_connector_in_state(state, connector, connector_state, i) { 445 if (connector_state->best_encoder == encoder) 446 return nouveau_connector(connector); 447 } 448 449 return NULL; 450 } 451 452 static struct nouveau_crtc * 453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 454 { 455 struct drm_crtc *crtc; 456 struct drm_crtc_state *crtc_state; 457 const u32 mask = drm_encoder_mask(&outp->base.base); 458 int i; 459 460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 461 if (crtc_state->encoder_mask & mask) 462 return nouveau_crtc(crtc); 463 } 464 465 return NULL; 466 } 467 468 /****************************************************************************** 469 * DAC 470 *****************************************************************************/ 471 static void 472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 473 { 474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 475 struct nv50_core *core = nv50_disp(encoder->dev)->core; 476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 477 478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 479 nv_encoder->crtc = NULL; 480 nvif_outp_release(&nv_encoder->outp); 481 } 482 483 static void 484 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 485 { 486 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 487 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 488 struct nv50_head_atom *asyh = 489 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 490 struct nv50_core *core = nv50_disp(encoder->dev)->core; 491 u32 ctrl = 0; 492 493 switch (nv_crtc->index) { 494 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 495 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 496 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 497 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 498 default: 499 WARN_ON(1); 500 break; 501 } 502 503 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 504 505 nvif_outp_acquire_rgb_crt(&nv_encoder->outp); 506 507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 508 asyh->or.depth = 0; 509 510 nv_encoder->crtc = &nv_crtc->base; 511 } 512 513 static enum drm_connector_status 514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 515 { 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 u32 loadval; 518 int ret; 519 520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 521 if (loadval == 0) 522 loadval = 340; 523 524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 525 if (ret <= 0) 526 return connector_status_disconnected; 527 528 return connector_status_connected; 529 } 530 531 static const struct drm_encoder_helper_funcs 532 nv50_dac_help = { 533 .atomic_check = nv50_outp_atomic_check, 534 .atomic_enable = nv50_dac_atomic_enable, 535 .atomic_disable = nv50_dac_atomic_disable, 536 .detect = nv50_dac_detect 537 }; 538 539 static void 540 nv50_dac_destroy(struct drm_encoder *encoder) 541 { 542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 543 544 nvif_outp_dtor(&nv_encoder->outp); 545 546 drm_encoder_cleanup(encoder); 547 kfree(encoder); 548 } 549 550 static const struct drm_encoder_funcs 551 nv50_dac_func = { 552 .destroy = nv50_dac_destroy, 553 }; 554 555 static int 556 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) 557 { 558 struct nouveau_drm *drm = nouveau_drm(connector->dev); 559 struct nv50_disp *disp = nv50_disp(connector->dev); 560 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 561 struct nvkm_i2c_bus *bus; 562 struct nouveau_encoder *nv_encoder; 563 struct drm_encoder *encoder; 564 int type = DRM_MODE_ENCODER_DAC; 565 566 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 567 if (!nv_encoder) 568 return -ENOMEM; 569 nv_encoder->dcb = dcbe; 570 571 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 572 if (bus) 573 nv_encoder->i2c = &bus->i2c; 574 575 encoder = to_drm_encoder(nv_encoder); 576 encoder->possible_crtcs = dcbe->heads; 577 encoder->possible_clones = 0; 578 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 579 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 580 drm_encoder_helper_add(encoder, &nv50_dac_help); 581 582 drm_connector_attach_encoder(connector, encoder); 583 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 584 } 585 586 /* 587 * audio component binding for ELD notification 588 */ 589 static void 590 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 591 int dev_id) 592 { 593 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 594 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 595 port, dev_id); 596 } 597 598 static int 599 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 600 bool *enabled, unsigned char *buf, int max_bytes) 601 { 602 struct drm_device *drm_dev = dev_get_drvdata(kdev); 603 struct nouveau_drm *drm = nouveau_drm(drm_dev); 604 struct drm_encoder *encoder; 605 struct nouveau_encoder *nv_encoder; 606 struct nouveau_crtc *nv_crtc; 607 int ret = 0; 608 609 *enabled = false; 610 611 mutex_lock(&drm->audio.lock); 612 613 drm_for_each_encoder(encoder, drm->dev) { 614 struct nouveau_connector *nv_connector = NULL; 615 616 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 617 continue; /* TODO */ 618 619 nv_encoder = nouveau_encoder(encoder); 620 nv_connector = nouveau_connector(nv_encoder->audio.connector); 621 nv_crtc = nouveau_crtc(nv_encoder->crtc); 622 623 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 624 continue; 625 626 *enabled = nv_encoder->audio.enabled; 627 if (*enabled) { 628 ret = drm_eld_size(nv_connector->base.eld); 629 memcpy(buf, nv_connector->base.eld, 630 min(max_bytes, ret)); 631 } 632 break; 633 } 634 635 mutex_unlock(&drm->audio.lock); 636 637 return ret; 638 } 639 640 static const struct drm_audio_component_ops nv50_audio_component_ops = { 641 .get_eld = nv50_audio_component_get_eld, 642 }; 643 644 static int 645 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 646 void *data) 647 { 648 struct drm_device *drm_dev = dev_get_drvdata(kdev); 649 struct nouveau_drm *drm = nouveau_drm(drm_dev); 650 struct drm_audio_component *acomp = data; 651 652 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 653 return -ENOMEM; 654 655 drm_modeset_lock_all(drm_dev); 656 acomp->ops = &nv50_audio_component_ops; 657 acomp->dev = kdev; 658 drm->audio.component = acomp; 659 drm_modeset_unlock_all(drm_dev); 660 return 0; 661 } 662 663 static void 664 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 665 void *data) 666 { 667 struct drm_device *drm_dev = dev_get_drvdata(kdev); 668 struct nouveau_drm *drm = nouveau_drm(drm_dev); 669 struct drm_audio_component *acomp = data; 670 671 drm_modeset_lock_all(drm_dev); 672 drm->audio.component = NULL; 673 acomp->ops = NULL; 674 acomp->dev = NULL; 675 drm_modeset_unlock_all(drm_dev); 676 } 677 678 static const struct component_ops nv50_audio_component_bind_ops = { 679 .bind = nv50_audio_component_bind, 680 .unbind = nv50_audio_component_unbind, 681 }; 682 683 static void 684 nv50_audio_component_init(struct nouveau_drm *drm) 685 { 686 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 687 return; 688 689 drm->audio.component_registered = true; 690 mutex_init(&drm->audio.lock); 691 } 692 693 static void 694 nv50_audio_component_fini(struct nouveau_drm *drm) 695 { 696 if (!drm->audio.component_registered) 697 return; 698 699 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 700 drm->audio.component_registered = false; 701 mutex_destroy(&drm->audio.lock); 702 } 703 704 /****************************************************************************** 705 * Audio 706 *****************************************************************************/ 707 static bool 708 nv50_audio_supported(struct drm_encoder *encoder) 709 { 710 struct nv50_disp *disp = nv50_disp(encoder->dev); 711 712 if (disp->disp->object.oclass <= GT200_DISP || 713 disp->disp->object.oclass == GT206_DISP) 714 return false; 715 716 return true; 717 } 718 719 static void 720 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 721 { 722 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 723 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 724 struct nvif_outp *outp = &nv_encoder->outp; 725 726 if (!nv50_audio_supported(encoder)) 727 return; 728 729 mutex_lock(&drm->audio.lock); 730 if (nv_encoder->audio.enabled) { 731 nv_encoder->audio.enabled = false; 732 nv_encoder->audio.connector = NULL; 733 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 734 } 735 mutex_unlock(&drm->audio.lock); 736 737 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 738 } 739 740 static void 741 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 742 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 743 struct drm_display_mode *mode) 744 { 745 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 746 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 747 struct nvif_outp *outp = &nv_encoder->outp; 748 749 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 750 return; 751 752 mutex_lock(&drm->audio.lock); 753 754 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 755 drm_eld_size(nv_connector->base.eld)); 756 nv_encoder->audio.enabled = true; 757 nv_encoder->audio.connector = &nv_connector->base; 758 759 mutex_unlock(&drm->audio.lock); 760 761 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 762 } 763 764 /****************************************************************************** 765 * HDMI 766 *****************************************************************************/ 767 static void 768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 769 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 770 struct drm_display_mode *mode, bool hda) 771 { 772 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 773 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 774 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 775 union hdmi_infoframe infoframe = { 0 }; 776 const u8 rekey = 56; /* binary driver, and tegra, constant */ 777 u8 scdc = 0; 778 u32 max_ac_packet; 779 struct { 780 struct nvif_outp_infoframe_v0 infoframe; 781 u8 data[17]; 782 } args = { 0 }; 783 int ret, size; 784 785 max_ac_packet = mode->htotal - mode->hdisplay; 786 max_ac_packet -= rekey; 787 max_ac_packet -= 18; /* constant from tegra */ 788 max_ac_packet /= 32; 789 790 if (hdmi->scdc.scrambling.supported) { 791 const bool high_tmds_clock_ratio = mode->clock > 340000; 792 793 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 794 if (ret < 0) { 795 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 796 return; 797 } 798 799 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 800 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 801 scdc |= SCDC_SCRAMBLING_ENABLE; 802 if (high_tmds_clock_ratio) 803 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 804 805 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 806 if (ret < 0) 807 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 808 scdc, ret); 809 } 810 811 ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true, 812 max_ac_packet, rekey, scdc, hda); 813 if (ret) 814 return; 815 816 /* AVI InfoFrame. */ 817 args.infoframe.version = 0; 818 args.infoframe.head = nv_crtc->index; 819 820 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 821 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 822 HDMI_QUANTIZATION_RANGE_FULL); 823 824 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 825 } else { 826 size = 0; 827 } 828 829 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 830 831 /* Vendor InfoFrame. */ 832 memset(&args.data, 0, sizeof(args.data)); 833 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 834 &nv_connector->base, mode)) 835 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 836 else 837 size = 0; 838 839 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 840 841 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 842 } 843 844 /****************************************************************************** 845 * MST 846 *****************************************************************************/ 847 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 848 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 849 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 850 851 struct nv50_mstc { 852 struct nv50_mstm *mstm; 853 struct drm_dp_mst_port *port; 854 struct drm_connector connector; 855 856 struct drm_display_mode *native; 857 struct edid *edid; 858 }; 859 860 struct nv50_msto { 861 struct drm_encoder encoder; 862 863 /* head is statically assigned on msto creation */ 864 struct nv50_head *head; 865 struct nv50_mstc *mstc; 866 bool disabled; 867 bool enabled; 868 }; 869 870 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 871 { 872 struct nv50_msto *msto; 873 874 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 875 return nouveau_encoder(encoder); 876 877 msto = nv50_msto(encoder); 878 if (!msto->mstc) 879 return NULL; 880 return msto->mstc->mstm->outp; 881 } 882 883 static void 884 nv50_msto_cleanup(struct drm_atomic_state *state, 885 struct drm_dp_mst_topology_state *mst_state, 886 struct drm_dp_mst_topology_mgr *mgr, 887 struct nv50_msto *msto) 888 { 889 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 890 struct drm_dp_mst_atomic_payload *payload = 891 drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port); 892 893 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 894 895 if (msto->disabled) { 896 msto->mstc = NULL; 897 msto->disabled = false; 898 } else if (msto->enabled) { 899 drm_dp_add_payload_part2(mgr, state, payload); 900 msto->enabled = false; 901 } 902 } 903 904 static void 905 nv50_msto_prepare(struct drm_atomic_state *state, 906 struct drm_dp_mst_topology_state *mst_state, 907 struct drm_dp_mst_topology_mgr *mgr, 908 struct nv50_msto *msto) 909 { 910 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 911 struct nv50_mstc *mstc = msto->mstc; 912 struct nv50_mstm *mstm = mstc->mstm; 913 struct drm_dp_mst_topology_state *old_mst_state; 914 struct drm_dp_mst_atomic_payload *payload, *old_payload; 915 916 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 917 918 old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr); 919 920 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 921 old_payload = drm_atomic_get_mst_payload_state(old_mst_state, mstc->port); 922 923 // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here? 924 if (msto->disabled) { 925 drm_dp_remove_payload(mgr, mst_state, old_payload, payload); 926 927 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 928 } else { 929 if (msto->enabled) 930 drm_dp_add_payload_part1(mgr, mst_state, payload); 931 932 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 933 payload->vc_start_slot, payload->time_slots, 934 payload->pbn, payload->time_slots * mst_state->pbn_div); 935 } 936 } 937 938 static int 939 nv50_msto_atomic_check(struct drm_encoder *encoder, 940 struct drm_crtc_state *crtc_state, 941 struct drm_connector_state *conn_state) 942 { 943 struct drm_atomic_state *state = crtc_state->state; 944 struct drm_connector *connector = conn_state->connector; 945 struct drm_dp_mst_topology_state *mst_state; 946 struct nv50_mstc *mstc = nv50_mstc(connector); 947 struct nv50_mstm *mstm = mstc->mstm; 948 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 949 int slots; 950 int ret; 951 952 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 953 mstc->native); 954 if (ret) 955 return ret; 956 957 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 958 return 0; 959 960 /* 961 * When restoring duplicated states, we need to make sure that the bw 962 * remains the same and avoid recalculating it, as the connector's bpc 963 * may have changed after the state was duplicated 964 */ 965 if (!state->duplicated) { 966 const int clock = crtc_state->adjusted_mode.clock; 967 968 asyh->or.bpc = connector->display_info.bpc; 969 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 970 } 971 972 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 973 if (IS_ERR(mst_state)) 974 return PTR_ERR(mst_state); 975 976 if (!mst_state->pbn_div) { 977 struct nouveau_encoder *outp = mstc->mstm->outp; 978 979 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 980 outp->dp.link_bw, outp->dp.link_nr); 981 } 982 983 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 984 if (slots < 0) 985 return slots; 986 987 asyh->dp.tu = slots; 988 989 return 0; 990 } 991 992 static u8 993 nv50_dp_bpc_to_depth(unsigned int bpc) 994 { 995 switch (bpc) { 996 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 997 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 998 case 10: 999 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1000 } 1001 } 1002 1003 static void 1004 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1005 { 1006 struct nv50_msto *msto = nv50_msto(encoder); 1007 struct nv50_head *head = msto->head; 1008 struct nv50_head_atom *asyh = 1009 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1010 struct nv50_mstc *mstc = NULL; 1011 struct nv50_mstm *mstm = NULL; 1012 struct drm_connector *connector; 1013 struct drm_connector_list_iter conn_iter; 1014 u8 proto; 1015 1016 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1017 drm_for_each_connector_iter(connector, &conn_iter) { 1018 if (connector->state->best_encoder == &msto->encoder) { 1019 mstc = nv50_mstc(connector); 1020 mstm = mstc->mstm; 1021 break; 1022 } 1023 } 1024 drm_connector_list_iter_end(&conn_iter); 1025 1026 if (WARN_ON(!mstc)) 1027 return; 1028 1029 if (!mstm->links++) { 1030 /*XXX: MST audio. */ 1031 nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true); 1032 } 1033 1034 if (mstm->outp->outp.or.link & 1) 1035 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1036 else 1037 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1038 1039 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1040 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1041 1042 msto->mstc = mstc; 1043 msto->enabled = true; 1044 mstm->modified = true; 1045 } 1046 1047 static void 1048 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1049 { 1050 struct nv50_msto *msto = nv50_msto(encoder); 1051 struct nv50_mstc *mstc = msto->mstc; 1052 struct nv50_mstm *mstm = mstc->mstm; 1053 1054 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1055 mstm->modified = true; 1056 if (!--mstm->links) 1057 mstm->disabled = true; 1058 msto->disabled = true; 1059 } 1060 1061 static const struct drm_encoder_helper_funcs 1062 nv50_msto_help = { 1063 .atomic_disable = nv50_msto_atomic_disable, 1064 .atomic_enable = nv50_msto_atomic_enable, 1065 .atomic_check = nv50_msto_atomic_check, 1066 }; 1067 1068 static void 1069 nv50_msto_destroy(struct drm_encoder *encoder) 1070 { 1071 struct nv50_msto *msto = nv50_msto(encoder); 1072 drm_encoder_cleanup(&msto->encoder); 1073 kfree(msto); 1074 } 1075 1076 static const struct drm_encoder_funcs 1077 nv50_msto = { 1078 .destroy = nv50_msto_destroy, 1079 }; 1080 1081 static struct nv50_msto * 1082 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1083 { 1084 struct nv50_msto *msto; 1085 int ret; 1086 1087 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1088 if (!msto) 1089 return ERR_PTR(-ENOMEM); 1090 1091 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1092 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1093 if (ret) { 1094 kfree(msto); 1095 return ERR_PTR(ret); 1096 } 1097 1098 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1099 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1100 msto->head = head; 1101 return msto; 1102 } 1103 1104 static struct drm_encoder * 1105 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1106 struct drm_atomic_state *state) 1107 { 1108 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1109 connector); 1110 struct nv50_mstc *mstc = nv50_mstc(connector); 1111 struct drm_crtc *crtc = connector_state->crtc; 1112 1113 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1114 return NULL; 1115 1116 return &nv50_head(crtc)->msto->encoder; 1117 } 1118 1119 static enum drm_mode_status 1120 nv50_mstc_mode_valid(struct drm_connector *connector, 1121 struct drm_display_mode *mode) 1122 { 1123 struct nv50_mstc *mstc = nv50_mstc(connector); 1124 struct nouveau_encoder *outp = mstc->mstm->outp; 1125 1126 /* TODO: calculate the PBN from the dotclock and validate against the 1127 * MSTB's max possible PBN 1128 */ 1129 1130 return nv50_dp_mode_valid(outp, mode, NULL); 1131 } 1132 1133 static int 1134 nv50_mstc_get_modes(struct drm_connector *connector) 1135 { 1136 struct nv50_mstc *mstc = nv50_mstc(connector); 1137 int ret = 0; 1138 1139 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1140 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1141 if (mstc->edid) 1142 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1143 1144 /* 1145 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1146 * to 8 to save bandwidth on the topology. In the future, we'll want 1147 * to properly fix this by dynamically selecting the highest possible 1148 * bpc that would fit in the topology 1149 */ 1150 if (connector->display_info.bpc) 1151 connector->display_info.bpc = 1152 clamp(connector->display_info.bpc, 6U, 8U); 1153 else 1154 connector->display_info.bpc = 8; 1155 1156 if (mstc->native) 1157 drm_mode_destroy(mstc->connector.dev, mstc->native); 1158 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1159 return ret; 1160 } 1161 1162 static int 1163 nv50_mstc_atomic_check(struct drm_connector *connector, 1164 struct drm_atomic_state *state) 1165 { 1166 struct nv50_mstc *mstc = nv50_mstc(connector); 1167 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1168 1169 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1170 } 1171 1172 static int 1173 nv50_mstc_detect(struct drm_connector *connector, 1174 struct drm_modeset_acquire_ctx *ctx, bool force) 1175 { 1176 struct nv50_mstc *mstc = nv50_mstc(connector); 1177 int ret; 1178 1179 if (drm_connector_is_unregistered(connector)) 1180 return connector_status_disconnected; 1181 1182 ret = pm_runtime_get_sync(connector->dev->dev); 1183 if (ret < 0 && ret != -EACCES) { 1184 pm_runtime_put_autosuspend(connector->dev->dev); 1185 return connector_status_disconnected; 1186 } 1187 1188 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1189 mstc->port); 1190 if (ret != connector_status_connected) 1191 goto out; 1192 1193 out: 1194 pm_runtime_mark_last_busy(connector->dev->dev); 1195 pm_runtime_put_autosuspend(connector->dev->dev); 1196 return ret; 1197 } 1198 1199 static const struct drm_connector_helper_funcs 1200 nv50_mstc_help = { 1201 .get_modes = nv50_mstc_get_modes, 1202 .mode_valid = nv50_mstc_mode_valid, 1203 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1204 .atomic_check = nv50_mstc_atomic_check, 1205 .detect_ctx = nv50_mstc_detect, 1206 }; 1207 1208 static void 1209 nv50_mstc_destroy(struct drm_connector *connector) 1210 { 1211 struct nv50_mstc *mstc = nv50_mstc(connector); 1212 1213 drm_connector_cleanup(&mstc->connector); 1214 drm_dp_mst_put_port_malloc(mstc->port); 1215 1216 kfree(mstc); 1217 } 1218 1219 static const struct drm_connector_funcs 1220 nv50_mstc = { 1221 .reset = nouveau_conn_reset, 1222 .fill_modes = drm_helper_probe_single_connector_modes, 1223 .destroy = nv50_mstc_destroy, 1224 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1225 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1226 .atomic_set_property = nouveau_conn_atomic_set_property, 1227 .atomic_get_property = nouveau_conn_atomic_get_property, 1228 }; 1229 1230 static int 1231 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1232 const char *path, struct nv50_mstc **pmstc) 1233 { 1234 struct drm_device *dev = mstm->outp->base.base.dev; 1235 struct drm_crtc *crtc; 1236 struct nv50_mstc *mstc; 1237 int ret; 1238 1239 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1240 return -ENOMEM; 1241 mstc->mstm = mstm; 1242 mstc->port = port; 1243 1244 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1245 DRM_MODE_CONNECTOR_DisplayPort); 1246 if (ret) { 1247 kfree(*pmstc); 1248 *pmstc = NULL; 1249 return ret; 1250 } 1251 1252 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1253 1254 mstc->connector.funcs->reset(&mstc->connector); 1255 nouveau_conn_attach_properties(&mstc->connector); 1256 1257 drm_for_each_crtc(crtc, dev) { 1258 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1259 continue; 1260 1261 drm_connector_attach_encoder(&mstc->connector, 1262 &nv50_head(crtc)->msto->encoder); 1263 } 1264 1265 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1266 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1267 drm_connector_set_path_property(&mstc->connector, path); 1268 drm_dp_mst_get_port_malloc(port); 1269 return 0; 1270 } 1271 1272 static void 1273 nv50_mstm_cleanup(struct drm_atomic_state *state, 1274 struct drm_dp_mst_topology_state *mst_state, 1275 struct nv50_mstm *mstm) 1276 { 1277 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1278 struct drm_encoder *encoder; 1279 1280 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1281 drm_dp_check_act_status(&mstm->mgr); 1282 1283 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1284 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1285 struct nv50_msto *msto = nv50_msto(encoder); 1286 struct nv50_mstc *mstc = msto->mstc; 1287 if (mstc && mstc->mstm == mstm) 1288 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1289 } 1290 } 1291 1292 mstm->modified = false; 1293 } 1294 1295 static void 1296 nv50_mstm_prepare(struct drm_atomic_state *state, 1297 struct drm_dp_mst_topology_state *mst_state, 1298 struct nv50_mstm *mstm) 1299 { 1300 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1301 struct drm_encoder *encoder; 1302 1303 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1304 1305 /* Disable payloads first */ 1306 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1307 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1308 struct nv50_msto *msto = nv50_msto(encoder); 1309 struct nv50_mstc *mstc = msto->mstc; 1310 if (mstc && mstc->mstm == mstm && msto->disabled) 1311 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1312 } 1313 } 1314 1315 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1316 * active) heads that may have had their VC slots shifted left after the previous step 1317 */ 1318 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1319 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1320 struct nv50_msto *msto = nv50_msto(encoder); 1321 struct nv50_mstc *mstc = msto->mstc; 1322 if (mstc && mstc->mstm == mstm && !msto->disabled) 1323 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1324 } 1325 } 1326 1327 if (mstm->disabled) { 1328 if (!mstm->links) 1329 nvif_outp_release(&mstm->outp->outp); 1330 mstm->disabled = false; 1331 } 1332 } 1333 1334 static struct drm_connector * 1335 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1336 struct drm_dp_mst_port *port, const char *path) 1337 { 1338 struct nv50_mstm *mstm = nv50_mstm(mgr); 1339 struct nv50_mstc *mstc; 1340 int ret; 1341 1342 ret = nv50_mstc_new(mstm, port, path, &mstc); 1343 if (ret) 1344 return NULL; 1345 1346 return &mstc->connector; 1347 } 1348 1349 static const struct drm_dp_mst_topology_cbs 1350 nv50_mstm = { 1351 .add_connector = nv50_mstm_add_connector, 1352 }; 1353 1354 bool 1355 nv50_mstm_service(struct nouveau_drm *drm, 1356 struct nouveau_connector *nv_connector, 1357 struct nv50_mstm *mstm) 1358 { 1359 struct drm_dp_aux *aux = &nv_connector->aux; 1360 bool handled = true, ret = true; 1361 int rc; 1362 u8 esi[8] = {}; 1363 1364 while (handled) { 1365 u8 ack[8] = {}; 1366 1367 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1368 if (rc != 8) { 1369 ret = false; 1370 break; 1371 } 1372 1373 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1374 if (!handled) 1375 break; 1376 1377 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1378 1379 if (rc != 1) { 1380 ret = false; 1381 break; 1382 } 1383 1384 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1385 } 1386 1387 if (!ret) 1388 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1389 nv_connector->base.name, rc); 1390 1391 return ret; 1392 } 1393 1394 void 1395 nv50_mstm_remove(struct nv50_mstm *mstm) 1396 { 1397 mstm->is_mst = false; 1398 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1399 } 1400 1401 int 1402 nv50_mstm_detect(struct nouveau_encoder *outp) 1403 { 1404 struct nv50_mstm *mstm = outp->dp.mstm; 1405 struct drm_dp_aux *aux; 1406 int ret; 1407 1408 if (!mstm || !mstm->can_mst) 1409 return 0; 1410 1411 aux = mstm->mgr.aux; 1412 1413 /* Clear any leftover MST state we didn't set ourselves by first 1414 * disabling MST if it was already enabled 1415 */ 1416 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1417 if (ret < 0) 1418 return ret; 1419 1420 /* And start enabling */ 1421 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1422 if (ret) 1423 return ret; 1424 1425 mstm->is_mst = true; 1426 return 1; 1427 } 1428 1429 static void 1430 nv50_mstm_fini(struct nouveau_encoder *outp) 1431 { 1432 struct nv50_mstm *mstm = outp->dp.mstm; 1433 1434 if (!mstm) 1435 return; 1436 1437 /* Don't change the MST state of this connector until we've finished 1438 * resuming, since we can't safely grab hpd_irq_lock in our resume 1439 * path to protect mstm->is_mst without potentially deadlocking 1440 */ 1441 mutex_lock(&outp->dp.hpd_irq_lock); 1442 mstm->suspended = true; 1443 mutex_unlock(&outp->dp.hpd_irq_lock); 1444 1445 if (mstm->is_mst) 1446 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1447 } 1448 1449 static void 1450 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1451 { 1452 struct nv50_mstm *mstm = outp->dp.mstm; 1453 int ret = 0; 1454 1455 if (!mstm) 1456 return; 1457 1458 if (mstm->is_mst) { 1459 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1460 if (ret == -1) 1461 nv50_mstm_remove(mstm); 1462 } 1463 1464 mutex_lock(&outp->dp.hpd_irq_lock); 1465 mstm->suspended = false; 1466 mutex_unlock(&outp->dp.hpd_irq_lock); 1467 1468 if (ret == -1) 1469 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1470 } 1471 1472 static void 1473 nv50_mstm_del(struct nv50_mstm **pmstm) 1474 { 1475 struct nv50_mstm *mstm = *pmstm; 1476 if (mstm) { 1477 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1478 kfree(*pmstm); 1479 *pmstm = NULL; 1480 } 1481 } 1482 1483 static int 1484 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1485 int conn_base_id, struct nv50_mstm **pmstm) 1486 { 1487 const int max_payloads = hweight8(outp->dcb->heads); 1488 struct drm_device *dev = outp->base.base.dev; 1489 struct nv50_mstm *mstm; 1490 int ret; 1491 1492 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1493 return -ENOMEM; 1494 mstm->outp = outp; 1495 mstm->mgr.cbs = &nv50_mstm; 1496 1497 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1498 max_payloads, conn_base_id); 1499 if (ret) 1500 return ret; 1501 1502 return 0; 1503 } 1504 1505 /****************************************************************************** 1506 * SOR 1507 *****************************************************************************/ 1508 static void 1509 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1510 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1511 { 1512 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1513 struct nv50_core *core = disp->core; 1514 1515 if (!asyh) { 1516 nv_encoder->ctrl &= ~BIT(head); 1517 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1518 nv_encoder->ctrl = 0; 1519 } else { 1520 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1521 nv_encoder->ctrl |= BIT(head); 1522 asyh->or.depth = depth; 1523 } 1524 1525 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1526 } 1527 1528 /* TODO: Should we extend this to PWM-only backlights? 1529 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1530 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1531 * fixed time delay from the vbios… 1532 */ 1533 static void 1534 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1535 { 1536 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1537 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); 1538 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1539 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1540 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1541 struct nouveau_backlight *backlight = nv_connector->backlight; 1542 #endif 1543 struct drm_dp_aux *aux = &nv_connector->aux; 1544 int ret; 1545 u8 pwr; 1546 1547 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1548 if (backlight && backlight->uses_dpcd) { 1549 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1550 if (ret < 0) 1551 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1552 nv_connector->base.base.id, nv_connector->base.name, ret); 1553 } 1554 #endif 1555 1556 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { 1557 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr); 1558 1559 if (ret == 0) { 1560 pwr &= ~DP_SET_POWER_MASK; 1561 pwr |= DP_SET_POWER_D3; 1562 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr); 1563 } 1564 } 1565 1566 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); 1567 nv50_audio_disable(encoder, nv_crtc); 1568 nvif_outp_release(&nv_encoder->outp); 1569 nv_encoder->crtc = NULL; 1570 } 1571 1572 static void 1573 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1574 { 1575 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1576 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1577 struct nv50_head_atom *asyh = 1578 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1579 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1580 struct nv50_disp *disp = nv50_disp(encoder->dev); 1581 struct nvif_outp *outp = &nv_encoder->outp; 1582 struct drm_device *dev = encoder->dev; 1583 struct nouveau_drm *drm = nouveau_drm(dev); 1584 struct nouveau_connector *nv_connector; 1585 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1586 struct nouveau_backlight *backlight; 1587 #endif 1588 struct nvbios *bios = &drm->vbios; 1589 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1590 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1591 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1592 1593 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1594 nv_encoder->crtc = &nv_crtc->base; 1595 1596 if ((disp->disp->object.oclass == GT214_DISP || 1597 disp->disp->object.oclass >= GF110_DISP) && 1598 drm_detect_monitor_audio(nv_connector->edid)) 1599 hda = true; 1600 1601 switch (nv_encoder->dcb->type) { 1602 case DCB_OUTPUT_TMDS: 1603 if (disp->disp->object.oclass == NV50_DISP || 1604 !drm_detect_hdmi_monitor(nv_connector->edid)) 1605 nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false); 1606 else 1607 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1608 1609 if (nv_encoder->outp.or.link & 1) { 1610 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1611 /* Only enable dual-link if: 1612 * - Need to (i.e. rate > 165MHz) 1613 * - DCB says we can 1614 * - Not an HDMI monitor, since there's no dual-link 1615 * on HDMI. 1616 */ 1617 if (mode->clock >= 165000 && 1618 nv_encoder->dcb->duallink_possible && 1619 !drm_detect_hdmi_monitor(nv_connector->edid)) 1620 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1621 } else { 1622 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1623 } 1624 break; 1625 case DCB_OUTPUT_LVDS: 1626 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1627 1628 if (bios->fp_no_ddc) { 1629 lvds_dual = bios->fp.dual_link; 1630 lvds_8bpc = bios->fp.if_is_24bit; 1631 } else { 1632 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1633 if (((u8 *)nv_connector->edid)[121] == 2) 1634 lvds_dual = true; 1635 } else 1636 if (mode->clock >= bios->fp.duallink_transition_clk) { 1637 lvds_dual = true; 1638 } 1639 1640 if (lvds_dual) { 1641 if (bios->fp.strapless_is_24bit & 2) 1642 lvds_8bpc = true; 1643 } else { 1644 if (bios->fp.strapless_is_24bit & 1) 1645 lvds_8bpc = true; 1646 } 1647 1648 if (asyh->or.bpc == 8) 1649 lvds_8bpc = true; 1650 } 1651 1652 nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1653 break; 1654 case DCB_OUTPUT_DP: 1655 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false); 1656 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1657 1658 if (nv_encoder->outp.or.link & 1) 1659 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1660 else 1661 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1662 1663 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); 1664 1665 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1666 backlight = nv_connector->backlight; 1667 if (backlight && backlight->uses_dpcd) 1668 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1669 (u16)backlight->dev->props.brightness); 1670 #endif 1671 1672 break; 1673 default: 1674 BUG(); 1675 break; 1676 } 1677 1678 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1679 } 1680 1681 static const struct drm_encoder_helper_funcs 1682 nv50_sor_help = { 1683 .atomic_check = nv50_outp_atomic_check, 1684 .atomic_enable = nv50_sor_atomic_enable, 1685 .atomic_disable = nv50_sor_atomic_disable, 1686 }; 1687 1688 static void 1689 nv50_sor_destroy(struct drm_encoder *encoder) 1690 { 1691 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1692 1693 nvif_outp_dtor(&nv_encoder->outp); 1694 1695 nv50_mstm_del(&nv_encoder->dp.mstm); 1696 drm_encoder_cleanup(encoder); 1697 1698 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1699 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1700 1701 kfree(encoder); 1702 } 1703 1704 static const struct drm_encoder_funcs 1705 nv50_sor_func = { 1706 .destroy = nv50_sor_destroy, 1707 }; 1708 1709 bool nv50_has_mst(struct nouveau_drm *drm) 1710 { 1711 struct nvkm_bios *bios = nvxx_bios(&drm->client.device); 1712 u32 data; 1713 u8 ver, hdr, cnt, len; 1714 1715 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len); 1716 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04); 1717 } 1718 1719 static int 1720 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) 1721 { 1722 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1723 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1724 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1725 struct nouveau_encoder *nv_encoder; 1726 struct drm_encoder *encoder; 1727 struct nv50_disp *disp = nv50_disp(connector->dev); 1728 int type, ret; 1729 1730 switch (dcbe->type) { 1731 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1732 case DCB_OUTPUT_TMDS: 1733 case DCB_OUTPUT_DP: 1734 default: 1735 type = DRM_MODE_ENCODER_TMDS; 1736 break; 1737 } 1738 1739 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1740 if (!nv_encoder) 1741 return -ENOMEM; 1742 nv_encoder->dcb = dcbe; 1743 nv_encoder->update = nv50_sor_update; 1744 1745 encoder = to_drm_encoder(nv_encoder); 1746 encoder->possible_crtcs = dcbe->heads; 1747 encoder->possible_clones = 0; 1748 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1749 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1750 drm_encoder_helper_add(encoder, &nv50_sor_help); 1751 1752 drm_connector_attach_encoder(connector, encoder); 1753 1754 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1755 nv50_outp_dump_caps(drm, nv_encoder); 1756 1757 if (dcbe->type == DCB_OUTPUT_DP) { 1758 struct nvkm_i2c_aux *aux = 1759 nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1760 1761 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1762 1763 if (aux) { 1764 if (disp->disp->object.oclass < GF110_DISP) { 1765 /* HW has no support for address-only 1766 * transactions, so we're required to 1767 * use custom I2C-over-AUX code. 1768 */ 1769 nv_encoder->i2c = &aux->i2c; 1770 } else { 1771 nv_encoder->i2c = &nv_connector->aux.ddc; 1772 } 1773 nv_encoder->aux = aux; 1774 } 1775 1776 if (nv_connector->type != DCB_CONNECTOR_eDP && 1777 nv50_has_mst(drm)) { 1778 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1779 16, nv_connector->base.base.id, 1780 &nv_encoder->dp.mstm); 1781 if (ret) 1782 return ret; 1783 } 1784 } else { 1785 struct nvkm_i2c_bus *bus = 1786 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1787 if (bus) 1788 nv_encoder->i2c = &bus->i2c; 1789 } 1790 1791 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 1792 } 1793 1794 /****************************************************************************** 1795 * PIOR 1796 *****************************************************************************/ 1797 static int 1798 nv50_pior_atomic_check(struct drm_encoder *encoder, 1799 struct drm_crtc_state *crtc_state, 1800 struct drm_connector_state *conn_state) 1801 { 1802 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1803 if (ret) 1804 return ret; 1805 crtc_state->adjusted_mode.clock *= 2; 1806 return 0; 1807 } 1808 1809 static void 1810 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1811 { 1812 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1813 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1814 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1815 1816 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1817 nv_encoder->crtc = NULL; 1818 nvif_outp_release(&nv_encoder->outp); 1819 } 1820 1821 static void 1822 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1823 { 1824 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1825 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1826 struct nv50_head_atom *asyh = 1827 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1828 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1829 u32 ctrl = 0; 1830 1831 switch (nv_crtc->index) { 1832 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1833 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1834 default: 1835 WARN_ON(1); 1836 break; 1837 } 1838 1839 switch (asyh->or.bpc) { 1840 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1841 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1842 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1843 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1844 } 1845 1846 switch (nv_encoder->dcb->type) { 1847 case DCB_OUTPUT_TMDS: 1848 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1849 nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false); 1850 break; 1851 case DCB_OUTPUT_DP: 1852 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1853 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false); 1854 break; 1855 default: 1856 BUG(); 1857 break; 1858 } 1859 1860 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 1861 nv_encoder->crtc = &nv_crtc->base; 1862 } 1863 1864 static const struct drm_encoder_helper_funcs 1865 nv50_pior_help = { 1866 .atomic_check = nv50_pior_atomic_check, 1867 .atomic_enable = nv50_pior_atomic_enable, 1868 .atomic_disable = nv50_pior_atomic_disable, 1869 }; 1870 1871 static void 1872 nv50_pior_destroy(struct drm_encoder *encoder) 1873 { 1874 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1875 1876 nvif_outp_dtor(&nv_encoder->outp); 1877 1878 drm_encoder_cleanup(encoder); 1879 1880 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1881 kfree(encoder); 1882 } 1883 1884 static const struct drm_encoder_funcs 1885 nv50_pior_func = { 1886 .destroy = nv50_pior_destroy, 1887 }; 1888 1889 static int 1890 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) 1891 { 1892 struct drm_device *dev = connector->dev; 1893 struct nouveau_drm *drm = nouveau_drm(dev); 1894 struct nv50_disp *disp = nv50_disp(dev); 1895 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1896 struct nvkm_i2c_bus *bus = NULL; 1897 struct nvkm_i2c_aux *aux = NULL; 1898 struct i2c_adapter *ddc; 1899 struct nouveau_encoder *nv_encoder; 1900 struct drm_encoder *encoder; 1901 int type; 1902 1903 switch (dcbe->type) { 1904 case DCB_OUTPUT_TMDS: 1905 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); 1906 ddc = bus ? &bus->i2c : NULL; 1907 type = DRM_MODE_ENCODER_TMDS; 1908 break; 1909 case DCB_OUTPUT_DP: 1910 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); 1911 ddc = aux ? &aux->i2c : NULL; 1912 type = DRM_MODE_ENCODER_TMDS; 1913 break; 1914 default: 1915 return -ENODEV; 1916 } 1917 1918 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1919 if (!nv_encoder) 1920 return -ENOMEM; 1921 nv_encoder->dcb = dcbe; 1922 nv_encoder->i2c = ddc; 1923 nv_encoder->aux = aux; 1924 1925 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1926 1927 encoder = to_drm_encoder(nv_encoder); 1928 encoder->possible_crtcs = dcbe->heads; 1929 encoder->possible_clones = 0; 1930 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 1931 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 1932 drm_encoder_helper_add(encoder, &nv50_pior_help); 1933 1934 drm_connector_attach_encoder(connector, encoder); 1935 1936 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1937 nv50_outp_dump_caps(drm, nv_encoder); 1938 1939 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); 1940 } 1941 1942 /****************************************************************************** 1943 * Atomic 1944 *****************************************************************************/ 1945 1946 static void 1947 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 1948 { 1949 struct drm_dp_mst_topology_mgr *mgr; 1950 struct drm_dp_mst_topology_state *mst_state; 1951 struct nouveau_drm *drm = nouveau_drm(state->dev); 1952 struct nv50_disp *disp = nv50_disp(drm->dev); 1953 struct nv50_core *core = disp->core; 1954 struct nv50_mstm *mstm; 1955 int i; 1956 1957 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 1958 1959 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1960 mstm = nv50_mstm(mgr); 1961 if (mstm->modified) 1962 nv50_mstm_prepare(state, mst_state, mstm); 1963 } 1964 1965 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 1966 core->func->update(core, interlock, true); 1967 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 1968 disp->core->chan.base.device)) 1969 NV_ERROR(drm, "core notifier timeout\n"); 1970 1971 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1972 mstm = nv50_mstm(mgr); 1973 if (mstm->modified) 1974 nv50_mstm_cleanup(state, mst_state, mstm); 1975 } 1976 } 1977 1978 static void 1979 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 1980 { 1981 struct drm_plane_state *new_plane_state; 1982 struct drm_plane *plane; 1983 int i; 1984 1985 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1986 struct nv50_wndw *wndw = nv50_wndw(plane); 1987 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 1988 if (wndw->func->update) 1989 wndw->func->update(wndw, interlock); 1990 } 1991 } 1992 } 1993 1994 static void 1995 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 1996 { 1997 struct drm_device *dev = state->dev; 1998 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 1999 struct drm_crtc *crtc; 2000 struct drm_plane_state *new_plane_state; 2001 struct drm_plane *plane; 2002 struct nouveau_drm *drm = nouveau_drm(dev); 2003 struct nv50_disp *disp = nv50_disp(dev); 2004 struct nv50_atom *atom = nv50_atom(state); 2005 struct nv50_core *core = disp->core; 2006 struct nv50_outp_atom *outp, *outt; 2007 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2008 int i; 2009 bool flushed = false; 2010 2011 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2012 nv50_crc_atomic_stop_reporting(state); 2013 drm_atomic_helper_wait_for_fences(dev, state, false); 2014 drm_atomic_helper_wait_for_dependencies(state); 2015 drm_dp_mst_atomic_wait_for_dependencies(state); 2016 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2017 drm_atomic_helper_calc_timestamping_constants(state); 2018 2019 if (atom->lock_core) 2020 mutex_lock(&disp->mutex); 2021 2022 /* Disable head(s). */ 2023 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2024 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2025 struct nv50_head *head = nv50_head(crtc); 2026 2027 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2028 asyh->clr.mask, asyh->set.mask); 2029 2030 if (old_crtc_state->active && !new_crtc_state->active) { 2031 pm_runtime_put_noidle(dev->dev); 2032 drm_crtc_vblank_off(crtc); 2033 } 2034 2035 if (asyh->clr.mask) { 2036 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2037 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2038 } 2039 } 2040 2041 /* Disable plane(s). */ 2042 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2043 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2044 struct nv50_wndw *wndw = nv50_wndw(plane); 2045 2046 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2047 asyw->clr.mask, asyw->set.mask); 2048 if (!asyw->clr.mask) 2049 continue; 2050 2051 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2052 } 2053 2054 /* Disable output path(s). */ 2055 list_for_each_entry(outp, &atom->outp, head) { 2056 const struct drm_encoder_helper_funcs *help; 2057 struct drm_encoder *encoder; 2058 2059 encoder = outp->encoder; 2060 help = encoder->helper_private; 2061 2062 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2063 outp->clr.mask, outp->set.mask); 2064 2065 if (outp->clr.mask) { 2066 help->atomic_disable(encoder, state); 2067 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2068 if (outp->flush_disable) { 2069 nv50_disp_atomic_commit_wndw(state, interlock); 2070 nv50_disp_atomic_commit_core(state, interlock); 2071 memset(interlock, 0x00, sizeof(interlock)); 2072 2073 flushed = true; 2074 } 2075 } 2076 } 2077 2078 /* Flush disable. */ 2079 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2080 if (atom->flush_disable) { 2081 nv50_disp_atomic_commit_wndw(state, interlock); 2082 nv50_disp_atomic_commit_core(state, interlock); 2083 memset(interlock, 0x00, sizeof(interlock)); 2084 2085 flushed = true; 2086 } 2087 } 2088 2089 if (flushed) 2090 nv50_crc_atomic_release_notifier_contexts(state); 2091 nv50_crc_atomic_init_notifier_contexts(state); 2092 2093 /* Update output path(s). */ 2094 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2095 const struct drm_encoder_helper_funcs *help; 2096 struct drm_encoder *encoder; 2097 2098 encoder = outp->encoder; 2099 help = encoder->helper_private; 2100 2101 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2102 outp->set.mask, outp->clr.mask); 2103 2104 if (outp->set.mask) { 2105 help->atomic_enable(encoder, state); 2106 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2107 } 2108 2109 list_del(&outp->head); 2110 kfree(outp); 2111 } 2112 2113 /* Update head(s). */ 2114 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2115 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2116 struct nv50_head *head = nv50_head(crtc); 2117 2118 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2119 asyh->set.mask, asyh->clr.mask); 2120 2121 if (asyh->set.mask) { 2122 nv50_head_flush_set(head, asyh); 2123 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2124 } 2125 2126 if (new_crtc_state->active) { 2127 if (!old_crtc_state->active) { 2128 drm_crtc_vblank_on(crtc); 2129 pm_runtime_get_noresume(dev->dev); 2130 } 2131 if (new_crtc_state->event) 2132 drm_crtc_vblank_get(crtc); 2133 } 2134 } 2135 2136 /* Update window->head assignment. 2137 * 2138 * This has to happen in an update that's not interlocked with 2139 * any window channels to avoid hitting HW error checks. 2140 * 2141 *TODO: Proper handling of window ownership (Turing apparently 2142 * supports non-fixed mappings). 2143 */ 2144 if (core->assign_windows) { 2145 core->func->wndw.owner(core); 2146 nv50_disp_atomic_commit_core(state, interlock); 2147 core->assign_windows = false; 2148 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2149 } 2150 2151 /* Finish updating head(s)... 2152 * 2153 * NVD is rather picky about both where window assignments can change, 2154 * *and* about certain core and window channel states matching. 2155 * 2156 * The EFI GOP driver on newer GPUs configures window channels with a 2157 * different output format to what we do, and the core channel update 2158 * in the assign_windows case above would result in a state mismatch. 2159 * 2160 * Delay some of the head update until after that point to workaround 2161 * the issue. This only affects the initial modeset. 2162 * 2163 * TODO: handle this better when adding flexible window mapping 2164 */ 2165 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2166 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2167 struct nv50_head *head = nv50_head(crtc); 2168 2169 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2170 asyh->set.mask, asyh->clr.mask); 2171 2172 if (asyh->set.mask) { 2173 nv50_head_flush_set_wndw(head, asyh); 2174 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2175 } 2176 } 2177 2178 /* Update plane(s). */ 2179 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2180 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2181 struct nv50_wndw *wndw = nv50_wndw(plane); 2182 2183 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2184 asyw->set.mask, asyw->clr.mask); 2185 if ( !asyw->set.mask && 2186 (!asyw->clr.mask || atom->flush_disable)) 2187 continue; 2188 2189 nv50_wndw_flush_set(wndw, interlock, asyw); 2190 } 2191 2192 /* Flush update. */ 2193 nv50_disp_atomic_commit_wndw(state, interlock); 2194 2195 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2196 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2197 interlock[NV50_DISP_INTERLOCK_OVLY] || 2198 interlock[NV50_DISP_INTERLOCK_WNDW] || 2199 !atom->state.legacy_cursor_update) 2200 nv50_disp_atomic_commit_core(state, interlock); 2201 else 2202 disp->core->func->update(disp->core, interlock, false); 2203 } 2204 2205 if (atom->lock_core) 2206 mutex_unlock(&disp->mutex); 2207 2208 /* Wait for HW to signal completion. */ 2209 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2210 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2211 struct nv50_wndw *wndw = nv50_wndw(plane); 2212 int ret = nv50_wndw_wait_armed(wndw, asyw); 2213 if (ret) 2214 NV_ERROR(drm, "%s: timeout\n", plane->name); 2215 } 2216 2217 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2218 if (new_crtc_state->event) { 2219 unsigned long flags; 2220 /* Get correct count/ts if racing with vblank irq */ 2221 if (new_crtc_state->active) 2222 drm_crtc_accurate_vblank_count(crtc); 2223 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2224 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2225 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2226 2227 new_crtc_state->event = NULL; 2228 if (new_crtc_state->active) 2229 drm_crtc_vblank_put(crtc); 2230 } 2231 } 2232 2233 nv50_crc_atomic_start_reporting(state); 2234 if (!flushed) 2235 nv50_crc_atomic_release_notifier_contexts(state); 2236 2237 drm_atomic_helper_commit_hw_done(state); 2238 drm_atomic_helper_cleanup_planes(dev, state); 2239 drm_atomic_helper_commit_cleanup_done(state); 2240 drm_atomic_state_put(state); 2241 2242 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2243 pm_runtime_mark_last_busy(dev->dev); 2244 pm_runtime_put_autosuspend(dev->dev); 2245 } 2246 2247 static void 2248 nv50_disp_atomic_commit_work(struct work_struct *work) 2249 { 2250 struct drm_atomic_state *state = 2251 container_of(work, typeof(*state), commit_work); 2252 nv50_disp_atomic_commit_tail(state); 2253 } 2254 2255 static int 2256 nv50_disp_atomic_commit(struct drm_device *dev, 2257 struct drm_atomic_state *state, bool nonblock) 2258 { 2259 struct drm_plane_state *new_plane_state; 2260 struct drm_plane *plane; 2261 int ret, i; 2262 2263 ret = pm_runtime_get_sync(dev->dev); 2264 if (ret < 0 && ret != -EACCES) { 2265 pm_runtime_put_autosuspend(dev->dev); 2266 return ret; 2267 } 2268 2269 ret = drm_atomic_helper_setup_commit(state, nonblock); 2270 if (ret) 2271 goto done; 2272 2273 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2274 2275 ret = drm_atomic_helper_prepare_planes(dev, state); 2276 if (ret) 2277 goto done; 2278 2279 if (!nonblock) { 2280 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2281 if (ret) 2282 goto err_cleanup; 2283 } 2284 2285 ret = drm_atomic_helper_swap_state(state, true); 2286 if (ret) 2287 goto err_cleanup; 2288 2289 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2290 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2291 struct nv50_wndw *wndw = nv50_wndw(plane); 2292 2293 if (asyw->set.image) 2294 nv50_wndw_ntfy_enable(wndw, asyw); 2295 } 2296 2297 drm_atomic_state_get(state); 2298 2299 /* 2300 * Grab another RPM ref for the commit tail, which will release the 2301 * ref when it's finished 2302 */ 2303 pm_runtime_get_noresume(dev->dev); 2304 2305 if (nonblock) 2306 queue_work(system_unbound_wq, &state->commit_work); 2307 else 2308 nv50_disp_atomic_commit_tail(state); 2309 2310 err_cleanup: 2311 if (ret) 2312 drm_atomic_helper_unprepare_planes(dev, state); 2313 done: 2314 pm_runtime_put_autosuspend(dev->dev); 2315 return ret; 2316 } 2317 2318 static struct nv50_outp_atom * 2319 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2320 { 2321 struct nv50_outp_atom *outp; 2322 2323 list_for_each_entry(outp, &atom->outp, head) { 2324 if (outp->encoder == encoder) 2325 return outp; 2326 } 2327 2328 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2329 if (!outp) 2330 return ERR_PTR(-ENOMEM); 2331 2332 list_add(&outp->head, &atom->outp); 2333 outp->encoder = encoder; 2334 return outp; 2335 } 2336 2337 static int 2338 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2339 struct drm_connector_state *old_connector_state) 2340 { 2341 struct drm_encoder *encoder = old_connector_state->best_encoder; 2342 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2343 struct drm_crtc *crtc; 2344 struct nv50_outp_atom *outp; 2345 2346 if (!(crtc = old_connector_state->crtc)) 2347 return 0; 2348 2349 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2350 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2351 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2352 outp = nv50_disp_outp_atomic_add(atom, encoder); 2353 if (IS_ERR(outp)) 2354 return PTR_ERR(outp); 2355 2356 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 2357 outp->flush_disable = true; 2358 atom->flush_disable = true; 2359 } 2360 outp->clr.ctrl = true; 2361 atom->lock_core = true; 2362 } 2363 2364 return 0; 2365 } 2366 2367 static int 2368 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2369 struct drm_connector_state *connector_state) 2370 { 2371 struct drm_encoder *encoder = connector_state->best_encoder; 2372 struct drm_crtc_state *new_crtc_state; 2373 struct drm_crtc *crtc; 2374 struct nv50_outp_atom *outp; 2375 2376 if (!(crtc = connector_state->crtc)) 2377 return 0; 2378 2379 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2380 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2381 outp = nv50_disp_outp_atomic_add(atom, encoder); 2382 if (IS_ERR(outp)) 2383 return PTR_ERR(outp); 2384 2385 outp->set.ctrl = true; 2386 atom->lock_core = true; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int 2393 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2394 { 2395 struct nv50_atom *atom = nv50_atom(state); 2396 struct nv50_core *core = nv50_disp(dev)->core; 2397 struct drm_connector_state *old_connector_state, *new_connector_state; 2398 struct drm_connector *connector; 2399 struct drm_crtc_state *new_crtc_state; 2400 struct drm_crtc *crtc; 2401 struct nv50_head *head; 2402 struct nv50_head_atom *asyh; 2403 int ret, i; 2404 2405 if (core->assign_windows && core->func->head->static_wndw_map) { 2406 drm_for_each_crtc(crtc, dev) { 2407 new_crtc_state = drm_atomic_get_crtc_state(state, 2408 crtc); 2409 if (IS_ERR(new_crtc_state)) 2410 return PTR_ERR(new_crtc_state); 2411 2412 head = nv50_head(crtc); 2413 asyh = nv50_head_atom(new_crtc_state); 2414 core->func->head->static_wndw_map(head, asyh); 2415 } 2416 } 2417 2418 /* We need to handle colour management on a per-plane basis. */ 2419 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2420 if (new_crtc_state->color_mgmt_changed) { 2421 ret = drm_atomic_add_affected_planes(state, crtc); 2422 if (ret) 2423 return ret; 2424 } 2425 } 2426 2427 ret = drm_atomic_helper_check(dev, state); 2428 if (ret) 2429 return ret; 2430 2431 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2432 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2433 if (ret) 2434 return ret; 2435 2436 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2437 if (ret) 2438 return ret; 2439 } 2440 2441 ret = drm_dp_mst_atomic_check(state); 2442 if (ret) 2443 return ret; 2444 2445 nv50_crc_atomic_check_outp(atom); 2446 2447 return 0; 2448 } 2449 2450 static void 2451 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2452 { 2453 struct nv50_atom *atom = nv50_atom(state); 2454 struct nv50_outp_atom *outp, *outt; 2455 2456 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2457 list_del(&outp->head); 2458 kfree(outp); 2459 } 2460 2461 drm_atomic_state_default_clear(state); 2462 } 2463 2464 static void 2465 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2466 { 2467 struct nv50_atom *atom = nv50_atom(state); 2468 drm_atomic_state_default_release(&atom->state); 2469 kfree(atom); 2470 } 2471 2472 static struct drm_atomic_state * 2473 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2474 { 2475 struct nv50_atom *atom; 2476 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2477 drm_atomic_state_init(dev, &atom->state) < 0) { 2478 kfree(atom); 2479 return NULL; 2480 } 2481 INIT_LIST_HEAD(&atom->outp); 2482 return &atom->state; 2483 } 2484 2485 static const struct drm_mode_config_funcs 2486 nv50_disp_func = { 2487 .fb_create = nouveau_user_framebuffer_create, 2488 .output_poll_changed = drm_fb_helper_output_poll_changed, 2489 .atomic_check = nv50_disp_atomic_check, 2490 .atomic_commit = nv50_disp_atomic_commit, 2491 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2492 .atomic_state_clear = nv50_disp_atomic_state_clear, 2493 .atomic_state_free = nv50_disp_atomic_state_free, 2494 }; 2495 2496 static const struct drm_mode_config_helper_funcs 2497 nv50_disp_helper_func = { 2498 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2499 }; 2500 2501 /****************************************************************************** 2502 * Init 2503 *****************************************************************************/ 2504 2505 static void 2506 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2507 { 2508 struct nouveau_drm *drm = nouveau_drm(dev); 2509 struct drm_encoder *encoder; 2510 2511 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2512 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2513 nv50_mstm_fini(nouveau_encoder(encoder)); 2514 } 2515 2516 if (!runtime) 2517 cancel_work_sync(&drm->hpd_work); 2518 } 2519 2520 static int 2521 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2522 { 2523 struct nv50_core *core = nv50_disp(dev)->core; 2524 struct drm_encoder *encoder; 2525 2526 if (resume || runtime) 2527 core->func->init(core); 2528 2529 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2530 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2531 struct nouveau_encoder *nv_encoder = 2532 nouveau_encoder(encoder); 2533 nv50_mstm_init(nv_encoder, runtime); 2534 } 2535 } 2536 2537 return 0; 2538 } 2539 2540 static void 2541 nv50_display_destroy(struct drm_device *dev) 2542 { 2543 struct nv50_disp *disp = nv50_disp(dev); 2544 2545 nv50_audio_component_fini(nouveau_drm(dev)); 2546 2547 nvif_object_unmap(&disp->caps); 2548 nvif_object_dtor(&disp->caps); 2549 nv50_core_del(&disp->core); 2550 2551 nouveau_bo_unmap(disp->sync); 2552 if (disp->sync) 2553 nouveau_bo_unpin(disp->sync); 2554 nouveau_bo_ref(NULL, &disp->sync); 2555 2556 nouveau_display(dev)->priv = NULL; 2557 kfree(disp); 2558 } 2559 2560 int 2561 nv50_display_create(struct drm_device *dev) 2562 { 2563 struct nvif_device *device = &nouveau_drm(dev)->client.device; 2564 struct nouveau_drm *drm = nouveau_drm(dev); 2565 struct dcb_table *dcb = &drm->vbios.dcb; 2566 struct drm_connector *connector, *tmp; 2567 struct nv50_disp *disp; 2568 struct dcb_output *dcbe; 2569 int crtcs, ret, i; 2570 bool has_mst = nv50_has_mst(drm); 2571 2572 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2573 if (!disp) 2574 return -ENOMEM; 2575 2576 mutex_init(&disp->mutex); 2577 2578 nouveau_display(dev)->priv = disp; 2579 nouveau_display(dev)->dtor = nv50_display_destroy; 2580 nouveau_display(dev)->init = nv50_display_init; 2581 nouveau_display(dev)->fini = nv50_display_fini; 2582 disp->disp = &nouveau_display(dev)->disp; 2583 dev->mode_config.funcs = &nv50_disp_func; 2584 dev->mode_config.helper_private = &nv50_disp_helper_func; 2585 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2586 dev->mode_config.normalize_zpos = true; 2587 2588 /* small shared memory area we use for notifiers and semaphores */ 2589 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2590 NOUVEAU_GEM_DOMAIN_VRAM, 2591 0, 0x0000, NULL, NULL, &disp->sync); 2592 if (!ret) { 2593 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2594 if (!ret) { 2595 ret = nouveau_bo_map(disp->sync); 2596 if (ret) 2597 nouveau_bo_unpin(disp->sync); 2598 } 2599 if (ret) 2600 nouveau_bo_ref(NULL, &disp->sync); 2601 } 2602 2603 if (ret) 2604 goto out; 2605 2606 /* allocate master evo channel */ 2607 ret = nv50_core_new(drm, &disp->core); 2608 if (ret) 2609 goto out; 2610 2611 disp->core->func->init(disp->core); 2612 if (disp->core->func->caps_init) { 2613 ret = disp->core->func->caps_init(drm, disp); 2614 if (ret) 2615 goto out; 2616 } 2617 2618 /* Assign the correct format modifiers */ 2619 if (disp->disp->object.oclass >= TU102_DISP) 2620 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2621 else 2622 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2623 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2624 else 2625 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2626 2627 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2628 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2629 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2630 * small page allocations in prepare_fb(). When this is implemented, we should also force 2631 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2632 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2633 * large pages. 2634 */ 2635 if (disp->disp->object.oclass >= GM107_DISP) { 2636 dev->mode_config.cursor_width = 256; 2637 dev->mode_config.cursor_height = 256; 2638 } else if (disp->disp->object.oclass >= GK104_DISP) { 2639 dev->mode_config.cursor_width = 128; 2640 dev->mode_config.cursor_height = 128; 2641 } else { 2642 dev->mode_config.cursor_width = 64; 2643 dev->mode_config.cursor_height = 64; 2644 } 2645 2646 /* create crtc objects to represent the hw heads */ 2647 if (disp->disp->object.oclass >= GV100_DISP) 2648 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; 2649 else 2650 if (disp->disp->object.oclass >= GF110_DISP) 2651 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; 2652 else 2653 crtcs = 0x3; 2654 2655 for (i = 0; i < fls(crtcs); i++) { 2656 struct nv50_head *head; 2657 2658 if (!(crtcs & (1 << i))) 2659 continue; 2660 2661 head = nv50_head_create(dev, i); 2662 if (IS_ERR(head)) { 2663 ret = PTR_ERR(head); 2664 goto out; 2665 } 2666 2667 if (has_mst) { 2668 head->msto = nv50_msto_new(dev, head, i); 2669 if (IS_ERR(head->msto)) { 2670 ret = PTR_ERR(head->msto); 2671 head->msto = NULL; 2672 goto out; 2673 } 2674 2675 /* 2676 * FIXME: This is a hack to workaround the following 2677 * issues: 2678 * 2679 * https://gitlab.gnome.org/GNOME/mutter/issues/759 2680 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 2681 * 2682 * Once these issues are closed, this should be 2683 * removed 2684 */ 2685 head->msto->encoder.possible_crtcs = crtcs; 2686 } 2687 } 2688 2689 /* create encoder/connector objects based on VBIOS DCB table */ 2690 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { 2691 connector = nouveau_connector_create(dev, dcbe); 2692 if (IS_ERR(connector)) 2693 continue; 2694 2695 if (dcbe->location == DCB_LOC_ON_CHIP) { 2696 switch (dcbe->type) { 2697 case DCB_OUTPUT_TMDS: 2698 case DCB_OUTPUT_LVDS: 2699 case DCB_OUTPUT_DP: 2700 ret = nv50_sor_create(connector, dcbe); 2701 break; 2702 case DCB_OUTPUT_ANALOG: 2703 ret = nv50_dac_create(connector, dcbe); 2704 break; 2705 default: 2706 ret = -ENODEV; 2707 break; 2708 } 2709 } else { 2710 ret = nv50_pior_create(connector, dcbe); 2711 } 2712 2713 if (ret) { 2714 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2715 dcbe->location, dcbe->type, 2716 ffs(dcbe->or) - 1, ret); 2717 ret = 0; 2718 } 2719 } 2720 2721 /* cull any connectors we created that don't have an encoder */ 2722 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2723 if (connector->possible_encoders) 2724 continue; 2725 2726 NV_WARN(drm, "%s has no encoders, removing\n", 2727 connector->name); 2728 connector->funcs->destroy(connector); 2729 } 2730 2731 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2732 dev->vblank_disable_immediate = true; 2733 2734 nv50_audio_component_init(drm); 2735 2736 out: 2737 if (ret) 2738 nv50_display_destroy(dev); 2739 return ret; 2740 } 2741 2742 /****************************************************************************** 2743 * Format modifiers 2744 *****************************************************************************/ 2745 2746 /**************************************************************** 2747 * Log2(block height) ----------------------------+ * 2748 * Page Kind ----------------------------------+ | * 2749 * Gob Height/Page Kind Generation ------+ | | * 2750 * Sector layout -------+ | | | * 2751 * Compression ------+ | | | | */ 2752 const u64 disp50xx_modifiers[] = { /* | | | | | */ 2753 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 2754 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 2755 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 2756 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 2757 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 2758 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 2759 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 2760 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 2761 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 2762 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 2763 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 2764 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 2765 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 2766 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 2767 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 2768 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 2769 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 2770 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 2771 DRM_FORMAT_MOD_LINEAR, 2772 DRM_FORMAT_MOD_INVALID 2773 }; 2774 2775 /**************************************************************** 2776 * Log2(block height) ----------------------------+ * 2777 * Page Kind ----------------------------------+ | * 2778 * Gob Height/Page Kind Generation ------+ | | * 2779 * Sector layout -------+ | | | * 2780 * Compression ------+ | | | | */ 2781 const u64 disp90xx_modifiers[] = { /* | | | | | */ 2782 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 2783 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 2784 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 2785 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 2786 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 2787 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 2788 DRM_FORMAT_MOD_LINEAR, 2789 DRM_FORMAT_MOD_INVALID 2790 }; 2791