1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 30 #include <linux/dma-mapping.h> 31 #include <linux/hdmi.h> 32 33 #include <drm/drmP.h> 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_crtc_helper.h> 36 #include <drm/drm_dp_helper.h> 37 #include <drm/drm_fb_helper.h> 38 #include <drm/drm_plane_helper.h> 39 #include <drm/drm_scdc_helper.h> 40 #include <drm/drm_edid.h> 41 42 #include <nvif/class.h> 43 #include <nvif/cl0002.h> 44 #include <nvif/cl5070.h> 45 #include <nvif/cl507d.h> 46 #include <nvif/event.h> 47 48 #include "nouveau_drv.h" 49 #include "nouveau_dma.h" 50 #include "nouveau_gem.h" 51 #include "nouveau_connector.h" 52 #include "nouveau_encoder.h" 53 #include "nouveau_fence.h" 54 #include "nouveau_fbcon.h" 55 56 #include <subdev/bios/dp.h> 57 58 /****************************************************************************** 59 * Atomic state 60 *****************************************************************************/ 61 62 struct nv50_outp_atom { 63 struct list_head head; 64 65 struct drm_encoder *encoder; 66 bool flush_disable; 67 68 union nv50_outp_atom_mask { 69 struct { 70 bool ctrl:1; 71 }; 72 u8 mask; 73 } set, clr; 74 }; 75 76 /****************************************************************************** 77 * EVO channel 78 *****************************************************************************/ 79 80 static int 81 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 82 const s32 *oclass, u8 head, void *data, u32 size, 83 struct nv50_chan *chan) 84 { 85 struct nvif_sclass *sclass; 86 int ret, i, n; 87 88 chan->device = device; 89 90 ret = n = nvif_object_sclass_get(disp, &sclass); 91 if (ret < 0) 92 return ret; 93 94 while (oclass[0]) { 95 for (i = 0; i < n; i++) { 96 if (sclass[i].oclass == oclass[0]) { 97 ret = nvif_object_init(disp, 0, oclass[0], 98 data, size, &chan->user); 99 if (ret == 0) 100 nvif_object_map(&chan->user, NULL, 0); 101 nvif_object_sclass_put(&sclass); 102 return ret; 103 } 104 } 105 oclass++; 106 } 107 108 nvif_object_sclass_put(&sclass); 109 return -ENOSYS; 110 } 111 112 static void 113 nv50_chan_destroy(struct nv50_chan *chan) 114 { 115 nvif_object_fini(&chan->user); 116 } 117 118 /****************************************************************************** 119 * DMA EVO channel 120 *****************************************************************************/ 121 122 void 123 nv50_dmac_destroy(struct nv50_dmac *dmac) 124 { 125 nvif_object_fini(&dmac->vram); 126 nvif_object_fini(&dmac->sync); 127 128 nv50_chan_destroy(&dmac->base); 129 130 nvif_mem_fini(&dmac->push); 131 } 132 133 int 134 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 135 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf, 136 struct nv50_dmac *dmac) 137 { 138 struct nouveau_cli *cli = (void *)device->object.client; 139 struct nv50_disp_core_channel_dma_v0 *args = data; 140 u8 type = NVIF_MEM_COHERENT; 141 int ret; 142 143 mutex_init(&dmac->lock); 144 145 /* Pascal added support for 47-bit physical addresses, but some 146 * parts of EVO still only accept 40-bit PAs. 147 * 148 * To avoid issues on systems with large amounts of RAM, and on 149 * systems where an IOMMU maps pages at a high address, we need 150 * to allocate push buffers in VRAM instead. 151 * 152 * This appears to match NVIDIA's behaviour on Pascal. 153 */ 154 if (device->info.family == NV_DEVICE_INFO_V0_PASCAL) 155 type |= NVIF_MEM_VRAM; 156 157 ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push); 158 if (ret) 159 return ret; 160 161 dmac->ptr = dmac->push.object.map.ptr; 162 163 args->pushbuf = nvif_handle(&dmac->push.object); 164 165 ret = nv50_chan_create(device, disp, oclass, head, data, size, 166 &dmac->base); 167 if (ret) 168 return ret; 169 170 if (!syncbuf) 171 return 0; 172 173 ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY, 174 &(struct nv_dma_v0) { 175 .target = NV_DMA_V0_TARGET_VRAM, 176 .access = NV_DMA_V0_ACCESS_RDWR, 177 .start = syncbuf + 0x0000, 178 .limit = syncbuf + 0x0fff, 179 }, sizeof(struct nv_dma_v0), 180 &dmac->sync); 181 if (ret) 182 return ret; 183 184 ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY, 185 &(struct nv_dma_v0) { 186 .target = NV_DMA_V0_TARGET_VRAM, 187 .access = NV_DMA_V0_ACCESS_RDWR, 188 .start = 0, 189 .limit = device->info.ram_user - 1, 190 }, sizeof(struct nv_dma_v0), 191 &dmac->vram); 192 if (ret) 193 return ret; 194 195 return ret; 196 } 197 198 /****************************************************************************** 199 * EVO channel helpers 200 *****************************************************************************/ 201 static void 202 evo_flush(struct nv50_dmac *dmac) 203 { 204 /* Push buffer fetches are not coherent with BAR1, we need to ensure 205 * writes have been flushed right through to VRAM before writing PUT. 206 */ 207 if (dmac->push.type & NVIF_MEM_VRAM) { 208 struct nvif_device *device = dmac->base.device; 209 nvif_wr32(&device->object, 0x070000, 0x00000001); 210 nvif_msec(device, 2000, 211 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 212 break; 213 ); 214 } 215 } 216 217 u32 * 218 evo_wait(struct nv50_dmac *evoc, int nr) 219 { 220 struct nv50_dmac *dmac = evoc; 221 struct nvif_device *device = dmac->base.device; 222 u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4; 223 224 mutex_lock(&dmac->lock); 225 if (put + nr >= (PAGE_SIZE / 4) - 8) { 226 dmac->ptr[put] = 0x20000000; 227 evo_flush(dmac); 228 229 nvif_wr32(&dmac->base.user, 0x0000, 0x00000000); 230 if (nvif_msec(device, 2000, 231 if (!nvif_rd32(&dmac->base.user, 0x0004)) 232 break; 233 ) < 0) { 234 mutex_unlock(&dmac->lock); 235 pr_err("nouveau: evo channel stalled\n"); 236 return NULL; 237 } 238 239 put = 0; 240 } 241 242 return dmac->ptr + put; 243 } 244 245 void 246 evo_kick(u32 *push, struct nv50_dmac *evoc) 247 { 248 struct nv50_dmac *dmac = evoc; 249 250 evo_flush(dmac); 251 252 nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2); 253 mutex_unlock(&dmac->lock); 254 } 255 256 /****************************************************************************** 257 * Output path helpers 258 *****************************************************************************/ 259 static void 260 nv50_outp_release(struct nouveau_encoder *nv_encoder) 261 { 262 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 263 struct { 264 struct nv50_disp_mthd_v1 base; 265 } args = { 266 .base.version = 1, 267 .base.method = NV50_DISP_MTHD_V1_RELEASE, 268 .base.hasht = nv_encoder->dcb->hasht, 269 .base.hashm = nv_encoder->dcb->hashm, 270 }; 271 272 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 273 nv_encoder->or = -1; 274 nv_encoder->link = 0; 275 } 276 277 static int 278 nv50_outp_acquire(struct nouveau_encoder *nv_encoder) 279 { 280 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 281 struct nv50_disp *disp = nv50_disp(drm->dev); 282 struct { 283 struct nv50_disp_mthd_v1 base; 284 struct nv50_disp_acquire_v0 info; 285 } args = { 286 .base.version = 1, 287 .base.method = NV50_DISP_MTHD_V1_ACQUIRE, 288 .base.hasht = nv_encoder->dcb->hasht, 289 .base.hashm = nv_encoder->dcb->hashm, 290 }; 291 int ret; 292 293 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 294 if (ret) { 295 NV_ERROR(drm, "error acquiring output path: %d\n", ret); 296 return ret; 297 } 298 299 nv_encoder->or = args.info.or; 300 nv_encoder->link = args.info.link; 301 return 0; 302 } 303 304 static int 305 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 306 struct drm_crtc_state *crtc_state, 307 struct drm_connector_state *conn_state, 308 struct drm_display_mode *native_mode) 309 { 310 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 311 struct drm_display_mode *mode = &crtc_state->mode; 312 struct drm_connector *connector = conn_state->connector; 313 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 314 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 315 316 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 317 asyc->scaler.full = false; 318 if (!native_mode) 319 return 0; 320 321 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 322 switch (connector->connector_type) { 323 case DRM_MODE_CONNECTOR_LVDS: 324 case DRM_MODE_CONNECTOR_eDP: 325 /* Force use of scaler for non-EDID modes. */ 326 if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER) 327 break; 328 mode = native_mode; 329 asyc->scaler.full = true; 330 break; 331 default: 332 break; 333 } 334 } else { 335 mode = native_mode; 336 } 337 338 if (!drm_mode_equal(adjusted_mode, mode)) { 339 drm_mode_copy(adjusted_mode, mode); 340 crtc_state->mode_changed = true; 341 } 342 343 return 0; 344 } 345 346 static int 347 nv50_outp_atomic_check(struct drm_encoder *encoder, 348 struct drm_crtc_state *crtc_state, 349 struct drm_connector_state *conn_state) 350 { 351 struct nouveau_connector *nv_connector = 352 nouveau_connector(conn_state->connector); 353 return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 354 nv_connector->native_mode); 355 } 356 357 /****************************************************************************** 358 * DAC 359 *****************************************************************************/ 360 static void 361 nv50_dac_disable(struct drm_encoder *encoder) 362 { 363 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 364 struct nv50_core *core = nv50_disp(encoder->dev)->core; 365 if (nv_encoder->crtc) 366 core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL); 367 nv_encoder->crtc = NULL; 368 nv50_outp_release(nv_encoder); 369 } 370 371 static void 372 nv50_dac_enable(struct drm_encoder *encoder) 373 { 374 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 375 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 376 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 377 struct nv50_core *core = nv50_disp(encoder->dev)->core; 378 379 nv50_outp_acquire(nv_encoder); 380 381 core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh); 382 asyh->or.depth = 0; 383 384 nv_encoder->crtc = encoder->crtc; 385 } 386 387 static enum drm_connector_status 388 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 389 { 390 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 391 struct nv50_disp *disp = nv50_disp(encoder->dev); 392 struct { 393 struct nv50_disp_mthd_v1 base; 394 struct nv50_disp_dac_load_v0 load; 395 } args = { 396 .base.version = 1, 397 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, 398 .base.hasht = nv_encoder->dcb->hasht, 399 .base.hashm = nv_encoder->dcb->hashm, 400 }; 401 int ret; 402 403 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; 404 if (args.load.data == 0) 405 args.load.data = 340; 406 407 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 408 if (ret || !args.load.load) 409 return connector_status_disconnected; 410 411 return connector_status_connected; 412 } 413 414 static const struct drm_encoder_helper_funcs 415 nv50_dac_help = { 416 .atomic_check = nv50_outp_atomic_check, 417 .enable = nv50_dac_enable, 418 .disable = nv50_dac_disable, 419 .detect = nv50_dac_detect 420 }; 421 422 static void 423 nv50_dac_destroy(struct drm_encoder *encoder) 424 { 425 drm_encoder_cleanup(encoder); 426 kfree(encoder); 427 } 428 429 static const struct drm_encoder_funcs 430 nv50_dac_func = { 431 .destroy = nv50_dac_destroy, 432 }; 433 434 static int 435 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) 436 { 437 struct nouveau_drm *drm = nouveau_drm(connector->dev); 438 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 439 struct nvkm_i2c_bus *bus; 440 struct nouveau_encoder *nv_encoder; 441 struct drm_encoder *encoder; 442 int type = DRM_MODE_ENCODER_DAC; 443 444 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 445 if (!nv_encoder) 446 return -ENOMEM; 447 nv_encoder->dcb = dcbe; 448 449 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 450 if (bus) 451 nv_encoder->i2c = &bus->i2c; 452 453 encoder = to_drm_encoder(nv_encoder); 454 encoder->possible_crtcs = dcbe->heads; 455 encoder->possible_clones = 0; 456 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 457 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 458 drm_encoder_helper_add(encoder, &nv50_dac_help); 459 460 drm_connector_attach_encoder(connector, encoder); 461 return 0; 462 } 463 464 /****************************************************************************** 465 * Audio 466 *****************************************************************************/ 467 static void 468 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 469 { 470 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 471 struct nv50_disp *disp = nv50_disp(encoder->dev); 472 struct { 473 struct nv50_disp_mthd_v1 base; 474 struct nv50_disp_sor_hda_eld_v0 eld; 475 } args = { 476 .base.version = 1, 477 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 478 .base.hasht = nv_encoder->dcb->hasht, 479 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 480 (0x0100 << nv_crtc->index), 481 }; 482 483 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 484 } 485 486 static void 487 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) 488 { 489 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 490 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 491 struct nouveau_connector *nv_connector; 492 struct nv50_disp *disp = nv50_disp(encoder->dev); 493 struct __packed { 494 struct { 495 struct nv50_disp_mthd_v1 mthd; 496 struct nv50_disp_sor_hda_eld_v0 eld; 497 } base; 498 u8 data[sizeof(nv_connector->base.eld)]; 499 } args = { 500 .base.mthd.version = 1, 501 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, 502 .base.mthd.hasht = nv_encoder->dcb->hasht, 503 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 504 (0x0100 << nv_crtc->index), 505 }; 506 507 nv_connector = nouveau_encoder_connector_get(nv_encoder); 508 if (!drm_detect_monitor_audio(nv_connector->edid)) 509 return; 510 511 memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); 512 513 nvif_mthd(&disp->disp->object, 0, &args, 514 sizeof(args.base) + drm_eld_size(args.data)); 515 } 516 517 /****************************************************************************** 518 * HDMI 519 *****************************************************************************/ 520 static void 521 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 522 { 523 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 524 struct nv50_disp *disp = nv50_disp(encoder->dev); 525 struct { 526 struct nv50_disp_mthd_v1 base; 527 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 528 } args = { 529 .base.version = 1, 530 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 531 .base.hasht = nv_encoder->dcb->hasht, 532 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 533 (0x0100 << nv_crtc->index), 534 }; 535 536 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); 537 } 538 539 static void 540 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) 541 { 542 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 543 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 544 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 545 struct nv50_disp *disp = nv50_disp(encoder->dev); 546 struct { 547 struct nv50_disp_mthd_v1 base; 548 struct nv50_disp_sor_hdmi_pwr_v0 pwr; 549 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */ 550 } args = { 551 .base.version = 1, 552 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, 553 .base.hasht = nv_encoder->dcb->hasht, 554 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | 555 (0x0100 << nv_crtc->index), 556 .pwr.state = 1, 557 .pwr.rekey = 56, /* binary driver, and tegra, constant */ 558 }; 559 struct nouveau_connector *nv_connector; 560 struct drm_hdmi_info *hdmi; 561 u32 max_ac_packet; 562 union hdmi_infoframe avi_frame; 563 union hdmi_infoframe vendor_frame; 564 bool high_tmds_clock_ratio = false, scrambling = false; 565 u8 config; 566 int ret; 567 int size; 568 569 nv_connector = nouveau_encoder_connector_get(nv_encoder); 570 if (!drm_detect_hdmi_monitor(nv_connector->edid)) 571 return; 572 573 hdmi = &nv_connector->base.display_info.hdmi; 574 575 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, 576 &nv_connector->base, mode); 577 if (!ret) { 578 /* We have an AVI InfoFrame, populate it to the display */ 579 args.pwr.avi_infoframe_length 580 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17); 581 } 582 583 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi, 584 &nv_connector->base, mode); 585 if (!ret) { 586 /* We have a Vendor InfoFrame, populate it to the display */ 587 args.pwr.vendor_infoframe_length 588 = hdmi_infoframe_pack(&vendor_frame, 589 args.infoframes 590 + args.pwr.avi_infoframe_length, 591 17); 592 } 593 594 max_ac_packet = mode->htotal - mode->hdisplay; 595 max_ac_packet -= args.pwr.rekey; 596 max_ac_packet -= 18; /* constant from tegra */ 597 args.pwr.max_ac_packet = max_ac_packet / 32; 598 599 if (hdmi->scdc.scrambling.supported) { 600 high_tmds_clock_ratio = mode->clock > 340000; 601 scrambling = high_tmds_clock_ratio || 602 hdmi->scdc.scrambling.low_rates; 603 } 604 605 args.pwr.scdc = 606 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling | 607 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio; 608 609 size = sizeof(args.base) 610 + sizeof(args.pwr) 611 + args.pwr.avi_infoframe_length 612 + args.pwr.vendor_infoframe_length; 613 nvif_mthd(&disp->disp->object, 0, &args, size); 614 615 nv50_audio_enable(encoder, mode); 616 617 /* If SCDC is supported by the downstream monitor, update 618 * divider / scrambling settings to what we programmed above. 619 */ 620 if (!hdmi->scdc.scrambling.supported) 621 return; 622 623 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config); 624 if (ret < 0) { 625 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 626 return; 627 } 628 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 629 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio; 630 config |= SCDC_SCRAMBLING_ENABLE * scrambling; 631 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config); 632 if (ret < 0) 633 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 634 config, ret); 635 } 636 637 /****************************************************************************** 638 * MST 639 *****************************************************************************/ 640 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 641 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 642 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 643 644 struct nv50_mstm { 645 struct nouveau_encoder *outp; 646 647 struct drm_dp_mst_topology_mgr mgr; 648 struct nv50_msto *msto[4]; 649 650 bool modified; 651 bool disabled; 652 int links; 653 }; 654 655 struct nv50_mstc { 656 struct nv50_mstm *mstm; 657 struct drm_dp_mst_port *port; 658 struct drm_connector connector; 659 660 struct drm_display_mode *native; 661 struct edid *edid; 662 663 int pbn; 664 }; 665 666 struct nv50_msto { 667 struct drm_encoder encoder; 668 669 struct nv50_head *head; 670 struct nv50_mstc *mstc; 671 bool disabled; 672 }; 673 674 static struct drm_dp_payload * 675 nv50_msto_payload(struct nv50_msto *msto) 676 { 677 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 678 struct nv50_mstc *mstc = msto->mstc; 679 struct nv50_mstm *mstm = mstc->mstm; 680 int vcpi = mstc->port->vcpi.vcpi, i; 681 682 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock)); 683 684 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi); 685 for (i = 0; i < mstm->mgr.max_payloads; i++) { 686 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 687 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n", 688 mstm->outp->base.base.name, i, payload->vcpi, 689 payload->start_slot, payload->num_slots); 690 } 691 692 for (i = 0; i < mstm->mgr.max_payloads; i++) { 693 struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; 694 if (payload->vcpi == vcpi) 695 return payload; 696 } 697 698 return NULL; 699 } 700 701 static void 702 nv50_msto_cleanup(struct nv50_msto *msto) 703 { 704 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 705 struct nv50_mstc *mstc = msto->mstc; 706 struct nv50_mstm *mstm = mstc->mstm; 707 708 if (!msto->disabled) 709 return; 710 711 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 712 713 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port); 714 715 msto->mstc = NULL; 716 msto->head = NULL; 717 msto->disabled = false; 718 } 719 720 static void 721 nv50_msto_prepare(struct nv50_msto *msto) 722 { 723 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 724 struct nv50_mstc *mstc = msto->mstc; 725 struct nv50_mstm *mstm = mstc->mstm; 726 struct { 727 struct nv50_disp_mthd_v1 base; 728 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi; 729 } args = { 730 .base.version = 1, 731 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI, 732 .base.hasht = mstm->outp->dcb->hasht, 733 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) | 734 (0x0100 << msto->head->base.index), 735 }; 736 737 mutex_lock(&mstm->mgr.payload_lock); 738 739 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 740 if (mstc->port->vcpi.vcpi > 0) { 741 struct drm_dp_payload *payload = nv50_msto_payload(msto); 742 if (payload) { 743 args.vcpi.start_slot = payload->start_slot; 744 args.vcpi.num_slots = payload->num_slots; 745 args.vcpi.pbn = mstc->port->vcpi.pbn; 746 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn; 747 } 748 } 749 750 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n", 751 msto->encoder.name, msto->head->base.base.name, 752 args.vcpi.start_slot, args.vcpi.num_slots, 753 args.vcpi.pbn, args.vcpi.aligned_pbn); 754 755 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args)); 756 mutex_unlock(&mstm->mgr.payload_lock); 757 } 758 759 static int 760 nv50_msto_atomic_check(struct drm_encoder *encoder, 761 struct drm_crtc_state *crtc_state, 762 struct drm_connector_state *conn_state) 763 { 764 struct drm_atomic_state *state = crtc_state->state; 765 struct drm_connector *connector = conn_state->connector; 766 struct nv50_mstc *mstc = nv50_mstc(connector); 767 struct nv50_mstm *mstm = mstc->mstm; 768 int bpp = connector->display_info.bpc * 3; 769 int slots; 770 771 mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, 772 bpp); 773 774 if (drm_atomic_crtc_needs_modeset(crtc_state) && 775 !drm_connector_is_unregistered(connector)) { 776 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, 777 mstc->port, mstc->pbn); 778 if (slots < 0) 779 return slots; 780 } 781 782 return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 783 mstc->native); 784 } 785 786 static void 787 nv50_msto_enable(struct drm_encoder *encoder) 788 { 789 struct nv50_head *head = nv50_head(encoder->crtc); 790 struct nv50_msto *msto = nv50_msto(encoder); 791 struct nv50_mstc *mstc = NULL; 792 struct nv50_mstm *mstm = NULL; 793 struct drm_connector *connector; 794 struct drm_connector_list_iter conn_iter; 795 u8 proto, depth; 796 int slots; 797 bool r; 798 799 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 800 drm_for_each_connector_iter(connector, &conn_iter) { 801 if (connector->state->best_encoder == &msto->encoder) { 802 mstc = nv50_mstc(connector); 803 mstm = mstc->mstm; 804 break; 805 } 806 } 807 drm_connector_list_iter_end(&conn_iter); 808 809 if (WARN_ON(!mstc)) 810 return; 811 812 slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn); 813 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, slots); 814 WARN_ON(!r); 815 816 if (!mstm->links++) 817 nv50_outp_acquire(mstm->outp); 818 819 if (mstm->outp->link & 1) 820 proto = 0x8; 821 else 822 proto = 0x9; 823 824 switch (mstc->connector.display_info.bpc) { 825 case 6: depth = 0x2; break; 826 case 8: depth = 0x5; break; 827 case 10: 828 default: depth = 0x6; break; 829 } 830 831 mstm->outp->update(mstm->outp, head->base.index, 832 nv50_head_atom(head->base.base.state), proto, depth); 833 834 msto->head = head; 835 msto->mstc = mstc; 836 mstm->modified = true; 837 } 838 839 static void 840 nv50_msto_disable(struct drm_encoder *encoder) 841 { 842 struct nv50_msto *msto = nv50_msto(encoder); 843 struct nv50_mstc *mstc = msto->mstc; 844 struct nv50_mstm *mstm = mstc->mstm; 845 846 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port); 847 848 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 849 mstm->modified = true; 850 if (!--mstm->links) 851 mstm->disabled = true; 852 msto->disabled = true; 853 } 854 855 static const struct drm_encoder_helper_funcs 856 nv50_msto_help = { 857 .disable = nv50_msto_disable, 858 .enable = nv50_msto_enable, 859 .atomic_check = nv50_msto_atomic_check, 860 }; 861 862 static void 863 nv50_msto_destroy(struct drm_encoder *encoder) 864 { 865 struct nv50_msto *msto = nv50_msto(encoder); 866 drm_encoder_cleanup(&msto->encoder); 867 kfree(msto); 868 } 869 870 static const struct drm_encoder_funcs 871 nv50_msto = { 872 .destroy = nv50_msto_destroy, 873 }; 874 875 static int 876 nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id, 877 struct nv50_msto **pmsto) 878 { 879 struct nv50_msto *msto; 880 int ret; 881 882 if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL))) 883 return -ENOMEM; 884 885 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 886 DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id); 887 if (ret) { 888 kfree(*pmsto); 889 *pmsto = NULL; 890 return ret; 891 } 892 893 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 894 msto->encoder.possible_crtcs = heads; 895 return 0; 896 } 897 898 static struct drm_encoder * 899 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 900 struct drm_connector_state *connector_state) 901 { 902 struct nv50_head *head = nv50_head(connector_state->crtc); 903 struct nv50_mstc *mstc = nv50_mstc(connector); 904 905 return &mstc->mstm->msto[head->base.index]->encoder; 906 } 907 908 static struct drm_encoder * 909 nv50_mstc_best_encoder(struct drm_connector *connector) 910 { 911 struct nv50_mstc *mstc = nv50_mstc(connector); 912 913 return &mstc->mstm->msto[0]->encoder; 914 } 915 916 static enum drm_mode_status 917 nv50_mstc_mode_valid(struct drm_connector *connector, 918 struct drm_display_mode *mode) 919 { 920 return MODE_OK; 921 } 922 923 static int 924 nv50_mstc_get_modes(struct drm_connector *connector) 925 { 926 struct nv50_mstc *mstc = nv50_mstc(connector); 927 int ret = 0; 928 929 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 930 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 931 if (mstc->edid) 932 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 933 934 if (!mstc->connector.display_info.bpc) 935 mstc->connector.display_info.bpc = 8; 936 937 if (mstc->native) 938 drm_mode_destroy(mstc->connector.dev, mstc->native); 939 mstc->native = nouveau_conn_native_mode(&mstc->connector); 940 return ret; 941 } 942 943 static int 944 nv50_mstc_atomic_check(struct drm_connector *connector, 945 struct drm_connector_state *new_conn_state) 946 { 947 struct drm_atomic_state *state = new_conn_state->state; 948 struct nv50_mstc *mstc = nv50_mstc(connector); 949 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 950 struct drm_connector_state *old_conn_state = 951 drm_atomic_get_old_connector_state(state, connector); 952 struct drm_crtc_state *crtc_state; 953 struct drm_crtc *new_crtc = new_conn_state->crtc; 954 955 if (!old_conn_state->crtc) 956 return 0; 957 958 /* We only want to free VCPI if this state disables the CRTC on this 959 * connector 960 */ 961 if (new_crtc) { 962 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc); 963 964 if (!crtc_state || 965 !drm_atomic_crtc_needs_modeset(crtc_state) || 966 crtc_state->enable) 967 return 0; 968 } 969 970 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port); 971 } 972 973 static const struct drm_connector_helper_funcs 974 nv50_mstc_help = { 975 .get_modes = nv50_mstc_get_modes, 976 .mode_valid = nv50_mstc_mode_valid, 977 .best_encoder = nv50_mstc_best_encoder, 978 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 979 .atomic_check = nv50_mstc_atomic_check, 980 }; 981 982 static enum drm_connector_status 983 nv50_mstc_detect(struct drm_connector *connector, bool force) 984 { 985 struct nv50_mstc *mstc = nv50_mstc(connector); 986 enum drm_connector_status conn_status; 987 int ret; 988 989 if (drm_connector_is_unregistered(connector)) 990 return connector_status_disconnected; 991 992 ret = pm_runtime_get_sync(connector->dev->dev); 993 if (ret < 0 && ret != -EACCES) 994 return connector_status_disconnected; 995 996 conn_status = drm_dp_mst_detect_port(connector, mstc->port->mgr, 997 mstc->port); 998 999 pm_runtime_mark_last_busy(connector->dev->dev); 1000 pm_runtime_put_autosuspend(connector->dev->dev); 1001 return conn_status; 1002 } 1003 1004 static void 1005 nv50_mstc_destroy(struct drm_connector *connector) 1006 { 1007 struct nv50_mstc *mstc = nv50_mstc(connector); 1008 1009 drm_connector_cleanup(&mstc->connector); 1010 drm_dp_mst_put_port_malloc(mstc->port); 1011 1012 kfree(mstc); 1013 } 1014 1015 static const struct drm_connector_funcs 1016 nv50_mstc = { 1017 .reset = nouveau_conn_reset, 1018 .detect = nv50_mstc_detect, 1019 .fill_modes = drm_helper_probe_single_connector_modes, 1020 .destroy = nv50_mstc_destroy, 1021 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1022 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1023 .atomic_set_property = nouveau_conn_atomic_set_property, 1024 .atomic_get_property = nouveau_conn_atomic_get_property, 1025 }; 1026 1027 static int 1028 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1029 const char *path, struct nv50_mstc **pmstc) 1030 { 1031 struct drm_device *dev = mstm->outp->base.base.dev; 1032 struct nv50_mstc *mstc; 1033 int ret, i; 1034 1035 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1036 return -ENOMEM; 1037 mstc->mstm = mstm; 1038 mstc->port = port; 1039 1040 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1041 DRM_MODE_CONNECTOR_DisplayPort); 1042 if (ret) { 1043 kfree(*pmstc); 1044 *pmstc = NULL; 1045 return ret; 1046 } 1047 1048 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1049 1050 mstc->connector.funcs->reset(&mstc->connector); 1051 nouveau_conn_attach_properties(&mstc->connector); 1052 1053 for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++) 1054 drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder); 1055 1056 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1057 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1058 drm_connector_set_path_property(&mstc->connector, path); 1059 drm_dp_mst_get_port_malloc(port); 1060 return 0; 1061 } 1062 1063 static void 1064 nv50_mstm_cleanup(struct nv50_mstm *mstm) 1065 { 1066 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1067 struct drm_encoder *encoder; 1068 int ret; 1069 1070 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1071 ret = drm_dp_check_act_status(&mstm->mgr); 1072 1073 ret = drm_dp_update_payload_part2(&mstm->mgr); 1074 1075 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1076 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1077 struct nv50_msto *msto = nv50_msto(encoder); 1078 struct nv50_mstc *mstc = msto->mstc; 1079 if (mstc && mstc->mstm == mstm) 1080 nv50_msto_cleanup(msto); 1081 } 1082 } 1083 1084 mstm->modified = false; 1085 } 1086 1087 static void 1088 nv50_mstm_prepare(struct nv50_mstm *mstm) 1089 { 1090 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1091 struct drm_encoder *encoder; 1092 int ret; 1093 1094 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1095 ret = drm_dp_update_payload_part1(&mstm->mgr); 1096 1097 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1098 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1099 struct nv50_msto *msto = nv50_msto(encoder); 1100 struct nv50_mstc *mstc = msto->mstc; 1101 if (mstc && mstc->mstm == mstm) 1102 nv50_msto_prepare(msto); 1103 } 1104 } 1105 1106 if (mstm->disabled) { 1107 if (!mstm->links) 1108 nv50_outp_release(mstm->outp); 1109 mstm->disabled = false; 1110 } 1111 } 1112 1113 static void 1114 nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr, 1115 struct drm_connector *connector) 1116 { 1117 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1118 struct nv50_mstc *mstc = nv50_mstc(connector); 1119 1120 drm_connector_unregister(&mstc->connector); 1121 1122 drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector); 1123 1124 drm_connector_put(&mstc->connector); 1125 } 1126 1127 static void 1128 nv50_mstm_register_connector(struct drm_connector *connector) 1129 { 1130 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1131 1132 drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector); 1133 1134 drm_connector_register(connector); 1135 } 1136 1137 static struct drm_connector * 1138 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1139 struct drm_dp_mst_port *port, const char *path) 1140 { 1141 struct nv50_mstm *mstm = nv50_mstm(mgr); 1142 struct nv50_mstc *mstc; 1143 int ret; 1144 1145 ret = nv50_mstc_new(mstm, port, path, &mstc); 1146 if (ret) 1147 return NULL; 1148 1149 return &mstc->connector; 1150 } 1151 1152 static const struct drm_dp_mst_topology_cbs 1153 nv50_mstm = { 1154 .add_connector = nv50_mstm_add_connector, 1155 .register_connector = nv50_mstm_register_connector, 1156 .destroy_connector = nv50_mstm_destroy_connector, 1157 }; 1158 1159 void 1160 nv50_mstm_service(struct nv50_mstm *mstm) 1161 { 1162 struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL; 1163 bool handled = true; 1164 int ret; 1165 u8 esi[8] = {}; 1166 1167 if (!aux) 1168 return; 1169 1170 while (handled) { 1171 ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1172 if (ret != 8) { 1173 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1174 return; 1175 } 1176 1177 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); 1178 if (!handled) 1179 break; 1180 1181 drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3); 1182 } 1183 } 1184 1185 void 1186 nv50_mstm_remove(struct nv50_mstm *mstm) 1187 { 1188 if (mstm) 1189 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1190 } 1191 1192 static int 1193 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state) 1194 { 1195 struct nouveau_encoder *outp = mstm->outp; 1196 struct { 1197 struct nv50_disp_mthd_v1 base; 1198 struct nv50_disp_sor_dp_mst_link_v0 mst; 1199 } args = { 1200 .base.version = 1, 1201 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK, 1202 .base.hasht = outp->dcb->hasht, 1203 .base.hashm = outp->dcb->hashm, 1204 .mst.state = state, 1205 }; 1206 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev); 1207 struct nvif_object *disp = &drm->display->disp.object; 1208 int ret; 1209 1210 if (dpcd >= 0x12) { 1211 /* Even if we're enabling MST, start with disabling the 1212 * branching unit to clear any sink-side MST topology state 1213 * that wasn't set by us 1214 */ 1215 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0); 1216 if (ret < 0) 1217 return ret; 1218 1219 if (state) { 1220 /* Now, start initializing */ 1221 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 1222 DP_MST_EN); 1223 if (ret < 0) 1224 return ret; 1225 } 1226 } 1227 1228 return nvif_mthd(disp, 0, &args, sizeof(args)); 1229 } 1230 1231 int 1232 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow) 1233 { 1234 struct drm_dp_aux *aux; 1235 int ret; 1236 bool old_state, new_state; 1237 u8 mstm_ctrl; 1238 1239 if (!mstm) 1240 return 0; 1241 1242 mutex_lock(&mstm->mgr.lock); 1243 1244 old_state = mstm->mgr.mst_state; 1245 new_state = old_state; 1246 aux = mstm->mgr.aux; 1247 1248 if (old_state) { 1249 /* Just check that the MST hub is still as we expect it */ 1250 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl); 1251 if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) { 1252 DRM_DEBUG_KMS("Hub gone, disabling MST topology\n"); 1253 new_state = false; 1254 } 1255 } else if (dpcd[0] >= 0x12) { 1256 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]); 1257 if (ret < 0) 1258 goto probe_error; 1259 1260 if (!(dpcd[1] & DP_MST_CAP)) 1261 dpcd[0] = 0x11; 1262 else 1263 new_state = allow; 1264 } 1265 1266 if (new_state == old_state) { 1267 mutex_unlock(&mstm->mgr.lock); 1268 return new_state; 1269 } 1270 1271 ret = nv50_mstm_enable(mstm, dpcd[0], new_state); 1272 if (ret) 1273 goto probe_error; 1274 1275 mutex_unlock(&mstm->mgr.lock); 1276 1277 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state); 1278 if (ret) 1279 return nv50_mstm_enable(mstm, dpcd[0], 0); 1280 1281 return new_state; 1282 1283 probe_error: 1284 mutex_unlock(&mstm->mgr.lock); 1285 return ret; 1286 } 1287 1288 static void 1289 nv50_mstm_fini(struct nv50_mstm *mstm) 1290 { 1291 if (mstm && mstm->mgr.mst_state) 1292 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1293 } 1294 1295 static void 1296 nv50_mstm_init(struct nv50_mstm *mstm) 1297 { 1298 int ret; 1299 1300 if (!mstm || !mstm->mgr.mst_state) 1301 return; 1302 1303 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr); 1304 if (ret == -1) { 1305 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1306 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1307 } 1308 } 1309 1310 static void 1311 nv50_mstm_del(struct nv50_mstm **pmstm) 1312 { 1313 struct nv50_mstm *mstm = *pmstm; 1314 if (mstm) { 1315 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1316 kfree(*pmstm); 1317 *pmstm = NULL; 1318 } 1319 } 1320 1321 static int 1322 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1323 int conn_base_id, struct nv50_mstm **pmstm) 1324 { 1325 const int max_payloads = hweight8(outp->dcb->heads); 1326 struct drm_device *dev = outp->base.base.dev; 1327 struct nv50_mstm *mstm; 1328 int ret, i; 1329 u8 dpcd; 1330 1331 /* This is a workaround for some monitors not functioning 1332 * correctly in MST mode on initial module load. I think 1333 * some bad interaction with the VBIOS may be responsible. 1334 * 1335 * A good ol' off and on again seems to work here ;) 1336 */ 1337 ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd); 1338 if (ret >= 0 && dpcd >= 0x12) 1339 drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1340 1341 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1342 return -ENOMEM; 1343 mstm->outp = outp; 1344 mstm->mgr.cbs = &nv50_mstm; 1345 1346 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1347 max_payloads, conn_base_id); 1348 if (ret) 1349 return ret; 1350 1351 for (i = 0; i < max_payloads; i++) { 1352 ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name, 1353 i, &mstm->msto[i]); 1354 if (ret) 1355 return ret; 1356 } 1357 1358 return 0; 1359 } 1360 1361 /****************************************************************************** 1362 * SOR 1363 *****************************************************************************/ 1364 static void 1365 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1366 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1367 { 1368 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1369 struct nv50_core *core = disp->core; 1370 1371 if (!asyh) { 1372 nv_encoder->ctrl &= ~BIT(head); 1373 if (!(nv_encoder->ctrl & 0x0000000f)) 1374 nv_encoder->ctrl = 0; 1375 } else { 1376 nv_encoder->ctrl |= proto << 8; 1377 nv_encoder->ctrl |= BIT(head); 1378 asyh->or.depth = depth; 1379 } 1380 1381 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh); 1382 } 1383 1384 static void 1385 nv50_sor_disable(struct drm_encoder *encoder) 1386 { 1387 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1388 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); 1389 1390 nv_encoder->crtc = NULL; 1391 1392 if (nv_crtc) { 1393 struct nvkm_i2c_aux *aux = nv_encoder->aux; 1394 u8 pwr; 1395 1396 if (aux) { 1397 int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1); 1398 if (ret == 0) { 1399 pwr &= ~DP_SET_POWER_MASK; 1400 pwr |= DP_SET_POWER_D3; 1401 nvkm_wraux(aux, DP_SET_POWER, &pwr, 1); 1402 } 1403 } 1404 1405 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); 1406 nv50_audio_disable(encoder, nv_crtc); 1407 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc); 1408 nv50_outp_release(nv_encoder); 1409 } 1410 } 1411 1412 static void 1413 nv50_sor_enable(struct drm_encoder *encoder) 1414 { 1415 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1416 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 1417 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 1418 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1419 struct { 1420 struct nv50_disp_mthd_v1 base; 1421 struct nv50_disp_sor_lvds_script_v0 lvds; 1422 } lvds = { 1423 .base.version = 1, 1424 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT, 1425 .base.hasht = nv_encoder->dcb->hasht, 1426 .base.hashm = nv_encoder->dcb->hashm, 1427 }; 1428 struct nv50_disp *disp = nv50_disp(encoder->dev); 1429 struct drm_device *dev = encoder->dev; 1430 struct nouveau_drm *drm = nouveau_drm(dev); 1431 struct nouveau_connector *nv_connector; 1432 struct nvbios *bios = &drm->vbios; 1433 u8 proto = 0xf; 1434 u8 depth = 0x0; 1435 1436 nv_connector = nouveau_encoder_connector_get(nv_encoder); 1437 nv_encoder->crtc = encoder->crtc; 1438 nv50_outp_acquire(nv_encoder); 1439 1440 switch (nv_encoder->dcb->type) { 1441 case DCB_OUTPUT_TMDS: 1442 if (nv_encoder->link & 1) { 1443 proto = 0x1; 1444 /* Only enable dual-link if: 1445 * - Need to (i.e. rate > 165MHz) 1446 * - DCB says we can 1447 * - Not an HDMI monitor, since there's no dual-link 1448 * on HDMI. 1449 */ 1450 if (mode->clock >= 165000 && 1451 nv_encoder->dcb->duallink_possible && 1452 !drm_detect_hdmi_monitor(nv_connector->edid)) 1453 proto |= 0x4; 1454 } else { 1455 proto = 0x2; 1456 } 1457 1458 nv50_hdmi_enable(&nv_encoder->base.base, mode); 1459 break; 1460 case DCB_OUTPUT_LVDS: 1461 proto = 0x0; 1462 1463 if (bios->fp_no_ddc) { 1464 if (bios->fp.dual_link) 1465 lvds.lvds.script |= 0x0100; 1466 if (bios->fp.if_is_24bit) 1467 lvds.lvds.script |= 0x0200; 1468 } else { 1469 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1470 if (((u8 *)nv_connector->edid)[121] == 2) 1471 lvds.lvds.script |= 0x0100; 1472 } else 1473 if (mode->clock >= bios->fp.duallink_transition_clk) { 1474 lvds.lvds.script |= 0x0100; 1475 } 1476 1477 if (lvds.lvds.script & 0x0100) { 1478 if (bios->fp.strapless_is_24bit & 2) 1479 lvds.lvds.script |= 0x0200; 1480 } else { 1481 if (bios->fp.strapless_is_24bit & 1) 1482 lvds.lvds.script |= 0x0200; 1483 } 1484 1485 if (nv_connector->base.display_info.bpc == 8) 1486 lvds.lvds.script |= 0x0200; 1487 } 1488 1489 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds)); 1490 break; 1491 case DCB_OUTPUT_DP: 1492 if (nv_connector->base.display_info.bpc == 6) 1493 depth = 0x2; 1494 else 1495 if (nv_connector->base.display_info.bpc == 8) 1496 depth = 0x5; 1497 else 1498 depth = 0x6; 1499 1500 if (nv_encoder->link & 1) 1501 proto = 0x8; 1502 else 1503 proto = 0x9; 1504 1505 nv50_audio_enable(encoder, mode); 1506 break; 1507 default: 1508 BUG(); 1509 break; 1510 } 1511 1512 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1513 } 1514 1515 static const struct drm_encoder_helper_funcs 1516 nv50_sor_help = { 1517 .atomic_check = nv50_outp_atomic_check, 1518 .enable = nv50_sor_enable, 1519 .disable = nv50_sor_disable, 1520 }; 1521 1522 static void 1523 nv50_sor_destroy(struct drm_encoder *encoder) 1524 { 1525 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1526 nv50_mstm_del(&nv_encoder->dp.mstm); 1527 drm_encoder_cleanup(encoder); 1528 kfree(encoder); 1529 } 1530 1531 static const struct drm_encoder_funcs 1532 nv50_sor_func = { 1533 .destroy = nv50_sor_destroy, 1534 }; 1535 1536 static int 1537 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) 1538 { 1539 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1540 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1541 struct nvkm_bios *bios = nvxx_bios(&drm->client.device); 1542 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1543 struct nouveau_encoder *nv_encoder; 1544 struct drm_encoder *encoder; 1545 u8 ver, hdr, cnt, len; 1546 u32 data; 1547 int type, ret; 1548 1549 switch (dcbe->type) { 1550 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1551 case DCB_OUTPUT_TMDS: 1552 case DCB_OUTPUT_DP: 1553 default: 1554 type = DRM_MODE_ENCODER_TMDS; 1555 break; 1556 } 1557 1558 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1559 if (!nv_encoder) 1560 return -ENOMEM; 1561 nv_encoder->dcb = dcbe; 1562 nv_encoder->update = nv50_sor_update; 1563 1564 encoder = to_drm_encoder(nv_encoder); 1565 encoder->possible_crtcs = dcbe->heads; 1566 encoder->possible_clones = 0; 1567 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1568 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1569 drm_encoder_helper_add(encoder, &nv50_sor_help); 1570 1571 drm_connector_attach_encoder(connector, encoder); 1572 1573 if (dcbe->type == DCB_OUTPUT_DP) { 1574 struct nv50_disp *disp = nv50_disp(encoder->dev); 1575 struct nvkm_i2c_aux *aux = 1576 nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1577 if (aux) { 1578 if (disp->disp->object.oclass < GF110_DISP) { 1579 /* HW has no support for address-only 1580 * transactions, so we're required to 1581 * use custom I2C-over-AUX code. 1582 */ 1583 nv_encoder->i2c = &aux->i2c; 1584 } else { 1585 nv_encoder->i2c = &nv_connector->aux.ddc; 1586 } 1587 nv_encoder->aux = aux; 1588 } 1589 1590 if ((data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) && 1591 ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) { 1592 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16, 1593 nv_connector->base.base.id, 1594 &nv_encoder->dp.mstm); 1595 if (ret) 1596 return ret; 1597 } 1598 } else { 1599 struct nvkm_i2c_bus *bus = 1600 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1601 if (bus) 1602 nv_encoder->i2c = &bus->i2c; 1603 } 1604 1605 return 0; 1606 } 1607 1608 /****************************************************************************** 1609 * PIOR 1610 *****************************************************************************/ 1611 static int 1612 nv50_pior_atomic_check(struct drm_encoder *encoder, 1613 struct drm_crtc_state *crtc_state, 1614 struct drm_connector_state *conn_state) 1615 { 1616 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1617 if (ret) 1618 return ret; 1619 crtc_state->adjusted_mode.clock *= 2; 1620 return 0; 1621 } 1622 1623 static void 1624 nv50_pior_disable(struct drm_encoder *encoder) 1625 { 1626 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1627 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1628 if (nv_encoder->crtc) 1629 core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL); 1630 nv_encoder->crtc = NULL; 1631 nv50_outp_release(nv_encoder); 1632 } 1633 1634 static void 1635 nv50_pior_enable(struct drm_encoder *encoder) 1636 { 1637 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1638 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 1639 struct nouveau_connector *nv_connector; 1640 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); 1641 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1642 u8 owner = 1 << nv_crtc->index; 1643 u8 proto; 1644 1645 nv50_outp_acquire(nv_encoder); 1646 1647 nv_connector = nouveau_encoder_connector_get(nv_encoder); 1648 switch (nv_connector->base.display_info.bpc) { 1649 case 10: asyh->or.depth = 0x6; break; 1650 case 8: asyh->or.depth = 0x5; break; 1651 case 6: asyh->or.depth = 0x2; break; 1652 default: asyh->or.depth = 0x0; break; 1653 } 1654 1655 switch (nv_encoder->dcb->type) { 1656 case DCB_OUTPUT_TMDS: 1657 case DCB_OUTPUT_DP: 1658 proto = 0x0; 1659 break; 1660 default: 1661 BUG(); 1662 break; 1663 } 1664 1665 core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh); 1666 nv_encoder->crtc = encoder->crtc; 1667 } 1668 1669 static const struct drm_encoder_helper_funcs 1670 nv50_pior_help = { 1671 .atomic_check = nv50_pior_atomic_check, 1672 .enable = nv50_pior_enable, 1673 .disable = nv50_pior_disable, 1674 }; 1675 1676 static void 1677 nv50_pior_destroy(struct drm_encoder *encoder) 1678 { 1679 drm_encoder_cleanup(encoder); 1680 kfree(encoder); 1681 } 1682 1683 static const struct drm_encoder_funcs 1684 nv50_pior_func = { 1685 .destroy = nv50_pior_destroy, 1686 }; 1687 1688 static int 1689 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) 1690 { 1691 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1692 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1693 struct nvkm_i2c_bus *bus = NULL; 1694 struct nvkm_i2c_aux *aux = NULL; 1695 struct i2c_adapter *ddc; 1696 struct nouveau_encoder *nv_encoder; 1697 struct drm_encoder *encoder; 1698 int type; 1699 1700 switch (dcbe->type) { 1701 case DCB_OUTPUT_TMDS: 1702 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); 1703 ddc = bus ? &bus->i2c : NULL; 1704 type = DRM_MODE_ENCODER_TMDS; 1705 break; 1706 case DCB_OUTPUT_DP: 1707 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); 1708 ddc = aux ? &aux->i2c : NULL; 1709 type = DRM_MODE_ENCODER_TMDS; 1710 break; 1711 default: 1712 return -ENODEV; 1713 } 1714 1715 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 1716 if (!nv_encoder) 1717 return -ENOMEM; 1718 nv_encoder->dcb = dcbe; 1719 nv_encoder->i2c = ddc; 1720 nv_encoder->aux = aux; 1721 1722 encoder = to_drm_encoder(nv_encoder); 1723 encoder->possible_crtcs = dcbe->heads; 1724 encoder->possible_clones = 0; 1725 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 1726 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 1727 drm_encoder_helper_add(encoder, &nv50_pior_help); 1728 1729 drm_connector_attach_encoder(connector, encoder); 1730 return 0; 1731 } 1732 1733 /****************************************************************************** 1734 * Atomic 1735 *****************************************************************************/ 1736 1737 static void 1738 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 1739 { 1740 struct nouveau_drm *drm = nouveau_drm(state->dev); 1741 struct nv50_disp *disp = nv50_disp(drm->dev); 1742 struct nv50_core *core = disp->core; 1743 struct nv50_mstm *mstm; 1744 struct drm_encoder *encoder; 1745 1746 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 1747 1748 drm_for_each_encoder(encoder, drm->dev) { 1749 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 1750 mstm = nouveau_encoder(encoder)->dp.mstm; 1751 if (mstm && mstm->modified) 1752 nv50_mstm_prepare(mstm); 1753 } 1754 } 1755 1756 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 1757 core->func->update(core, interlock, true); 1758 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 1759 disp->core->chan.base.device)) 1760 NV_ERROR(drm, "core notifier timeout\n"); 1761 1762 drm_for_each_encoder(encoder, drm->dev) { 1763 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 1764 mstm = nouveau_encoder(encoder)->dp.mstm; 1765 if (mstm && mstm->modified) 1766 nv50_mstm_cleanup(mstm); 1767 } 1768 } 1769 } 1770 1771 static void 1772 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 1773 { 1774 struct drm_plane_state *new_plane_state; 1775 struct drm_plane *plane; 1776 int i; 1777 1778 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1779 struct nv50_wndw *wndw = nv50_wndw(plane); 1780 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 1781 if (wndw->func->update) 1782 wndw->func->update(wndw, interlock); 1783 } 1784 } 1785 } 1786 1787 static void 1788 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 1789 { 1790 struct drm_device *dev = state->dev; 1791 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 1792 struct drm_crtc *crtc; 1793 struct drm_plane_state *new_plane_state; 1794 struct drm_plane *plane; 1795 struct nouveau_drm *drm = nouveau_drm(dev); 1796 struct nv50_disp *disp = nv50_disp(dev); 1797 struct nv50_atom *atom = nv50_atom(state); 1798 struct nv50_outp_atom *outp, *outt; 1799 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 1800 int i; 1801 1802 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 1803 drm_atomic_helper_wait_for_fences(dev, state, false); 1804 drm_atomic_helper_wait_for_dependencies(state); 1805 drm_atomic_helper_update_legacy_modeset_state(dev, state); 1806 1807 if (atom->lock_core) 1808 mutex_lock(&disp->mutex); 1809 1810 /* Disable head(s). */ 1811 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 1812 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 1813 struct nv50_head *head = nv50_head(crtc); 1814 1815 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 1816 asyh->clr.mask, asyh->set.mask); 1817 if (old_crtc_state->active && !new_crtc_state->active) 1818 drm_crtc_vblank_off(crtc); 1819 1820 if (asyh->clr.mask) { 1821 nv50_head_flush_clr(head, asyh, atom->flush_disable); 1822 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 1823 } 1824 } 1825 1826 /* Disable plane(s). */ 1827 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1828 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 1829 struct nv50_wndw *wndw = nv50_wndw(plane); 1830 1831 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 1832 asyw->clr.mask, asyw->set.mask); 1833 if (!asyw->clr.mask) 1834 continue; 1835 1836 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 1837 } 1838 1839 /* Disable output path(s). */ 1840 list_for_each_entry(outp, &atom->outp, head) { 1841 const struct drm_encoder_helper_funcs *help; 1842 struct drm_encoder *encoder; 1843 1844 encoder = outp->encoder; 1845 help = encoder->helper_private; 1846 1847 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 1848 outp->clr.mask, outp->set.mask); 1849 1850 if (outp->clr.mask) { 1851 help->disable(encoder); 1852 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 1853 if (outp->flush_disable) { 1854 nv50_disp_atomic_commit_wndw(state, interlock); 1855 nv50_disp_atomic_commit_core(state, interlock); 1856 memset(interlock, 0x00, sizeof(interlock)); 1857 } 1858 } 1859 } 1860 1861 /* Flush disable. */ 1862 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 1863 if (atom->flush_disable) { 1864 nv50_disp_atomic_commit_wndw(state, interlock); 1865 nv50_disp_atomic_commit_core(state, interlock); 1866 memset(interlock, 0x00, sizeof(interlock)); 1867 } 1868 } 1869 1870 /* Update output path(s). */ 1871 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 1872 const struct drm_encoder_helper_funcs *help; 1873 struct drm_encoder *encoder; 1874 1875 encoder = outp->encoder; 1876 help = encoder->helper_private; 1877 1878 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 1879 outp->set.mask, outp->clr.mask); 1880 1881 if (outp->set.mask) { 1882 help->enable(encoder); 1883 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 1884 } 1885 1886 list_del(&outp->head); 1887 kfree(outp); 1888 } 1889 1890 /* Update head(s). */ 1891 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 1892 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 1893 struct nv50_head *head = nv50_head(crtc); 1894 1895 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 1896 asyh->set.mask, asyh->clr.mask); 1897 1898 if (asyh->set.mask) { 1899 nv50_head_flush_set(head, asyh); 1900 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 1901 } 1902 1903 if (new_crtc_state->active) { 1904 if (!old_crtc_state->active) 1905 drm_crtc_vblank_on(crtc); 1906 if (new_crtc_state->event) 1907 drm_crtc_vblank_get(crtc); 1908 } 1909 } 1910 1911 /* Update plane(s). */ 1912 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1913 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 1914 struct nv50_wndw *wndw = nv50_wndw(plane); 1915 1916 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 1917 asyw->set.mask, asyw->clr.mask); 1918 if ( !asyw->set.mask && 1919 (!asyw->clr.mask || atom->flush_disable)) 1920 continue; 1921 1922 nv50_wndw_flush_set(wndw, interlock, asyw); 1923 } 1924 1925 /* Flush update. */ 1926 nv50_disp_atomic_commit_wndw(state, interlock); 1927 1928 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 1929 if (interlock[NV50_DISP_INTERLOCK_BASE] || 1930 interlock[NV50_DISP_INTERLOCK_OVLY] || 1931 interlock[NV50_DISP_INTERLOCK_WNDW] || 1932 !atom->state.legacy_cursor_update) 1933 nv50_disp_atomic_commit_core(state, interlock); 1934 else 1935 disp->core->func->update(disp->core, interlock, false); 1936 } 1937 1938 if (atom->lock_core) 1939 mutex_unlock(&disp->mutex); 1940 1941 /* Wait for HW to signal completion. */ 1942 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 1943 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 1944 struct nv50_wndw *wndw = nv50_wndw(plane); 1945 int ret = nv50_wndw_wait_armed(wndw, asyw); 1946 if (ret) 1947 NV_ERROR(drm, "%s: timeout\n", plane->name); 1948 } 1949 1950 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 1951 if (new_crtc_state->event) { 1952 unsigned long flags; 1953 /* Get correct count/ts if racing with vblank irq */ 1954 if (new_crtc_state->active) 1955 drm_crtc_accurate_vblank_count(crtc); 1956 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1957 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 1958 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1959 1960 new_crtc_state->event = NULL; 1961 if (new_crtc_state->active) 1962 drm_crtc_vblank_put(crtc); 1963 } 1964 } 1965 1966 drm_atomic_helper_commit_hw_done(state); 1967 drm_atomic_helper_cleanup_planes(dev, state); 1968 drm_atomic_helper_commit_cleanup_done(state); 1969 drm_atomic_state_put(state); 1970 } 1971 1972 static void 1973 nv50_disp_atomic_commit_work(struct work_struct *work) 1974 { 1975 struct drm_atomic_state *state = 1976 container_of(work, typeof(*state), commit_work); 1977 nv50_disp_atomic_commit_tail(state); 1978 } 1979 1980 static int 1981 nv50_disp_atomic_commit(struct drm_device *dev, 1982 struct drm_atomic_state *state, bool nonblock) 1983 { 1984 struct nouveau_drm *drm = nouveau_drm(dev); 1985 struct drm_plane_state *new_plane_state; 1986 struct drm_plane *plane; 1987 struct drm_crtc *crtc; 1988 bool active = false; 1989 int ret, i; 1990 1991 ret = pm_runtime_get_sync(dev->dev); 1992 if (ret < 0 && ret != -EACCES) 1993 return ret; 1994 1995 ret = drm_atomic_helper_setup_commit(state, nonblock); 1996 if (ret) 1997 goto done; 1998 1999 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2000 2001 ret = drm_atomic_helper_prepare_planes(dev, state); 2002 if (ret) 2003 goto done; 2004 2005 if (!nonblock) { 2006 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2007 if (ret) 2008 goto err_cleanup; 2009 } 2010 2011 ret = drm_atomic_helper_swap_state(state, true); 2012 if (ret) 2013 goto err_cleanup; 2014 2015 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2016 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2017 struct nv50_wndw *wndw = nv50_wndw(plane); 2018 2019 if (asyw->set.image) 2020 nv50_wndw_ntfy_enable(wndw, asyw); 2021 } 2022 2023 drm_atomic_state_get(state); 2024 2025 if (nonblock) 2026 queue_work(system_unbound_wq, &state->commit_work); 2027 else 2028 nv50_disp_atomic_commit_tail(state); 2029 2030 drm_for_each_crtc(crtc, dev) { 2031 if (crtc->state->active) { 2032 if (!drm->have_disp_power_ref) { 2033 drm->have_disp_power_ref = true; 2034 return 0; 2035 } 2036 active = true; 2037 break; 2038 } 2039 } 2040 2041 if (!active && drm->have_disp_power_ref) { 2042 pm_runtime_put_autosuspend(dev->dev); 2043 drm->have_disp_power_ref = false; 2044 } 2045 2046 err_cleanup: 2047 if (ret) 2048 drm_atomic_helper_cleanup_planes(dev, state); 2049 done: 2050 pm_runtime_put_autosuspend(dev->dev); 2051 return ret; 2052 } 2053 2054 static struct nv50_outp_atom * 2055 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2056 { 2057 struct nv50_outp_atom *outp; 2058 2059 list_for_each_entry(outp, &atom->outp, head) { 2060 if (outp->encoder == encoder) 2061 return outp; 2062 } 2063 2064 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2065 if (!outp) 2066 return ERR_PTR(-ENOMEM); 2067 2068 list_add(&outp->head, &atom->outp); 2069 outp->encoder = encoder; 2070 return outp; 2071 } 2072 2073 static int 2074 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2075 struct drm_connector_state *old_connector_state) 2076 { 2077 struct drm_encoder *encoder = old_connector_state->best_encoder; 2078 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2079 struct drm_crtc *crtc; 2080 struct nv50_outp_atom *outp; 2081 2082 if (!(crtc = old_connector_state->crtc)) 2083 return 0; 2084 2085 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2086 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2087 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2088 outp = nv50_disp_outp_atomic_add(atom, encoder); 2089 if (IS_ERR(outp)) 2090 return PTR_ERR(outp); 2091 2092 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 2093 outp->flush_disable = true; 2094 atom->flush_disable = true; 2095 } 2096 outp->clr.ctrl = true; 2097 atom->lock_core = true; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static int 2104 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2105 struct drm_connector_state *connector_state) 2106 { 2107 struct drm_encoder *encoder = connector_state->best_encoder; 2108 struct drm_crtc_state *new_crtc_state; 2109 struct drm_crtc *crtc; 2110 struct nv50_outp_atom *outp; 2111 2112 if (!(crtc = connector_state->crtc)) 2113 return 0; 2114 2115 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2116 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2117 outp = nv50_disp_outp_atomic_add(atom, encoder); 2118 if (IS_ERR(outp)) 2119 return PTR_ERR(outp); 2120 2121 outp->set.ctrl = true; 2122 atom->lock_core = true; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static int 2129 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2130 { 2131 struct nv50_atom *atom = nv50_atom(state); 2132 struct drm_connector_state *old_connector_state, *new_connector_state; 2133 struct drm_connector *connector; 2134 struct drm_crtc_state *new_crtc_state; 2135 struct drm_crtc *crtc; 2136 int ret, i; 2137 2138 /* We need to handle colour management on a per-plane basis. */ 2139 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2140 if (new_crtc_state->color_mgmt_changed) { 2141 ret = drm_atomic_add_affected_planes(state, crtc); 2142 if (ret) 2143 return ret; 2144 } 2145 } 2146 2147 ret = drm_atomic_helper_check(dev, state); 2148 if (ret) 2149 return ret; 2150 2151 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2152 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2153 if (ret) 2154 return ret; 2155 2156 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2157 if (ret) 2158 return ret; 2159 } 2160 2161 ret = drm_dp_mst_atomic_check(state); 2162 if (ret) 2163 return ret; 2164 2165 return 0; 2166 } 2167 2168 static void 2169 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2170 { 2171 struct nv50_atom *atom = nv50_atom(state); 2172 struct nv50_outp_atom *outp, *outt; 2173 2174 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2175 list_del(&outp->head); 2176 kfree(outp); 2177 } 2178 2179 drm_atomic_state_default_clear(state); 2180 } 2181 2182 static void 2183 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2184 { 2185 struct nv50_atom *atom = nv50_atom(state); 2186 drm_atomic_state_default_release(&atom->state); 2187 kfree(atom); 2188 } 2189 2190 static struct drm_atomic_state * 2191 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2192 { 2193 struct nv50_atom *atom; 2194 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2195 drm_atomic_state_init(dev, &atom->state) < 0) { 2196 kfree(atom); 2197 return NULL; 2198 } 2199 INIT_LIST_HEAD(&atom->outp); 2200 return &atom->state; 2201 } 2202 2203 static const struct drm_mode_config_funcs 2204 nv50_disp_func = { 2205 .fb_create = nouveau_user_framebuffer_create, 2206 .output_poll_changed = nouveau_fbcon_output_poll_changed, 2207 .atomic_check = nv50_disp_atomic_check, 2208 .atomic_commit = nv50_disp_atomic_commit, 2209 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2210 .atomic_state_clear = nv50_disp_atomic_state_clear, 2211 .atomic_state_free = nv50_disp_atomic_state_free, 2212 }; 2213 2214 /****************************************************************************** 2215 * Init 2216 *****************************************************************************/ 2217 2218 void 2219 nv50_display_fini(struct drm_device *dev) 2220 { 2221 struct nouveau_encoder *nv_encoder; 2222 struct drm_encoder *encoder; 2223 struct drm_plane *plane; 2224 2225 drm_for_each_plane(plane, dev) { 2226 struct nv50_wndw *wndw = nv50_wndw(plane); 2227 if (plane->funcs != &nv50_wndw) 2228 continue; 2229 nv50_wndw_fini(wndw); 2230 } 2231 2232 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2233 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2234 nv_encoder = nouveau_encoder(encoder); 2235 nv50_mstm_fini(nv_encoder->dp.mstm); 2236 } 2237 } 2238 } 2239 2240 int 2241 nv50_display_init(struct drm_device *dev) 2242 { 2243 struct nv50_core *core = nv50_disp(dev)->core; 2244 struct drm_encoder *encoder; 2245 struct drm_plane *plane; 2246 2247 core->func->init(core); 2248 2249 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2250 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2251 struct nouveau_encoder *nv_encoder = 2252 nouveau_encoder(encoder); 2253 nv50_mstm_init(nv_encoder->dp.mstm); 2254 } 2255 } 2256 2257 drm_for_each_plane(plane, dev) { 2258 struct nv50_wndw *wndw = nv50_wndw(plane); 2259 if (plane->funcs != &nv50_wndw) 2260 continue; 2261 nv50_wndw_init(wndw); 2262 } 2263 2264 return 0; 2265 } 2266 2267 void 2268 nv50_display_destroy(struct drm_device *dev) 2269 { 2270 struct nv50_disp *disp = nv50_disp(dev); 2271 2272 nv50_core_del(&disp->core); 2273 2274 nouveau_bo_unmap(disp->sync); 2275 if (disp->sync) 2276 nouveau_bo_unpin(disp->sync); 2277 nouveau_bo_ref(NULL, &disp->sync); 2278 2279 nouveau_display(dev)->priv = NULL; 2280 kfree(disp); 2281 } 2282 2283 int 2284 nv50_display_create(struct drm_device *dev) 2285 { 2286 struct nvif_device *device = &nouveau_drm(dev)->client.device; 2287 struct nouveau_drm *drm = nouveau_drm(dev); 2288 struct dcb_table *dcb = &drm->vbios.dcb; 2289 struct drm_connector *connector, *tmp; 2290 struct nv50_disp *disp; 2291 struct dcb_output *dcbe; 2292 int crtcs, ret, i; 2293 2294 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2295 if (!disp) 2296 return -ENOMEM; 2297 2298 mutex_init(&disp->mutex); 2299 2300 nouveau_display(dev)->priv = disp; 2301 nouveau_display(dev)->dtor = nv50_display_destroy; 2302 nouveau_display(dev)->init = nv50_display_init; 2303 nouveau_display(dev)->fini = nv50_display_fini; 2304 disp->disp = &nouveau_display(dev)->disp; 2305 dev->mode_config.funcs = &nv50_disp_func; 2306 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2307 2308 /* small shared memory area we use for notifiers and semaphores */ 2309 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM, 2310 0, 0x0000, NULL, NULL, &disp->sync); 2311 if (!ret) { 2312 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true); 2313 if (!ret) { 2314 ret = nouveau_bo_map(disp->sync); 2315 if (ret) 2316 nouveau_bo_unpin(disp->sync); 2317 } 2318 if (ret) 2319 nouveau_bo_ref(NULL, &disp->sync); 2320 } 2321 2322 if (ret) 2323 goto out; 2324 2325 /* allocate master evo channel */ 2326 ret = nv50_core_new(drm, &disp->core); 2327 if (ret) 2328 goto out; 2329 2330 /* create crtc objects to represent the hw heads */ 2331 if (disp->disp->object.oclass >= GV100_DISP) 2332 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; 2333 else 2334 if (disp->disp->object.oclass >= GF110_DISP) 2335 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; 2336 else 2337 crtcs = 0x3; 2338 2339 for (i = 0; i < fls(crtcs); i++) { 2340 if (!(crtcs & (1 << i))) 2341 continue; 2342 ret = nv50_head_create(dev, i); 2343 if (ret) 2344 goto out; 2345 } 2346 2347 /* create encoder/connector objects based on VBIOS DCB table */ 2348 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { 2349 connector = nouveau_connector_create(dev, dcbe); 2350 if (IS_ERR(connector)) 2351 continue; 2352 2353 if (dcbe->location == DCB_LOC_ON_CHIP) { 2354 switch (dcbe->type) { 2355 case DCB_OUTPUT_TMDS: 2356 case DCB_OUTPUT_LVDS: 2357 case DCB_OUTPUT_DP: 2358 ret = nv50_sor_create(connector, dcbe); 2359 break; 2360 case DCB_OUTPUT_ANALOG: 2361 ret = nv50_dac_create(connector, dcbe); 2362 break; 2363 default: 2364 ret = -ENODEV; 2365 break; 2366 } 2367 } else { 2368 ret = nv50_pior_create(connector, dcbe); 2369 } 2370 2371 if (ret) { 2372 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2373 dcbe->location, dcbe->type, 2374 ffs(dcbe->or) - 1, ret); 2375 ret = 0; 2376 } 2377 } 2378 2379 /* cull any connectors we created that don't have an encoder */ 2380 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2381 if (connector->encoder_ids[0]) 2382 continue; 2383 2384 NV_WARN(drm, "%s has no encoders, removing\n", 2385 connector->name); 2386 connector->funcs->destroy(connector); 2387 } 2388 2389 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2390 dev->vblank_disable_immediate = true; 2391 2392 out: 2393 if (ret) 2394 nv50_display_destroy(dev); 2395 return ret; 2396 } 2397