1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 
68 #include <subdev/bios/dp.h>
69 
70 /******************************************************************************
71  * EVO channel
72  *****************************************************************************/
73 
74 static int
75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
76 		 const s32 *oclass, u8 head, void *data, u32 size,
77 		 struct nv50_chan *chan)
78 {
79 	struct nvif_sclass *sclass;
80 	int ret, i, n;
81 
82 	chan->device = device;
83 
84 	ret = n = nvif_object_sclass_get(disp, &sclass);
85 	if (ret < 0)
86 		return ret;
87 
88 	while (oclass[0]) {
89 		for (i = 0; i < n; i++) {
90 			if (sclass[i].oclass == oclass[0]) {
91 				ret = nvif_object_ctor(disp, "kmsChan", 0,
92 						       oclass[0], data, size,
93 						       &chan->user);
94 				if (ret == 0)
95 					nvif_object_map(&chan->user, NULL, 0);
96 				nvif_object_sclass_put(&sclass);
97 				return ret;
98 			}
99 		}
100 		oclass++;
101 	}
102 
103 	nvif_object_sclass_put(&sclass);
104 	return -ENOSYS;
105 }
106 
107 static void
108 nv50_chan_destroy(struct nv50_chan *chan)
109 {
110 	nvif_object_dtor(&chan->user);
111 }
112 
113 /******************************************************************************
114  * DMA EVO channel
115  *****************************************************************************/
116 
117 void
118 nv50_dmac_destroy(struct nv50_dmac *dmac)
119 {
120 	nvif_object_dtor(&dmac->vram);
121 	nvif_object_dtor(&dmac->sync);
122 
123 	nv50_chan_destroy(&dmac->base);
124 
125 	nvif_mem_dtor(&dmac->_push.mem);
126 }
127 
128 static void
129 nv50_dmac_kick(struct nvif_push *push)
130 {
131 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
132 
133 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
134 	if (dmac->put != dmac->cur) {
135 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
136 		 * writes have been flushed right through to VRAM before writing PUT.
137 		 */
138 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
139 			struct nvif_device *device = dmac->base.device;
140 			nvif_wr32(&device->object, 0x070000, 0x00000001);
141 			nvif_msec(device, 2000,
142 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
143 					break;
144 			);
145 		}
146 
147 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
148 		dmac->put = dmac->cur;
149 	}
150 
151 	push->bgn = push->cur;
152 }
153 
154 static int
155 nv50_dmac_free(struct nv50_dmac *dmac)
156 {
157 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
158 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
159 		return get - dmac->cur - 5;
160 	return dmac->max - dmac->cur;
161 }
162 
163 static int
164 nv50_dmac_wind(struct nv50_dmac *dmac)
165 {
166 	/* Wait for GET to depart from the beginning of the push buffer to
167 	 * prevent writing PUT == GET, which would be ignored by HW.
168 	 */
169 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
170 	if (get == 0) {
171 		/* Corner-case, HW idle, but non-committed work pending. */
172 		if (dmac->put == 0)
173 			nv50_dmac_kick(dmac->push);
174 
175 		if (nvif_msec(dmac->base.device, 2000,
176 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
177 				break;
178 		) < 0)
179 			return -ETIMEDOUT;
180 	}
181 
182 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
183 	dmac->cur = 0;
184 	return 0;
185 }
186 
187 static int
188 nv50_dmac_wait(struct nvif_push *push, u32 size)
189 {
190 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
191 	int free;
192 
193 	if (WARN_ON(size > dmac->max))
194 		return -EINVAL;
195 
196 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
197 	if (dmac->cur + size >= dmac->max) {
198 		int ret = nv50_dmac_wind(dmac);
199 		if (ret)
200 			return ret;
201 
202 		push->cur = dmac->_push.mem.object.map.ptr;
203 		push->cur = push->cur + dmac->cur;
204 		nv50_dmac_kick(push);
205 	}
206 
207 	if (nvif_msec(dmac->base.device, 2000,
208 		if ((free = nv50_dmac_free(dmac)) >= size)
209 			break;
210 	) < 0) {
211 		WARN_ON(1);
212 		return -ETIMEDOUT;
213 	}
214 
215 	push->bgn = dmac->_push.mem.object.map.ptr;
216 	push->bgn = push->bgn + dmac->cur;
217 	push->cur = push->bgn;
218 	push->end = push->cur + free;
219 	return 0;
220 }
221 
222 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
223 static int nv50_dmac_vram_pushbuf = -1;
224 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
225 
226 int
227 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
228 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
229 		 struct nv50_dmac *dmac)
230 {
231 	struct nouveau_cli *cli = (void *)device->object.client;
232 	struct nvif_disp_chan_v0 *args = data;
233 	u8 type = NVIF_MEM_COHERENT;
234 	int ret;
235 
236 	mutex_init(&dmac->lock);
237 
238 	/* Pascal added support for 47-bit physical addresses, but some
239 	 * parts of EVO still only accept 40-bit PAs.
240 	 *
241 	 * To avoid issues on systems with large amounts of RAM, and on
242 	 * systems where an IOMMU maps pages at a high address, we need
243 	 * to allocate push buffers in VRAM instead.
244 	 *
245 	 * This appears to match NVIDIA's behaviour on Pascal.
246 	 */
247 	if ((nv50_dmac_vram_pushbuf > 0) ||
248 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
249 		type |= NVIF_MEM_VRAM;
250 
251 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
252 				&dmac->_push.mem);
253 	if (ret)
254 		return ret;
255 
256 	dmac->ptr = dmac->_push.mem.object.map.ptr;
257 	dmac->_push.wait = nv50_dmac_wait;
258 	dmac->_push.kick = nv50_dmac_kick;
259 	dmac->push = &dmac->_push;
260 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
261 	dmac->push->cur = dmac->push->bgn;
262 	dmac->push->end = dmac->push->bgn;
263 	dmac->max = 0x1000/4 - 1;
264 
265 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
266 	 * of the push buffer aren't able to be used safely.
267 	 */
268 	if (disp->oclass < GV100_DISP)
269 		dmac->max -= 12;
270 
271 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
272 
273 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
274 			       &dmac->base);
275 	if (ret)
276 		return ret;
277 
278 	if (syncbuf < 0)
279 		return 0;
280 
281 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
282 			       NV_DMA_IN_MEMORY,
283 			       &(struct nv_dma_v0) {
284 					.target = NV_DMA_V0_TARGET_VRAM,
285 					.access = NV_DMA_V0_ACCESS_RDWR,
286 					.start = syncbuf + 0x0000,
287 					.limit = syncbuf + 0x0fff,
288 			       }, sizeof(struct nv_dma_v0),
289 			       &dmac->sync);
290 	if (ret)
291 		return ret;
292 
293 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
294 			       NV_DMA_IN_MEMORY,
295 			       &(struct nv_dma_v0) {
296 					.target = NV_DMA_V0_TARGET_VRAM,
297 					.access = NV_DMA_V0_ACCESS_RDWR,
298 					.start = 0,
299 					.limit = device->info.ram_user - 1,
300 			       }, sizeof(struct nv_dma_v0),
301 			       &dmac->vram);
302 	if (ret)
303 		return ret;
304 
305 	return ret;
306 }
307 
308 /******************************************************************************
309  * Output path helpers
310  *****************************************************************************/
311 static void
312 nv50_outp_dump_caps(struct nouveau_drm *drm,
313 		    struct nouveau_encoder *outp)
314 {
315 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
316 		 outp->base.base.name, outp->caps.dp_interlace);
317 }
318 
319 static int
320 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
321 			    struct drm_crtc_state *crtc_state,
322 			    struct drm_connector_state *conn_state,
323 			    struct drm_display_mode *native_mode)
324 {
325 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
326 	struct drm_display_mode *mode = &crtc_state->mode;
327 	struct drm_connector *connector = conn_state->connector;
328 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
329 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
330 
331 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
332 	asyc->scaler.full = false;
333 	if (!native_mode)
334 		return 0;
335 
336 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
337 		switch (connector->connector_type) {
338 		case DRM_MODE_CONNECTOR_LVDS:
339 		case DRM_MODE_CONNECTOR_eDP:
340 			/* Don't force scaler for EDID modes with
341 			 * same size as the native one (e.g. different
342 			 * refresh rate)
343 			 */
344 			if (mode->hdisplay == native_mode->hdisplay &&
345 			    mode->vdisplay == native_mode->vdisplay &&
346 			    mode->type & DRM_MODE_TYPE_DRIVER)
347 				break;
348 			mode = native_mode;
349 			asyc->scaler.full = true;
350 			break;
351 		default:
352 			break;
353 		}
354 	} else {
355 		mode = native_mode;
356 	}
357 
358 	if (!drm_mode_equal(adjusted_mode, mode)) {
359 		drm_mode_copy(adjusted_mode, mode);
360 		crtc_state->mode_changed = true;
361 	}
362 
363 	return 0;
364 }
365 
366 static int
367 nv50_outp_atomic_check(struct drm_encoder *encoder,
368 		       struct drm_crtc_state *crtc_state,
369 		       struct drm_connector_state *conn_state)
370 {
371 	struct drm_connector *connector = conn_state->connector;
372 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
373 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
374 	int ret;
375 
376 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
377 					  nv_connector->native_mode);
378 	if (ret)
379 		return ret;
380 
381 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
382 		asyh->or.bpc = connector->display_info.bpc;
383 
384 	return 0;
385 }
386 
387 struct nouveau_connector *
388 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
389 {
390 	struct drm_connector *connector;
391 	struct drm_connector_state *connector_state;
392 	struct drm_encoder *encoder = to_drm_encoder(outp);
393 	int i;
394 
395 	for_each_new_connector_in_state(state, connector, connector_state, i) {
396 		if (connector_state->best_encoder == encoder)
397 			return nouveau_connector(connector);
398 	}
399 
400 	return NULL;
401 }
402 
403 struct nouveau_connector *
404 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
405 {
406 	struct drm_connector *connector;
407 	struct drm_connector_state *connector_state;
408 	struct drm_encoder *encoder = to_drm_encoder(outp);
409 	int i;
410 
411 	for_each_old_connector_in_state(state, connector, connector_state, i) {
412 		if (connector_state->best_encoder == encoder)
413 			return nouveau_connector(connector);
414 	}
415 
416 	return NULL;
417 }
418 
419 static struct nouveau_crtc *
420 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
421 {
422 	struct drm_crtc *crtc;
423 	struct drm_crtc_state *crtc_state;
424 	const u32 mask = drm_encoder_mask(&outp->base.base);
425 	int i;
426 
427 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
428 		if (crtc_state->encoder_mask & mask)
429 			return nouveau_crtc(crtc);
430 	}
431 
432 	return NULL;
433 }
434 
435 /******************************************************************************
436  * DAC
437  *****************************************************************************/
438 static void
439 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
440 {
441 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
442 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
443 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
444 
445 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
446 	nv_encoder->crtc = NULL;
447 	nvif_outp_release(&nv_encoder->outp);
448 }
449 
450 static void
451 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
452 {
453 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
454 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
455 	struct nv50_head_atom *asyh =
456 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
457 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
458 	u32 ctrl = 0;
459 
460 	switch (nv_crtc->index) {
461 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
462 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
463 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
464 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
465 	default:
466 		WARN_ON(1);
467 		break;
468 	}
469 
470 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
471 
472 	nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
473 
474 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
475 	asyh->or.depth = 0;
476 
477 	nv_encoder->crtc = &nv_crtc->base;
478 }
479 
480 static enum drm_connector_status
481 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
482 {
483 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
484 	u32 loadval;
485 	int ret;
486 
487 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
488 	if (loadval == 0)
489 		loadval = 340;
490 
491 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
492 	if (ret <= 0)
493 		return connector_status_disconnected;
494 
495 	return connector_status_connected;
496 }
497 
498 static const struct drm_encoder_helper_funcs
499 nv50_dac_help = {
500 	.atomic_check = nv50_outp_atomic_check,
501 	.atomic_enable = nv50_dac_atomic_enable,
502 	.atomic_disable = nv50_dac_atomic_disable,
503 	.detect = nv50_dac_detect
504 };
505 
506 static void
507 nv50_dac_destroy(struct drm_encoder *encoder)
508 {
509 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
510 
511 	nvif_outp_dtor(&nv_encoder->outp);
512 
513 	drm_encoder_cleanup(encoder);
514 	kfree(encoder);
515 }
516 
517 static const struct drm_encoder_funcs
518 nv50_dac_func = {
519 	.destroy = nv50_dac_destroy,
520 };
521 
522 static int
523 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
524 {
525 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
526 	struct nv50_disp *disp = nv50_disp(connector->dev);
527 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
528 	struct nvkm_i2c_bus *bus;
529 	struct nouveau_encoder *nv_encoder;
530 	struct drm_encoder *encoder;
531 	int type = DRM_MODE_ENCODER_DAC;
532 
533 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
534 	if (!nv_encoder)
535 		return -ENOMEM;
536 	nv_encoder->dcb = dcbe;
537 
538 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
539 	if (bus)
540 		nv_encoder->i2c = &bus->i2c;
541 
542 	encoder = to_drm_encoder(nv_encoder);
543 	encoder->possible_crtcs = dcbe->heads;
544 	encoder->possible_clones = 0;
545 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
546 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
547 	drm_encoder_helper_add(encoder, &nv50_dac_help);
548 
549 	drm_connector_attach_encoder(connector, encoder);
550 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
551 }
552 
553 /*
554  * audio component binding for ELD notification
555  */
556 static void
557 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
558 				int dev_id)
559 {
560 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
561 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
562 						 port, dev_id);
563 }
564 
565 static int
566 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
567 			     bool *enabled, unsigned char *buf, int max_bytes)
568 {
569 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
570 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
571 	struct drm_encoder *encoder;
572 	struct nouveau_encoder *nv_encoder;
573 	struct nouveau_crtc *nv_crtc;
574 	int ret = 0;
575 
576 	*enabled = false;
577 
578 	mutex_lock(&drm->audio.lock);
579 
580 	drm_for_each_encoder(encoder, drm->dev) {
581 		struct nouveau_connector *nv_connector = NULL;
582 
583 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
584 			continue; /* TODO */
585 
586 		nv_encoder = nouveau_encoder(encoder);
587 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
588 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
589 
590 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
591 			continue;
592 
593 		*enabled = nv_encoder->audio.enabled;
594 		if (*enabled) {
595 			ret = drm_eld_size(nv_connector->base.eld);
596 			memcpy(buf, nv_connector->base.eld,
597 			       min(max_bytes, ret));
598 		}
599 		break;
600 	}
601 
602 	mutex_unlock(&drm->audio.lock);
603 
604 	return ret;
605 }
606 
607 static const struct drm_audio_component_ops nv50_audio_component_ops = {
608 	.get_eld = nv50_audio_component_get_eld,
609 };
610 
611 static int
612 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
613 			  void *data)
614 {
615 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
616 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
617 	struct drm_audio_component *acomp = data;
618 
619 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
620 		return -ENOMEM;
621 
622 	drm_modeset_lock_all(drm_dev);
623 	acomp->ops = &nv50_audio_component_ops;
624 	acomp->dev = kdev;
625 	drm->audio.component = acomp;
626 	drm_modeset_unlock_all(drm_dev);
627 	return 0;
628 }
629 
630 static void
631 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
632 			    void *data)
633 {
634 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
635 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
636 	struct drm_audio_component *acomp = data;
637 
638 	drm_modeset_lock_all(drm_dev);
639 	drm->audio.component = NULL;
640 	acomp->ops = NULL;
641 	acomp->dev = NULL;
642 	drm_modeset_unlock_all(drm_dev);
643 }
644 
645 static const struct component_ops nv50_audio_component_bind_ops = {
646 	.bind   = nv50_audio_component_bind,
647 	.unbind = nv50_audio_component_unbind,
648 };
649 
650 static void
651 nv50_audio_component_init(struct nouveau_drm *drm)
652 {
653 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
654 		return;
655 
656 	drm->audio.component_registered = true;
657 	mutex_init(&drm->audio.lock);
658 }
659 
660 static void
661 nv50_audio_component_fini(struct nouveau_drm *drm)
662 {
663 	if (!drm->audio.component_registered)
664 		return;
665 
666 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
667 	drm->audio.component_registered = false;
668 	mutex_destroy(&drm->audio.lock);
669 }
670 
671 /******************************************************************************
672  * Audio
673  *****************************************************************************/
674 static bool
675 nv50_audio_supported(struct drm_encoder *encoder)
676 {
677 	struct nv50_disp *disp = nv50_disp(encoder->dev);
678 
679 	if (disp->disp->object.oclass <= GT200_DISP ||
680 	    disp->disp->object.oclass == GT206_DISP)
681 		return false;
682 
683 	return true;
684 }
685 
686 static void
687 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
688 {
689 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
690 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
691 	struct nvif_outp *outp = &nv_encoder->outp;
692 
693 	if (!nv50_audio_supported(encoder))
694 		return;
695 
696 	mutex_lock(&drm->audio.lock);
697 	if (nv_encoder->audio.enabled) {
698 		nv_encoder->audio.enabled = false;
699 		nv_encoder->audio.connector = NULL;
700 		nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
701 	}
702 	mutex_unlock(&drm->audio.lock);
703 
704 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
705 }
706 
707 static void
708 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
709 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
710 		  struct drm_display_mode *mode)
711 {
712 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
713 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
714 	struct nvif_outp *outp = &nv_encoder->outp;
715 
716 	if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
717 		return;
718 
719 	mutex_lock(&drm->audio.lock);
720 
721 	nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
722 			  drm_eld_size(nv_connector->base.eld));
723 	nv_encoder->audio.enabled = true;
724 	nv_encoder->audio.connector = &nv_connector->base;
725 
726 	mutex_unlock(&drm->audio.lock);
727 
728 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
729 }
730 
731 /******************************************************************************
732  * HDMI
733  *****************************************************************************/
734 static void
735 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
736 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
737 		 struct drm_display_mode *mode, bool hda)
738 {
739 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
740 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
741 	struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
742 	union hdmi_infoframe infoframe = { 0 };
743 	const u8 rekey = 56; /* binary driver, and tegra, constant */
744 	u8 scdc = 0;
745 	u32 max_ac_packet;
746 	struct {
747 		struct nvif_outp_infoframe_v0 infoframe;
748 		u8 data[17];
749 	} args = { 0 };
750 	int ret, size;
751 
752 	max_ac_packet  = mode->htotal - mode->hdisplay;
753 	max_ac_packet -= rekey;
754 	max_ac_packet -= 18; /* constant from tegra */
755 	max_ac_packet /= 32;
756 
757 	if (hdmi->scdc.scrambling.supported) {
758 		const bool high_tmds_clock_ratio = mode->clock > 340000;
759 
760 		ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
761 		if (ret < 0) {
762 			NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
763 			return;
764 		}
765 
766 		scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
767 		if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
768 			scdc |= SCDC_SCRAMBLING_ENABLE;
769 		if (high_tmds_clock_ratio)
770 			scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
771 
772 		ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
773 		if (ret < 0)
774 			NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
775 				 scdc, ret);
776 	}
777 
778 	ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true,
779 				     max_ac_packet, rekey, scdc, hda);
780 	if (ret)
781 		return;
782 
783 	/* AVI InfoFrame. */
784 	args.infoframe.version = 0;
785 	args.infoframe.head = nv_crtc->index;
786 
787 	if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
788 		drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
789 						   HDMI_QUANTIZATION_RANGE_FULL);
790 
791 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
792 	} else {
793 		size = 0;
794 	}
795 
796 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
797 
798 	/* Vendor InfoFrame. */
799 	memset(&args.data, 0, sizeof(args.data));
800 	if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
801 							 &nv_connector->base, mode))
802 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
803 	else
804 		size = 0;
805 
806 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
807 
808 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
809 }
810 
811 /******************************************************************************
812  * MST
813  *****************************************************************************/
814 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
815 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
816 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
817 
818 struct nv50_mstc {
819 	struct nv50_mstm *mstm;
820 	struct drm_dp_mst_port *port;
821 	struct drm_connector connector;
822 
823 	struct drm_display_mode *native;
824 	struct edid *edid;
825 };
826 
827 struct nv50_msto {
828 	struct drm_encoder encoder;
829 
830 	/* head is statically assigned on msto creation */
831 	struct nv50_head *head;
832 	struct nv50_mstc *mstc;
833 	bool disabled;
834 	bool enabled;
835 };
836 
837 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
838 {
839 	struct nv50_msto *msto;
840 
841 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
842 		return nouveau_encoder(encoder);
843 
844 	msto = nv50_msto(encoder);
845 	if (!msto->mstc)
846 		return NULL;
847 	return msto->mstc->mstm->outp;
848 }
849 
850 static void
851 nv50_msto_cleanup(struct drm_atomic_state *state,
852 		  struct drm_dp_mst_topology_state *mst_state,
853 		  struct drm_dp_mst_topology_mgr *mgr,
854 		  struct nv50_msto *msto)
855 {
856 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
857 	struct drm_dp_mst_atomic_payload *payload =
858 		drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
859 
860 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
861 
862 	if (msto->disabled) {
863 		msto->mstc = NULL;
864 		msto->disabled = false;
865 	} else if (msto->enabled) {
866 		drm_dp_add_payload_part2(mgr, state, payload);
867 		msto->enabled = false;
868 	}
869 }
870 
871 static void
872 nv50_msto_prepare(struct drm_atomic_state *state,
873 		  struct drm_dp_mst_topology_state *mst_state,
874 		  struct drm_dp_mst_topology_mgr *mgr,
875 		  struct nv50_msto *msto)
876 {
877 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
878 	struct nv50_mstc *mstc = msto->mstc;
879 	struct nv50_mstm *mstm = mstc->mstm;
880 	struct drm_dp_mst_atomic_payload *payload;
881 
882 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
883 
884 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
885 
886 	// TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
887 	if (msto->disabled) {
888 		drm_dp_remove_payload(mgr, mst_state, payload);
889 
890 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
891 	} else {
892 		if (msto->enabled)
893 			drm_dp_add_payload_part1(mgr, mst_state, payload);
894 
895 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
896 				      payload->vc_start_slot, payload->time_slots,
897 				      payload->pbn, payload->time_slots * mst_state->pbn_div);
898 	}
899 }
900 
901 static int
902 nv50_msto_atomic_check(struct drm_encoder *encoder,
903 		       struct drm_crtc_state *crtc_state,
904 		       struct drm_connector_state *conn_state)
905 {
906 	struct drm_atomic_state *state = crtc_state->state;
907 	struct drm_connector *connector = conn_state->connector;
908 	struct drm_dp_mst_topology_state *mst_state;
909 	struct nv50_mstc *mstc = nv50_mstc(connector);
910 	struct nv50_mstm *mstm = mstc->mstm;
911 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
912 	int slots;
913 	int ret;
914 
915 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
916 					  mstc->native);
917 	if (ret)
918 		return ret;
919 
920 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
921 		return 0;
922 
923 	/*
924 	 * When restoring duplicated states, we need to make sure that the bw
925 	 * remains the same and avoid recalculating it, as the connector's bpc
926 	 * may have changed after the state was duplicated
927 	 */
928 	if (!state->duplicated) {
929 		const int clock = crtc_state->adjusted_mode.clock;
930 
931 		asyh->or.bpc = connector->display_info.bpc;
932 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
933 						    false);
934 	}
935 
936 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
937 	if (IS_ERR(mst_state))
938 		return PTR_ERR(mst_state);
939 
940 	if (!mst_state->pbn_div) {
941 		struct nouveau_encoder *outp = mstc->mstm->outp;
942 
943 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
944 							      outp->dp.link_bw, outp->dp.link_nr);
945 	}
946 
947 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
948 	if (slots < 0)
949 		return slots;
950 
951 	asyh->dp.tu = slots;
952 
953 	return 0;
954 }
955 
956 static u8
957 nv50_dp_bpc_to_depth(unsigned int bpc)
958 {
959 	switch (bpc) {
960 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
961 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
962 	case 10:
963 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
964 	}
965 }
966 
967 static void
968 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
969 {
970 	struct nv50_msto *msto = nv50_msto(encoder);
971 	struct nv50_head *head = msto->head;
972 	struct nv50_head_atom *asyh =
973 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
974 	struct nv50_mstc *mstc = NULL;
975 	struct nv50_mstm *mstm = NULL;
976 	struct drm_connector *connector;
977 	struct drm_connector_list_iter conn_iter;
978 	u8 proto;
979 
980 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
981 	drm_for_each_connector_iter(connector, &conn_iter) {
982 		if (connector->state->best_encoder == &msto->encoder) {
983 			mstc = nv50_mstc(connector);
984 			mstm = mstc->mstm;
985 			break;
986 		}
987 	}
988 	drm_connector_list_iter_end(&conn_iter);
989 
990 	if (WARN_ON(!mstc))
991 		return;
992 
993 	if (!mstm->links++) {
994 		/*XXX: MST audio. */
995 		nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true);
996 	}
997 
998 	if (mstm->outp->outp.or.link & 1)
999 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1000 	else
1001 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1002 
1003 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1004 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1005 
1006 	msto->mstc = mstc;
1007 	msto->enabled = true;
1008 	mstm->modified = true;
1009 }
1010 
1011 static void
1012 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1013 {
1014 	struct nv50_msto *msto = nv50_msto(encoder);
1015 	struct nv50_mstc *mstc = msto->mstc;
1016 	struct nv50_mstm *mstm = mstc->mstm;
1017 
1018 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1019 	mstm->modified = true;
1020 	if (!--mstm->links)
1021 		mstm->disabled = true;
1022 	msto->disabled = true;
1023 }
1024 
1025 static const struct drm_encoder_helper_funcs
1026 nv50_msto_help = {
1027 	.atomic_disable = nv50_msto_atomic_disable,
1028 	.atomic_enable = nv50_msto_atomic_enable,
1029 	.atomic_check = nv50_msto_atomic_check,
1030 };
1031 
1032 static void
1033 nv50_msto_destroy(struct drm_encoder *encoder)
1034 {
1035 	struct nv50_msto *msto = nv50_msto(encoder);
1036 	drm_encoder_cleanup(&msto->encoder);
1037 	kfree(msto);
1038 }
1039 
1040 static const struct drm_encoder_funcs
1041 nv50_msto = {
1042 	.destroy = nv50_msto_destroy,
1043 };
1044 
1045 static struct nv50_msto *
1046 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1047 {
1048 	struct nv50_msto *msto;
1049 	int ret;
1050 
1051 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1052 	if (!msto)
1053 		return ERR_PTR(-ENOMEM);
1054 
1055 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1056 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1057 	if (ret) {
1058 		kfree(msto);
1059 		return ERR_PTR(ret);
1060 	}
1061 
1062 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1063 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1064 	msto->head = head;
1065 	return msto;
1066 }
1067 
1068 static struct drm_encoder *
1069 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1070 			      struct drm_atomic_state *state)
1071 {
1072 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1073 											 connector);
1074 	struct nv50_mstc *mstc = nv50_mstc(connector);
1075 	struct drm_crtc *crtc = connector_state->crtc;
1076 
1077 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1078 		return NULL;
1079 
1080 	return &nv50_head(crtc)->msto->encoder;
1081 }
1082 
1083 static enum drm_mode_status
1084 nv50_mstc_mode_valid(struct drm_connector *connector,
1085 		     struct drm_display_mode *mode)
1086 {
1087 	struct nv50_mstc *mstc = nv50_mstc(connector);
1088 	struct nouveau_encoder *outp = mstc->mstm->outp;
1089 
1090 	/* TODO: calculate the PBN from the dotclock and validate against the
1091 	 * MSTB's max possible PBN
1092 	 */
1093 
1094 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1095 }
1096 
1097 static int
1098 nv50_mstc_get_modes(struct drm_connector *connector)
1099 {
1100 	struct nv50_mstc *mstc = nv50_mstc(connector);
1101 	int ret = 0;
1102 
1103 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1104 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1105 	if (mstc->edid)
1106 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1107 
1108 	/*
1109 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1110 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1111 	 * to properly fix this by dynamically selecting the highest possible
1112 	 * bpc that would fit in the topology
1113 	 */
1114 	if (connector->display_info.bpc)
1115 		connector->display_info.bpc =
1116 			clamp(connector->display_info.bpc, 6U, 8U);
1117 	else
1118 		connector->display_info.bpc = 8;
1119 
1120 	if (mstc->native)
1121 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1122 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1123 	return ret;
1124 }
1125 
1126 static int
1127 nv50_mstc_atomic_check(struct drm_connector *connector,
1128 		       struct drm_atomic_state *state)
1129 {
1130 	struct nv50_mstc *mstc = nv50_mstc(connector);
1131 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1132 
1133 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1134 }
1135 
1136 static int
1137 nv50_mstc_detect(struct drm_connector *connector,
1138 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1139 {
1140 	struct nv50_mstc *mstc = nv50_mstc(connector);
1141 	int ret;
1142 
1143 	if (drm_connector_is_unregistered(connector))
1144 		return connector_status_disconnected;
1145 
1146 	ret = pm_runtime_get_sync(connector->dev->dev);
1147 	if (ret < 0 && ret != -EACCES) {
1148 		pm_runtime_put_autosuspend(connector->dev->dev);
1149 		return connector_status_disconnected;
1150 	}
1151 
1152 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1153 				     mstc->port);
1154 	if (ret != connector_status_connected)
1155 		goto out;
1156 
1157 out:
1158 	pm_runtime_mark_last_busy(connector->dev->dev);
1159 	pm_runtime_put_autosuspend(connector->dev->dev);
1160 	return ret;
1161 }
1162 
1163 static const struct drm_connector_helper_funcs
1164 nv50_mstc_help = {
1165 	.get_modes = nv50_mstc_get_modes,
1166 	.mode_valid = nv50_mstc_mode_valid,
1167 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1168 	.atomic_check = nv50_mstc_atomic_check,
1169 	.detect_ctx = nv50_mstc_detect,
1170 };
1171 
1172 static void
1173 nv50_mstc_destroy(struct drm_connector *connector)
1174 {
1175 	struct nv50_mstc *mstc = nv50_mstc(connector);
1176 
1177 	drm_connector_cleanup(&mstc->connector);
1178 	drm_dp_mst_put_port_malloc(mstc->port);
1179 
1180 	kfree(mstc);
1181 }
1182 
1183 static const struct drm_connector_funcs
1184 nv50_mstc = {
1185 	.reset = nouveau_conn_reset,
1186 	.fill_modes = drm_helper_probe_single_connector_modes,
1187 	.destroy = nv50_mstc_destroy,
1188 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1189 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1190 	.atomic_set_property = nouveau_conn_atomic_set_property,
1191 	.atomic_get_property = nouveau_conn_atomic_get_property,
1192 };
1193 
1194 static int
1195 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1196 	      const char *path, struct nv50_mstc **pmstc)
1197 {
1198 	struct drm_device *dev = mstm->outp->base.base.dev;
1199 	struct drm_crtc *crtc;
1200 	struct nv50_mstc *mstc;
1201 	int ret;
1202 
1203 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1204 		return -ENOMEM;
1205 	mstc->mstm = mstm;
1206 	mstc->port = port;
1207 
1208 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1209 				 DRM_MODE_CONNECTOR_DisplayPort);
1210 	if (ret) {
1211 		kfree(*pmstc);
1212 		*pmstc = NULL;
1213 		return ret;
1214 	}
1215 
1216 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1217 
1218 	mstc->connector.funcs->reset(&mstc->connector);
1219 	nouveau_conn_attach_properties(&mstc->connector);
1220 
1221 	drm_for_each_crtc(crtc, dev) {
1222 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1223 			continue;
1224 
1225 		drm_connector_attach_encoder(&mstc->connector,
1226 					     &nv50_head(crtc)->msto->encoder);
1227 	}
1228 
1229 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1230 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1231 	drm_connector_set_path_property(&mstc->connector, path);
1232 	drm_dp_mst_get_port_malloc(port);
1233 	return 0;
1234 }
1235 
1236 static void
1237 nv50_mstm_cleanup(struct drm_atomic_state *state,
1238 		  struct drm_dp_mst_topology_state *mst_state,
1239 		  struct nv50_mstm *mstm)
1240 {
1241 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1242 	struct drm_encoder *encoder;
1243 
1244 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1245 	drm_dp_check_act_status(&mstm->mgr);
1246 
1247 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1248 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1249 			struct nv50_msto *msto = nv50_msto(encoder);
1250 			struct nv50_mstc *mstc = msto->mstc;
1251 			if (mstc && mstc->mstm == mstm)
1252 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1253 		}
1254 	}
1255 
1256 	mstm->modified = false;
1257 }
1258 
1259 static void
1260 nv50_mstm_prepare(struct drm_atomic_state *state,
1261 		  struct drm_dp_mst_topology_state *mst_state,
1262 		  struct nv50_mstm *mstm)
1263 {
1264 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1265 	struct drm_encoder *encoder;
1266 
1267 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1268 
1269 	/* Disable payloads first */
1270 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1271 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1272 			struct nv50_msto *msto = nv50_msto(encoder);
1273 			struct nv50_mstc *mstc = msto->mstc;
1274 			if (mstc && mstc->mstm == mstm && msto->disabled)
1275 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1276 		}
1277 	}
1278 
1279 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1280 	 * active) heads that may have had their VC slots shifted left after the previous step
1281 	 */
1282 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1283 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1284 			struct nv50_msto *msto = nv50_msto(encoder);
1285 			struct nv50_mstc *mstc = msto->mstc;
1286 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1287 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1288 		}
1289 	}
1290 
1291 	if (mstm->disabled) {
1292 		if (!mstm->links)
1293 			nvif_outp_release(&mstm->outp->outp);
1294 		mstm->disabled = false;
1295 	}
1296 }
1297 
1298 static struct drm_connector *
1299 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1300 			struct drm_dp_mst_port *port, const char *path)
1301 {
1302 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1303 	struct nv50_mstc *mstc;
1304 	int ret;
1305 
1306 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1307 	if (ret)
1308 		return NULL;
1309 
1310 	return &mstc->connector;
1311 }
1312 
1313 static const struct drm_dp_mst_topology_cbs
1314 nv50_mstm = {
1315 	.add_connector = nv50_mstm_add_connector,
1316 };
1317 
1318 bool
1319 nv50_mstm_service(struct nouveau_drm *drm,
1320 		  struct nouveau_connector *nv_connector,
1321 		  struct nv50_mstm *mstm)
1322 {
1323 	struct drm_dp_aux *aux = &nv_connector->aux;
1324 	bool handled = true, ret = true;
1325 	int rc;
1326 	u8 esi[8] = {};
1327 
1328 	while (handled) {
1329 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1330 		if (rc != 8) {
1331 			ret = false;
1332 			break;
1333 		}
1334 
1335 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1336 		if (!handled)
1337 			break;
1338 
1339 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1340 				       3);
1341 		if (rc != 3) {
1342 			ret = false;
1343 			break;
1344 		}
1345 	}
1346 
1347 	if (!ret)
1348 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1349 			 nv_connector->base.name, rc);
1350 
1351 	return ret;
1352 }
1353 
1354 void
1355 nv50_mstm_remove(struct nv50_mstm *mstm)
1356 {
1357 	mstm->is_mst = false;
1358 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1359 }
1360 
1361 int
1362 nv50_mstm_detect(struct nouveau_encoder *outp)
1363 {
1364 	struct nv50_mstm *mstm = outp->dp.mstm;
1365 	struct drm_dp_aux *aux;
1366 	int ret;
1367 
1368 	if (!mstm || !mstm->can_mst)
1369 		return 0;
1370 
1371 	aux = mstm->mgr.aux;
1372 
1373 	/* Clear any leftover MST state we didn't set ourselves by first
1374 	 * disabling MST if it was already enabled
1375 	 */
1376 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1377 	if (ret < 0)
1378 		return ret;
1379 
1380 	/* And start enabling */
1381 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1382 	if (ret)
1383 		return ret;
1384 
1385 	mstm->is_mst = true;
1386 	return 1;
1387 }
1388 
1389 static void
1390 nv50_mstm_fini(struct nouveau_encoder *outp)
1391 {
1392 	struct nv50_mstm *mstm = outp->dp.mstm;
1393 
1394 	if (!mstm)
1395 		return;
1396 
1397 	/* Don't change the MST state of this connector until we've finished
1398 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1399 	 * path to protect mstm->is_mst without potentially deadlocking
1400 	 */
1401 	mutex_lock(&outp->dp.hpd_irq_lock);
1402 	mstm->suspended = true;
1403 	mutex_unlock(&outp->dp.hpd_irq_lock);
1404 
1405 	if (mstm->is_mst)
1406 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1407 }
1408 
1409 static void
1410 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1411 {
1412 	struct nv50_mstm *mstm = outp->dp.mstm;
1413 	int ret = 0;
1414 
1415 	if (!mstm)
1416 		return;
1417 
1418 	if (mstm->is_mst) {
1419 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1420 		if (ret == -1)
1421 			nv50_mstm_remove(mstm);
1422 	}
1423 
1424 	mutex_lock(&outp->dp.hpd_irq_lock);
1425 	mstm->suspended = false;
1426 	mutex_unlock(&outp->dp.hpd_irq_lock);
1427 
1428 	if (ret == -1)
1429 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1430 }
1431 
1432 static void
1433 nv50_mstm_del(struct nv50_mstm **pmstm)
1434 {
1435 	struct nv50_mstm *mstm = *pmstm;
1436 	if (mstm) {
1437 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1438 		kfree(*pmstm);
1439 		*pmstm = NULL;
1440 	}
1441 }
1442 
1443 static int
1444 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1445 	      int conn_base_id, struct nv50_mstm **pmstm)
1446 {
1447 	const int max_payloads = hweight8(outp->dcb->heads);
1448 	struct drm_device *dev = outp->base.base.dev;
1449 	struct nv50_mstm *mstm;
1450 	int ret;
1451 
1452 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1453 		return -ENOMEM;
1454 	mstm->outp = outp;
1455 	mstm->mgr.cbs = &nv50_mstm;
1456 
1457 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1458 					   max_payloads, conn_base_id);
1459 	if (ret)
1460 		return ret;
1461 
1462 	return 0;
1463 }
1464 
1465 /******************************************************************************
1466  * SOR
1467  *****************************************************************************/
1468 static void
1469 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1470 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1471 {
1472 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1473 	struct nv50_core *core = disp->core;
1474 
1475 	if (!asyh) {
1476 		nv_encoder->ctrl &= ~BIT(head);
1477 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1478 			nv_encoder->ctrl = 0;
1479 	} else {
1480 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1481 		nv_encoder->ctrl |= BIT(head);
1482 		asyh->or.depth = depth;
1483 	}
1484 
1485 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1486 }
1487 
1488 /* TODO: Should we extend this to PWM-only backlights?
1489  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1490  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1491  * fixed time delay from the vbios…
1492  */
1493 static void
1494 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1495 {
1496 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1497 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1498 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1499 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1500 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1501 	struct nouveau_backlight *backlight = nv_connector->backlight;
1502 #endif
1503 	struct drm_dp_aux *aux = &nv_connector->aux;
1504 	int ret;
1505 	u8 pwr;
1506 
1507 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1508 	if (backlight && backlight->uses_dpcd) {
1509 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1510 		if (ret < 0)
1511 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1512 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1513 	}
1514 #endif
1515 
1516 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1517 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1518 
1519 		if (ret == 0) {
1520 			pwr &= ~DP_SET_POWER_MASK;
1521 			pwr |=  DP_SET_POWER_D3;
1522 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1523 		}
1524 	}
1525 
1526 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1527 	nv50_audio_disable(encoder, nv_crtc);
1528 	nvif_outp_release(&nv_encoder->outp);
1529 	nv_encoder->crtc = NULL;
1530 }
1531 
1532 static void
1533 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1534 {
1535 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1536 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1537 	struct nv50_head_atom *asyh =
1538 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1539 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1540 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1541 	struct nvif_outp *outp = &nv_encoder->outp;
1542 	struct drm_device *dev = encoder->dev;
1543 	struct nouveau_drm *drm = nouveau_drm(dev);
1544 	struct nouveau_connector *nv_connector;
1545 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1546 	struct nouveau_backlight *backlight;
1547 #endif
1548 	struct nvbios *bios = &drm->vbios;
1549 	bool lvds_dual = false, lvds_8bpc = false, hda = false;
1550 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1551 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1552 
1553 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1554 	nv_encoder->crtc = &nv_crtc->base;
1555 
1556 	if ((disp->disp->object.oclass == GT214_DISP ||
1557 	     disp->disp->object.oclass >= GF110_DISP) &&
1558 	    drm_detect_monitor_audio(nv_connector->edid))
1559 		hda = true;
1560 
1561 	switch (nv_encoder->dcb->type) {
1562 	case DCB_OUTPUT_TMDS:
1563 		if (disp->disp->object.oclass == NV50_DISP ||
1564 		    !drm_detect_hdmi_monitor(nv_connector->edid))
1565 			nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false);
1566 		else
1567 			nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1568 
1569 		if (nv_encoder->outp.or.link & 1) {
1570 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1571 			/* Only enable dual-link if:
1572 			 *  - Need to (i.e. rate > 165MHz)
1573 			 *  - DCB says we can
1574 			 *  - Not an HDMI monitor, since there's no dual-link
1575 			 *    on HDMI.
1576 			 */
1577 			if (mode->clock >= 165000 &&
1578 			    nv_encoder->dcb->duallink_possible &&
1579 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1580 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1581 		} else {
1582 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1583 		}
1584 		break;
1585 	case DCB_OUTPUT_LVDS:
1586 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1587 
1588 		if (bios->fp_no_ddc) {
1589 			lvds_dual = bios->fp.dual_link;
1590 			lvds_8bpc = bios->fp.if_is_24bit;
1591 		} else {
1592 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1593 				if (((u8 *)nv_connector->edid)[121] == 2)
1594 					lvds_dual = true;
1595 			} else
1596 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1597 				lvds_dual = true;
1598 			}
1599 
1600 			if (lvds_dual) {
1601 				if (bios->fp.strapless_is_24bit & 2)
1602 					lvds_8bpc = true;
1603 			} else {
1604 				if (bios->fp.strapless_is_24bit & 1)
1605 					lvds_8bpc = true;
1606 			}
1607 
1608 			if (asyh->or.bpc == 8)
1609 				lvds_8bpc = true;
1610 		}
1611 
1612 		nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1613 		break;
1614 	case DCB_OUTPUT_DP:
1615 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false);
1616 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1617 
1618 		if (nv_encoder->outp.or.link & 1)
1619 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1620 		else
1621 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1622 
1623 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1624 
1625 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1626 		backlight = nv_connector->backlight;
1627 		if (backlight && backlight->uses_dpcd)
1628 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1629 						 (u16)backlight->dev->props.brightness);
1630 #endif
1631 
1632 		break;
1633 	default:
1634 		BUG();
1635 		break;
1636 	}
1637 
1638 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1639 }
1640 
1641 static const struct drm_encoder_helper_funcs
1642 nv50_sor_help = {
1643 	.atomic_check = nv50_outp_atomic_check,
1644 	.atomic_enable = nv50_sor_atomic_enable,
1645 	.atomic_disable = nv50_sor_atomic_disable,
1646 };
1647 
1648 static void
1649 nv50_sor_destroy(struct drm_encoder *encoder)
1650 {
1651 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1652 
1653 	nvif_outp_dtor(&nv_encoder->outp);
1654 
1655 	nv50_mstm_del(&nv_encoder->dp.mstm);
1656 	drm_encoder_cleanup(encoder);
1657 
1658 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1659 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1660 
1661 	kfree(encoder);
1662 }
1663 
1664 static const struct drm_encoder_funcs
1665 nv50_sor_func = {
1666 	.destroy = nv50_sor_destroy,
1667 };
1668 
1669 bool nv50_has_mst(struct nouveau_drm *drm)
1670 {
1671 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1672 	u32 data;
1673 	u8 ver, hdr, cnt, len;
1674 
1675 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1676 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1677 }
1678 
1679 static int
1680 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1681 {
1682 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1683 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1684 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1685 	struct nouveau_encoder *nv_encoder;
1686 	struct drm_encoder *encoder;
1687 	struct nv50_disp *disp = nv50_disp(connector->dev);
1688 	int type, ret;
1689 
1690 	switch (dcbe->type) {
1691 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1692 	case DCB_OUTPUT_TMDS:
1693 	case DCB_OUTPUT_DP:
1694 	default:
1695 		type = DRM_MODE_ENCODER_TMDS;
1696 		break;
1697 	}
1698 
1699 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1700 	if (!nv_encoder)
1701 		return -ENOMEM;
1702 	nv_encoder->dcb = dcbe;
1703 	nv_encoder->update = nv50_sor_update;
1704 
1705 	encoder = to_drm_encoder(nv_encoder);
1706 	encoder->possible_crtcs = dcbe->heads;
1707 	encoder->possible_clones = 0;
1708 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1709 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1710 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1711 
1712 	drm_connector_attach_encoder(connector, encoder);
1713 
1714 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1715 	nv50_outp_dump_caps(drm, nv_encoder);
1716 
1717 	if (dcbe->type == DCB_OUTPUT_DP) {
1718 		struct nvkm_i2c_aux *aux =
1719 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1720 
1721 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1722 
1723 		if (aux) {
1724 			if (disp->disp->object.oclass < GF110_DISP) {
1725 				/* HW has no support for address-only
1726 				 * transactions, so we're required to
1727 				 * use custom I2C-over-AUX code.
1728 				 */
1729 				nv_encoder->i2c = &aux->i2c;
1730 			} else {
1731 				nv_encoder->i2c = &nv_connector->aux.ddc;
1732 			}
1733 			nv_encoder->aux = aux;
1734 		}
1735 
1736 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1737 		    nv50_has_mst(drm)) {
1738 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1739 					    16, nv_connector->base.base.id,
1740 					    &nv_encoder->dp.mstm);
1741 			if (ret)
1742 				return ret;
1743 		}
1744 	} else {
1745 		struct nvkm_i2c_bus *bus =
1746 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1747 		if (bus)
1748 			nv_encoder->i2c = &bus->i2c;
1749 	}
1750 
1751 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1752 }
1753 
1754 /******************************************************************************
1755  * PIOR
1756  *****************************************************************************/
1757 static int
1758 nv50_pior_atomic_check(struct drm_encoder *encoder,
1759 		       struct drm_crtc_state *crtc_state,
1760 		       struct drm_connector_state *conn_state)
1761 {
1762 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1763 	if (ret)
1764 		return ret;
1765 	crtc_state->adjusted_mode.clock *= 2;
1766 	return 0;
1767 }
1768 
1769 static void
1770 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1771 {
1772 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1773 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1774 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1775 
1776 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1777 	nv_encoder->crtc = NULL;
1778 	nvif_outp_release(&nv_encoder->outp);
1779 }
1780 
1781 static void
1782 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1783 {
1784 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1785 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1786 	struct nv50_head_atom *asyh =
1787 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1788 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1789 	u32 ctrl = 0;
1790 
1791 	switch (nv_crtc->index) {
1792 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1793 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1794 	default:
1795 		WARN_ON(1);
1796 		break;
1797 	}
1798 
1799 	switch (asyh->or.bpc) {
1800 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1801 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1802 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1803 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1804 	}
1805 
1806 	switch (nv_encoder->dcb->type) {
1807 	case DCB_OUTPUT_TMDS:
1808 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1809 		nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false);
1810 		break;
1811 	case DCB_OUTPUT_DP:
1812 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1813 		nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false);
1814 		break;
1815 	default:
1816 		BUG();
1817 		break;
1818 	}
1819 
1820 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1821 	nv_encoder->crtc = &nv_crtc->base;
1822 }
1823 
1824 static const struct drm_encoder_helper_funcs
1825 nv50_pior_help = {
1826 	.atomic_check = nv50_pior_atomic_check,
1827 	.atomic_enable = nv50_pior_atomic_enable,
1828 	.atomic_disable = nv50_pior_atomic_disable,
1829 };
1830 
1831 static void
1832 nv50_pior_destroy(struct drm_encoder *encoder)
1833 {
1834 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1835 
1836 	nvif_outp_dtor(&nv_encoder->outp);
1837 
1838 	drm_encoder_cleanup(encoder);
1839 	kfree(encoder);
1840 }
1841 
1842 static const struct drm_encoder_funcs
1843 nv50_pior_func = {
1844 	.destroy = nv50_pior_destroy,
1845 };
1846 
1847 static int
1848 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1849 {
1850 	struct drm_device *dev = connector->dev;
1851 	struct nouveau_drm *drm = nouveau_drm(dev);
1852 	struct nv50_disp *disp = nv50_disp(dev);
1853 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1854 	struct nvkm_i2c_bus *bus = NULL;
1855 	struct nvkm_i2c_aux *aux = NULL;
1856 	struct i2c_adapter *ddc;
1857 	struct nouveau_encoder *nv_encoder;
1858 	struct drm_encoder *encoder;
1859 	int type;
1860 
1861 	switch (dcbe->type) {
1862 	case DCB_OUTPUT_TMDS:
1863 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1864 		ddc  = bus ? &bus->i2c : NULL;
1865 		type = DRM_MODE_ENCODER_TMDS;
1866 		break;
1867 	case DCB_OUTPUT_DP:
1868 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1869 		ddc  = aux ? &aux->i2c : NULL;
1870 		type = DRM_MODE_ENCODER_TMDS;
1871 		break;
1872 	default:
1873 		return -ENODEV;
1874 	}
1875 
1876 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1877 	if (!nv_encoder)
1878 		return -ENOMEM;
1879 	nv_encoder->dcb = dcbe;
1880 	nv_encoder->i2c = ddc;
1881 	nv_encoder->aux = aux;
1882 
1883 	encoder = to_drm_encoder(nv_encoder);
1884 	encoder->possible_crtcs = dcbe->heads;
1885 	encoder->possible_clones = 0;
1886 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1887 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1888 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1889 
1890 	drm_connector_attach_encoder(connector, encoder);
1891 
1892 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1893 	nv50_outp_dump_caps(drm, nv_encoder);
1894 
1895 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1896 }
1897 
1898 /******************************************************************************
1899  * Atomic
1900  *****************************************************************************/
1901 
1902 static void
1903 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1904 {
1905 	struct drm_dp_mst_topology_mgr *mgr;
1906 	struct drm_dp_mst_topology_state *mst_state;
1907 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1908 	struct nv50_disp *disp = nv50_disp(drm->dev);
1909 	struct nv50_core *core = disp->core;
1910 	struct nv50_mstm *mstm;
1911 	int i;
1912 
1913 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1914 
1915 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1916 		mstm = nv50_mstm(mgr);
1917 		if (mstm->modified)
1918 			nv50_mstm_prepare(state, mst_state, mstm);
1919 	}
1920 
1921 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1922 	core->func->update(core, interlock, true);
1923 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1924 				       disp->core->chan.base.device))
1925 		NV_ERROR(drm, "core notifier timeout\n");
1926 
1927 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1928 		mstm = nv50_mstm(mgr);
1929 		if (mstm->modified)
1930 			nv50_mstm_cleanup(state, mst_state, mstm);
1931 	}
1932 }
1933 
1934 static void
1935 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1936 {
1937 	struct drm_plane_state *new_plane_state;
1938 	struct drm_plane *plane;
1939 	int i;
1940 
1941 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1942 		struct nv50_wndw *wndw = nv50_wndw(plane);
1943 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1944 			if (wndw->func->update)
1945 				wndw->func->update(wndw, interlock);
1946 		}
1947 	}
1948 }
1949 
1950 static void
1951 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1952 {
1953 	struct drm_device *dev = state->dev;
1954 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1955 	struct drm_crtc *crtc;
1956 	struct drm_plane_state *new_plane_state;
1957 	struct drm_plane *plane;
1958 	struct nouveau_drm *drm = nouveau_drm(dev);
1959 	struct nv50_disp *disp = nv50_disp(dev);
1960 	struct nv50_atom *atom = nv50_atom(state);
1961 	struct nv50_core *core = disp->core;
1962 	struct nv50_outp_atom *outp, *outt;
1963 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1964 	int i;
1965 	bool flushed = false;
1966 
1967 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
1968 	nv50_crc_atomic_stop_reporting(state);
1969 	drm_atomic_helper_wait_for_fences(dev, state, false);
1970 	drm_atomic_helper_wait_for_dependencies(state);
1971 	drm_dp_mst_atomic_wait_for_dependencies(state);
1972 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
1973 	drm_atomic_helper_calc_timestamping_constants(state);
1974 
1975 	if (atom->lock_core)
1976 		mutex_lock(&disp->mutex);
1977 
1978 	/* Disable head(s). */
1979 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1980 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1981 		struct nv50_head *head = nv50_head(crtc);
1982 
1983 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
1984 			  asyh->clr.mask, asyh->set.mask);
1985 
1986 		if (old_crtc_state->active && !new_crtc_state->active) {
1987 			pm_runtime_put_noidle(dev->dev);
1988 			drm_crtc_vblank_off(crtc);
1989 		}
1990 
1991 		if (asyh->clr.mask) {
1992 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
1993 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1994 		}
1995 	}
1996 
1997 	/* Disable plane(s). */
1998 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1999 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2000 		struct nv50_wndw *wndw = nv50_wndw(plane);
2001 
2002 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2003 			  asyw->clr.mask, asyw->set.mask);
2004 		if (!asyw->clr.mask)
2005 			continue;
2006 
2007 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2008 	}
2009 
2010 	/* Disable output path(s). */
2011 	list_for_each_entry(outp, &atom->outp, head) {
2012 		const struct drm_encoder_helper_funcs *help;
2013 		struct drm_encoder *encoder;
2014 
2015 		encoder = outp->encoder;
2016 		help = encoder->helper_private;
2017 
2018 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2019 			  outp->clr.mask, outp->set.mask);
2020 
2021 		if (outp->clr.mask) {
2022 			help->atomic_disable(encoder, state);
2023 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2024 			if (outp->flush_disable) {
2025 				nv50_disp_atomic_commit_wndw(state, interlock);
2026 				nv50_disp_atomic_commit_core(state, interlock);
2027 				memset(interlock, 0x00, sizeof(interlock));
2028 
2029 				flushed = true;
2030 			}
2031 		}
2032 	}
2033 
2034 	/* Flush disable. */
2035 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2036 		if (atom->flush_disable) {
2037 			nv50_disp_atomic_commit_wndw(state, interlock);
2038 			nv50_disp_atomic_commit_core(state, interlock);
2039 			memset(interlock, 0x00, sizeof(interlock));
2040 
2041 			flushed = true;
2042 		}
2043 	}
2044 
2045 	if (flushed)
2046 		nv50_crc_atomic_release_notifier_contexts(state);
2047 	nv50_crc_atomic_init_notifier_contexts(state);
2048 
2049 	/* Update output path(s). */
2050 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2051 		const struct drm_encoder_helper_funcs *help;
2052 		struct drm_encoder *encoder;
2053 
2054 		encoder = outp->encoder;
2055 		help = encoder->helper_private;
2056 
2057 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2058 			  outp->set.mask, outp->clr.mask);
2059 
2060 		if (outp->set.mask) {
2061 			help->atomic_enable(encoder, state);
2062 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2063 		}
2064 
2065 		list_del(&outp->head);
2066 		kfree(outp);
2067 	}
2068 
2069 	/* Update head(s). */
2070 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2071 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2072 		struct nv50_head *head = nv50_head(crtc);
2073 
2074 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2075 			  asyh->set.mask, asyh->clr.mask);
2076 
2077 		if (asyh->set.mask) {
2078 			nv50_head_flush_set(head, asyh);
2079 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2080 		}
2081 
2082 		if (new_crtc_state->active) {
2083 			if (!old_crtc_state->active) {
2084 				drm_crtc_vblank_on(crtc);
2085 				pm_runtime_get_noresume(dev->dev);
2086 			}
2087 			if (new_crtc_state->event)
2088 				drm_crtc_vblank_get(crtc);
2089 		}
2090 	}
2091 
2092 	/* Update window->head assignment.
2093 	 *
2094 	 * This has to happen in an update that's not interlocked with
2095 	 * any window channels to avoid hitting HW error checks.
2096 	 *
2097 	 *TODO: Proper handling of window ownership (Turing apparently
2098 	 *      supports non-fixed mappings).
2099 	 */
2100 	if (core->assign_windows) {
2101 		core->func->wndw.owner(core);
2102 		nv50_disp_atomic_commit_core(state, interlock);
2103 		core->assign_windows = false;
2104 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2105 	}
2106 
2107 	/* Finish updating head(s)...
2108 	 *
2109 	 * NVD is rather picky about both where window assignments can change,
2110 	 * *and* about certain core and window channel states matching.
2111 	 *
2112 	 * The EFI GOP driver on newer GPUs configures window channels with a
2113 	 * different output format to what we do, and the core channel update
2114 	 * in the assign_windows case above would result in a state mismatch.
2115 	 *
2116 	 * Delay some of the head update until after that point to workaround
2117 	 * the issue.  This only affects the initial modeset.
2118 	 *
2119 	 * TODO: handle this better when adding flexible window mapping
2120 	 */
2121 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2122 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2123 		struct nv50_head *head = nv50_head(crtc);
2124 
2125 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2126 			  asyh->set.mask, asyh->clr.mask);
2127 
2128 		if (asyh->set.mask) {
2129 			nv50_head_flush_set_wndw(head, asyh);
2130 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2131 		}
2132 	}
2133 
2134 	/* Update plane(s). */
2135 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2136 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2137 		struct nv50_wndw *wndw = nv50_wndw(plane);
2138 
2139 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2140 			  asyw->set.mask, asyw->clr.mask);
2141 		if ( !asyw->set.mask &&
2142 		    (!asyw->clr.mask || atom->flush_disable))
2143 			continue;
2144 
2145 		nv50_wndw_flush_set(wndw, interlock, asyw);
2146 	}
2147 
2148 	/* Flush update. */
2149 	nv50_disp_atomic_commit_wndw(state, interlock);
2150 
2151 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2152 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2153 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2154 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2155 		    !atom->state.legacy_cursor_update)
2156 			nv50_disp_atomic_commit_core(state, interlock);
2157 		else
2158 			disp->core->func->update(disp->core, interlock, false);
2159 	}
2160 
2161 	if (atom->lock_core)
2162 		mutex_unlock(&disp->mutex);
2163 
2164 	/* Wait for HW to signal completion. */
2165 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2166 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2167 		struct nv50_wndw *wndw = nv50_wndw(plane);
2168 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2169 		if (ret)
2170 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2171 	}
2172 
2173 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2174 		if (new_crtc_state->event) {
2175 			unsigned long flags;
2176 			/* Get correct count/ts if racing with vblank irq */
2177 			if (new_crtc_state->active)
2178 				drm_crtc_accurate_vblank_count(crtc);
2179 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2180 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2181 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2182 
2183 			new_crtc_state->event = NULL;
2184 			if (new_crtc_state->active)
2185 				drm_crtc_vblank_put(crtc);
2186 		}
2187 	}
2188 
2189 	nv50_crc_atomic_start_reporting(state);
2190 	if (!flushed)
2191 		nv50_crc_atomic_release_notifier_contexts(state);
2192 
2193 	drm_atomic_helper_commit_hw_done(state);
2194 	drm_atomic_helper_cleanup_planes(dev, state);
2195 	drm_atomic_helper_commit_cleanup_done(state);
2196 	drm_atomic_state_put(state);
2197 
2198 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2199 	pm_runtime_mark_last_busy(dev->dev);
2200 	pm_runtime_put_autosuspend(dev->dev);
2201 }
2202 
2203 static void
2204 nv50_disp_atomic_commit_work(struct work_struct *work)
2205 {
2206 	struct drm_atomic_state *state =
2207 		container_of(work, typeof(*state), commit_work);
2208 	nv50_disp_atomic_commit_tail(state);
2209 }
2210 
2211 static int
2212 nv50_disp_atomic_commit(struct drm_device *dev,
2213 			struct drm_atomic_state *state, bool nonblock)
2214 {
2215 	struct drm_plane_state *new_plane_state;
2216 	struct drm_plane *plane;
2217 	int ret, i;
2218 
2219 	ret = pm_runtime_get_sync(dev->dev);
2220 	if (ret < 0 && ret != -EACCES) {
2221 		pm_runtime_put_autosuspend(dev->dev);
2222 		return ret;
2223 	}
2224 
2225 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2226 	if (ret)
2227 		goto done;
2228 
2229 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2230 
2231 	ret = drm_atomic_helper_prepare_planes(dev, state);
2232 	if (ret)
2233 		goto done;
2234 
2235 	if (!nonblock) {
2236 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2237 		if (ret)
2238 			goto err_cleanup;
2239 	}
2240 
2241 	ret = drm_atomic_helper_swap_state(state, true);
2242 	if (ret)
2243 		goto err_cleanup;
2244 
2245 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2246 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2247 		struct nv50_wndw *wndw = nv50_wndw(plane);
2248 
2249 		if (asyw->set.image)
2250 			nv50_wndw_ntfy_enable(wndw, asyw);
2251 	}
2252 
2253 	drm_atomic_state_get(state);
2254 
2255 	/*
2256 	 * Grab another RPM ref for the commit tail, which will release the
2257 	 * ref when it's finished
2258 	 */
2259 	pm_runtime_get_noresume(dev->dev);
2260 
2261 	if (nonblock)
2262 		queue_work(system_unbound_wq, &state->commit_work);
2263 	else
2264 		nv50_disp_atomic_commit_tail(state);
2265 
2266 err_cleanup:
2267 	if (ret)
2268 		drm_atomic_helper_cleanup_planes(dev, state);
2269 done:
2270 	pm_runtime_put_autosuspend(dev->dev);
2271 	return ret;
2272 }
2273 
2274 static struct nv50_outp_atom *
2275 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2276 {
2277 	struct nv50_outp_atom *outp;
2278 
2279 	list_for_each_entry(outp, &atom->outp, head) {
2280 		if (outp->encoder == encoder)
2281 			return outp;
2282 	}
2283 
2284 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2285 	if (!outp)
2286 		return ERR_PTR(-ENOMEM);
2287 
2288 	list_add(&outp->head, &atom->outp);
2289 	outp->encoder = encoder;
2290 	return outp;
2291 }
2292 
2293 static int
2294 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2295 				struct drm_connector_state *old_connector_state)
2296 {
2297 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2298 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2299 	struct drm_crtc *crtc;
2300 	struct nv50_outp_atom *outp;
2301 
2302 	if (!(crtc = old_connector_state->crtc))
2303 		return 0;
2304 
2305 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2306 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2307 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2308 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2309 		if (IS_ERR(outp))
2310 			return PTR_ERR(outp);
2311 
2312 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2313 			outp->flush_disable = true;
2314 			atom->flush_disable = true;
2315 		}
2316 		outp->clr.ctrl = true;
2317 		atom->lock_core = true;
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 static int
2324 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2325 				struct drm_connector_state *connector_state)
2326 {
2327 	struct drm_encoder *encoder = connector_state->best_encoder;
2328 	struct drm_crtc_state *new_crtc_state;
2329 	struct drm_crtc *crtc;
2330 	struct nv50_outp_atom *outp;
2331 
2332 	if (!(crtc = connector_state->crtc))
2333 		return 0;
2334 
2335 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2336 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2337 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2338 		if (IS_ERR(outp))
2339 			return PTR_ERR(outp);
2340 
2341 		outp->set.ctrl = true;
2342 		atom->lock_core = true;
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 static int
2349 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2350 {
2351 	struct nv50_atom *atom = nv50_atom(state);
2352 	struct nv50_core *core = nv50_disp(dev)->core;
2353 	struct drm_connector_state *old_connector_state, *new_connector_state;
2354 	struct drm_connector *connector;
2355 	struct drm_crtc_state *new_crtc_state;
2356 	struct drm_crtc *crtc;
2357 	struct nv50_head *head;
2358 	struct nv50_head_atom *asyh;
2359 	int ret, i;
2360 
2361 	if (core->assign_windows && core->func->head->static_wndw_map) {
2362 		drm_for_each_crtc(crtc, dev) {
2363 			new_crtc_state = drm_atomic_get_crtc_state(state,
2364 								   crtc);
2365 			if (IS_ERR(new_crtc_state))
2366 				return PTR_ERR(new_crtc_state);
2367 
2368 			head = nv50_head(crtc);
2369 			asyh = nv50_head_atom(new_crtc_state);
2370 			core->func->head->static_wndw_map(head, asyh);
2371 		}
2372 	}
2373 
2374 	/* We need to handle colour management on a per-plane basis. */
2375 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2376 		if (new_crtc_state->color_mgmt_changed) {
2377 			ret = drm_atomic_add_affected_planes(state, crtc);
2378 			if (ret)
2379 				return ret;
2380 		}
2381 	}
2382 
2383 	ret = drm_atomic_helper_check(dev, state);
2384 	if (ret)
2385 		return ret;
2386 
2387 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2388 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2389 		if (ret)
2390 			return ret;
2391 
2392 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2393 		if (ret)
2394 			return ret;
2395 	}
2396 
2397 	ret = drm_dp_mst_atomic_check(state);
2398 	if (ret)
2399 		return ret;
2400 
2401 	nv50_crc_atomic_check_outp(atom);
2402 
2403 	return 0;
2404 }
2405 
2406 static void
2407 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2408 {
2409 	struct nv50_atom *atom = nv50_atom(state);
2410 	struct nv50_outp_atom *outp, *outt;
2411 
2412 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2413 		list_del(&outp->head);
2414 		kfree(outp);
2415 	}
2416 
2417 	drm_atomic_state_default_clear(state);
2418 }
2419 
2420 static void
2421 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2422 {
2423 	struct nv50_atom *atom = nv50_atom(state);
2424 	drm_atomic_state_default_release(&atom->state);
2425 	kfree(atom);
2426 }
2427 
2428 static struct drm_atomic_state *
2429 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2430 {
2431 	struct nv50_atom *atom;
2432 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2433 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2434 		kfree(atom);
2435 		return NULL;
2436 	}
2437 	INIT_LIST_HEAD(&atom->outp);
2438 	return &atom->state;
2439 }
2440 
2441 static const struct drm_mode_config_funcs
2442 nv50_disp_func = {
2443 	.fb_create = nouveau_user_framebuffer_create,
2444 	.output_poll_changed = drm_fb_helper_output_poll_changed,
2445 	.atomic_check = nv50_disp_atomic_check,
2446 	.atomic_commit = nv50_disp_atomic_commit,
2447 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2448 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2449 	.atomic_state_free = nv50_disp_atomic_state_free,
2450 };
2451 
2452 static const struct drm_mode_config_helper_funcs
2453 nv50_disp_helper_func = {
2454 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2455 };
2456 
2457 /******************************************************************************
2458  * Init
2459  *****************************************************************************/
2460 
2461 static void
2462 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2463 {
2464 	struct nouveau_drm *drm = nouveau_drm(dev);
2465 	struct drm_encoder *encoder;
2466 
2467 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2468 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2469 			nv50_mstm_fini(nouveau_encoder(encoder));
2470 	}
2471 
2472 	if (!runtime)
2473 		cancel_work_sync(&drm->hpd_work);
2474 }
2475 
2476 static int
2477 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2478 {
2479 	struct nv50_core *core = nv50_disp(dev)->core;
2480 	struct drm_encoder *encoder;
2481 
2482 	if (resume || runtime)
2483 		core->func->init(core);
2484 
2485 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2486 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2487 			struct nouveau_encoder *nv_encoder =
2488 				nouveau_encoder(encoder);
2489 			nv50_mstm_init(nv_encoder, runtime);
2490 		}
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static void
2497 nv50_display_destroy(struct drm_device *dev)
2498 {
2499 	struct nv50_disp *disp = nv50_disp(dev);
2500 
2501 	nv50_audio_component_fini(nouveau_drm(dev));
2502 
2503 	nvif_object_unmap(&disp->caps);
2504 	nvif_object_dtor(&disp->caps);
2505 	nv50_core_del(&disp->core);
2506 
2507 	nouveau_bo_unmap(disp->sync);
2508 	if (disp->sync)
2509 		nouveau_bo_unpin(disp->sync);
2510 	nouveau_bo_ref(NULL, &disp->sync);
2511 
2512 	nouveau_display(dev)->priv = NULL;
2513 	kfree(disp);
2514 }
2515 
2516 int
2517 nv50_display_create(struct drm_device *dev)
2518 {
2519 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2520 	struct nouveau_drm *drm = nouveau_drm(dev);
2521 	struct dcb_table *dcb = &drm->vbios.dcb;
2522 	struct drm_connector *connector, *tmp;
2523 	struct nv50_disp *disp;
2524 	struct dcb_output *dcbe;
2525 	int crtcs, ret, i;
2526 	bool has_mst = nv50_has_mst(drm);
2527 
2528 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2529 	if (!disp)
2530 		return -ENOMEM;
2531 
2532 	mutex_init(&disp->mutex);
2533 
2534 	nouveau_display(dev)->priv = disp;
2535 	nouveau_display(dev)->dtor = nv50_display_destroy;
2536 	nouveau_display(dev)->init = nv50_display_init;
2537 	nouveau_display(dev)->fini = nv50_display_fini;
2538 	disp->disp = &nouveau_display(dev)->disp;
2539 	dev->mode_config.funcs = &nv50_disp_func;
2540 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2541 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2542 	dev->mode_config.normalize_zpos = true;
2543 
2544 	/* small shared memory area we use for notifiers and semaphores */
2545 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2546 			     NOUVEAU_GEM_DOMAIN_VRAM,
2547 			     0, 0x0000, NULL, NULL, &disp->sync);
2548 	if (!ret) {
2549 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2550 		if (!ret) {
2551 			ret = nouveau_bo_map(disp->sync);
2552 			if (ret)
2553 				nouveau_bo_unpin(disp->sync);
2554 		}
2555 		if (ret)
2556 			nouveau_bo_ref(NULL, &disp->sync);
2557 	}
2558 
2559 	if (ret)
2560 		goto out;
2561 
2562 	/* allocate master evo channel */
2563 	ret = nv50_core_new(drm, &disp->core);
2564 	if (ret)
2565 		goto out;
2566 
2567 	disp->core->func->init(disp->core);
2568 	if (disp->core->func->caps_init) {
2569 		ret = disp->core->func->caps_init(drm, disp);
2570 		if (ret)
2571 			goto out;
2572 	}
2573 
2574 	/* Assign the correct format modifiers */
2575 	if (disp->disp->object.oclass >= TU102_DISP)
2576 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2577 	else
2578 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2579 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2580 	else
2581 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2582 
2583 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2584 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2585 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2586 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2587 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2588 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2589 	 * large pages.
2590 	 */
2591 	if (disp->disp->object.oclass >= GM107_DISP) {
2592 		dev->mode_config.cursor_width = 256;
2593 		dev->mode_config.cursor_height = 256;
2594 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2595 		dev->mode_config.cursor_width = 128;
2596 		dev->mode_config.cursor_height = 128;
2597 	} else {
2598 		dev->mode_config.cursor_width = 64;
2599 		dev->mode_config.cursor_height = 64;
2600 	}
2601 
2602 	/* create crtc objects to represent the hw heads */
2603 	if (disp->disp->object.oclass >= GV100_DISP)
2604 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2605 	else
2606 	if (disp->disp->object.oclass >= GF110_DISP)
2607 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2608 	else
2609 		crtcs = 0x3;
2610 
2611 	for (i = 0; i < fls(crtcs); i++) {
2612 		struct nv50_head *head;
2613 
2614 		if (!(crtcs & (1 << i)))
2615 			continue;
2616 
2617 		head = nv50_head_create(dev, i);
2618 		if (IS_ERR(head)) {
2619 			ret = PTR_ERR(head);
2620 			goto out;
2621 		}
2622 
2623 		if (has_mst) {
2624 			head->msto = nv50_msto_new(dev, head, i);
2625 			if (IS_ERR(head->msto)) {
2626 				ret = PTR_ERR(head->msto);
2627 				head->msto = NULL;
2628 				goto out;
2629 			}
2630 
2631 			/*
2632 			 * FIXME: This is a hack to workaround the following
2633 			 * issues:
2634 			 *
2635 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2636 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2637 			 *
2638 			 * Once these issues are closed, this should be
2639 			 * removed
2640 			 */
2641 			head->msto->encoder.possible_crtcs = crtcs;
2642 		}
2643 	}
2644 
2645 	/* create encoder/connector objects based on VBIOS DCB table */
2646 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2647 		connector = nouveau_connector_create(dev, dcbe);
2648 		if (IS_ERR(connector))
2649 			continue;
2650 
2651 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2652 			switch (dcbe->type) {
2653 			case DCB_OUTPUT_TMDS:
2654 			case DCB_OUTPUT_LVDS:
2655 			case DCB_OUTPUT_DP:
2656 				ret = nv50_sor_create(connector, dcbe);
2657 				break;
2658 			case DCB_OUTPUT_ANALOG:
2659 				ret = nv50_dac_create(connector, dcbe);
2660 				break;
2661 			default:
2662 				ret = -ENODEV;
2663 				break;
2664 			}
2665 		} else {
2666 			ret = nv50_pior_create(connector, dcbe);
2667 		}
2668 
2669 		if (ret) {
2670 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2671 				     dcbe->location, dcbe->type,
2672 				     ffs(dcbe->or) - 1, ret);
2673 			ret = 0;
2674 		}
2675 	}
2676 
2677 	/* cull any connectors we created that don't have an encoder */
2678 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2679 		if (connector->possible_encoders)
2680 			continue;
2681 
2682 		NV_WARN(drm, "%s has no encoders, removing\n",
2683 			connector->name);
2684 		connector->funcs->destroy(connector);
2685 	}
2686 
2687 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2688 	dev->vblank_disable_immediate = true;
2689 
2690 	nv50_audio_component_init(drm);
2691 
2692 out:
2693 	if (ret)
2694 		nv50_display_destroy(dev);
2695 	return ret;
2696 }
2697 
2698 /******************************************************************************
2699  * Format modifiers
2700  *****************************************************************************/
2701 
2702 /****************************************************************
2703  *            Log2(block height) ----------------------------+  *
2704  *            Page Kind ----------------------------------+  |  *
2705  *            Gob Height/Page Kind Generation ------+     |  |  *
2706  *                          Sector layout -------+  |     |  |  *
2707  *                          Compression ------+  |  |     |  |  */
2708 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2709 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2710 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2711 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2712 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2713 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2714 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2715 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2716 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2717 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2718 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2719 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2720 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2721 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2722 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2723 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2724 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2725 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2726 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2727 	DRM_FORMAT_MOD_LINEAR,
2728 	DRM_FORMAT_MOD_INVALID
2729 };
2730 
2731 /****************************************************************
2732  *            Log2(block height) ----------------------------+  *
2733  *            Page Kind ----------------------------------+  |  *
2734  *            Gob Height/Page Kind Generation ------+     |  |  *
2735  *                          Sector layout -------+  |     |  |  *
2736  *                          Compression ------+  |  |     |  |  */
2737 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2738 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2739 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2740 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2741 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2742 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2743 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2744 	DRM_FORMAT_MOD_LINEAR,
2745 	DRM_FORMAT_MOD_INVALID
2746 };
2747