1 /* 2 * Copyright 2003 NVIDIA, Corporation 3 * Copyright 2006 Dave Airlie 4 * Copyright 2007 Maarten Maathuis 5 * Copyright 2007-2009 Stuart Bennett 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 24 * DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drmP.h> 28 #include <drm/drm_crtc_helper.h> 29 30 #include "nouveau_drv.h" 31 #include "nouveau_reg.h" 32 #include "nouveau_encoder.h" 33 #include "nouveau_connector.h" 34 #include "nouveau_crtc.h" 35 #include "hw.h" 36 #include "nvreg.h" 37 38 #include <drm/i2c/sil164.h> 39 40 #include <subdev/i2c.h> 41 42 #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \ 43 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \ 44 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS) 45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \ 46 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \ 47 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE) 48 49 static inline bool is_fpc_off(uint32_t fpc) 50 { 51 return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) == 52 FP_TG_CONTROL_OFF); 53 } 54 55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent) 56 { 57 /* special case of nv_read_tmds to find crtc associated with an output. 58 * this does not give a correct answer for off-chip dvi, but there's no 59 * use for such an answer anyway 60 */ 61 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; 62 63 NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL, 64 NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4); 65 return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac; 66 } 67 68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent, 69 int head, bool dl) 70 { 71 /* The BIOS scripts don't do this for us, sadly 72 * Luckily we do know the values ;-) 73 * 74 * head < 0 indicates we wish to force a setting with the overrideval 75 * (for VT restore etc.) 76 */ 77 78 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; 79 uint8_t tmds04 = 0x80; 80 81 if (head != ramdac) 82 tmds04 = 0x88; 83 84 if (dcbent->type == DCB_OUTPUT_LVDS) 85 tmds04 |= 0x01; 86 87 nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04); 88 89 if (dl) /* dual link */ 90 nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08); 91 } 92 93 void nv04_dfp_disable(struct drm_device *dev, int head) 94 { 95 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; 96 97 if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) & 98 FP_TG_CONTROL_ON) { 99 /* digital remnants must be cleaned before new crtc 100 * values programmed. delay is time for the vga stuff 101 * to realise it's in control again 102 */ 103 NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, 104 FP_TG_CONTROL_OFF); 105 msleep(50); 106 } 107 /* don't inadvertently turn it on when state written later */ 108 crtcstate[head].fp_control = FP_TG_CONTROL_OFF; 109 crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &= 110 ~NV_CIO_CRE_LCD_ROUTE_MASK; 111 } 112 113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode) 114 { 115 struct drm_device *dev = encoder->dev; 116 struct drm_crtc *crtc; 117 struct nouveau_crtc *nv_crtc; 118 uint32_t *fpc; 119 120 if (mode == DRM_MODE_DPMS_ON) { 121 nv_crtc = nouveau_crtc(encoder->crtc); 122 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; 123 124 if (is_fpc_off(*fpc)) { 125 /* using saved value is ok, as (is_digital && dpms_on && 126 * fp_control==OFF) is (at present) *only* true when 127 * fpc's most recent change was by below "off" code 128 */ 129 *fpc = nv_crtc->dpms_saved_fp_control; 130 } 131 132 nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index; 133 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); 134 } else { 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 nv_crtc = nouveau_crtc(crtc); 137 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; 138 139 nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index); 140 if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) { 141 nv_crtc->dpms_saved_fp_control = *fpc; 142 /* cut the FP output */ 143 *fpc &= ~FP_TG_CONTROL_ON; 144 *fpc |= FP_TG_CONTROL_OFF; 145 NVWriteRAMDAC(dev, nv_crtc->index, 146 NV_PRAMDAC_FP_TG_CONTROL, *fpc); 147 } 148 } 149 } 150 } 151 152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder) 153 { 154 struct drm_device *dev = encoder->dev; 155 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; 156 struct drm_encoder *slave; 157 158 if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP) 159 return NULL; 160 161 /* Some BIOSes (e.g. the one in a Quadro FX1000) report several 162 * TMDS transmitters at the same I2C address, in the same I2C 163 * bus. This can still work because in that case one of them is 164 * always hard-wired to a reasonable configuration using straps, 165 * and the other one needs to be programmed. 166 * 167 * I don't think there's a way to know which is which, even the 168 * blob programs the one exposed via I2C for *both* heads, so 169 * let's do the same. 170 */ 171 list_for_each_entry(slave, &dev->mode_config.encoder_list, head) { 172 struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb; 173 174 if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) && 175 slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr) 176 return slave; 177 } 178 179 return NULL; 180 } 181 182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder, 183 const struct drm_display_mode *mode, 184 struct drm_display_mode *adjusted_mode) 185 { 186 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 187 struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); 188 189 if (!nv_connector->native_mode || 190 nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || 191 mode->hdisplay > nv_connector->native_mode->hdisplay || 192 mode->vdisplay > nv_connector->native_mode->vdisplay) { 193 nv_encoder->mode = *adjusted_mode; 194 195 } else { 196 nv_encoder->mode = *nv_connector->native_mode; 197 adjusted_mode->clock = nv_connector->native_mode->clock; 198 } 199 200 return true; 201 } 202 203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev, 204 struct nouveau_encoder *nv_encoder, int head) 205 { 206 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; 207 uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000; 208 209 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP) 210 return; 211 212 /* SEL_CLK is only used on the primary ramdac 213 * It toggles spread spectrum PLL output and sets the bindings of PLLs 214 * to heads on digital outputs 215 */ 216 if (head) 217 state->sel_clk |= bits1618; 218 else 219 state->sel_clk &= ~bits1618; 220 221 /* nv30: 222 * bit 0 NVClk spread spectrum on/off 223 * bit 2 MemClk spread spectrum on/off 224 * bit 4 PixClk1 spread spectrum on/off toggle 225 * bit 6 PixClk2 spread spectrum on/off toggle 226 * 227 * nv40 (observations from bios behaviour and mmio traces): 228 * bits 4&6 as for nv30 229 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6; 230 * maybe a different spread mode 231 * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts) 232 * The logic behind turning spread spectrum on/off in the first place, 233 * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table 234 * entry has the necessary info) 235 */ 236 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) { 237 int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1; 238 239 state->sel_clk &= ~0xf0; 240 state->sel_clk |= (head ? 0x40 : 0x10) << shift; 241 } 242 } 243 244 static void nv04_dfp_prepare(struct drm_encoder *encoder) 245 { 246 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 247 const struct drm_encoder_helper_funcs *helper = encoder->helper_private; 248 struct drm_device *dev = encoder->dev; 249 int head = nouveau_crtc(encoder->crtc)->index; 250 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; 251 uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX]; 252 uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX]; 253 254 helper->dpms(encoder, DRM_MODE_DPMS_OFF); 255 256 nv04_dfp_prepare_sel_clk(dev, nv_encoder, head); 257 258 *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3; 259 260 if (nv_two_heads(dev)) { 261 if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP) 262 *cr_lcd |= head ? 0x0 : 0x8; 263 else { 264 *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30; 265 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) 266 *cr_lcd |= 0x30; 267 if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) { 268 /* avoid being connected to both crtcs */ 269 *cr_lcd_oth &= ~0x30; 270 NVWriteVgaCrtc(dev, head ^ 1, 271 NV_CIO_CRE_LCD__INDEX, 272 *cr_lcd_oth); 273 } 274 } 275 } 276 } 277 278 279 static void nv04_dfp_mode_set(struct drm_encoder *encoder, 280 struct drm_display_mode *mode, 281 struct drm_display_mode *adjusted_mode) 282 { 283 struct drm_device *dev = encoder->dev; 284 struct nvif_object *device = &nouveau_drm(dev)->client.device.object; 285 struct nouveau_drm *drm = nouveau_drm(dev); 286 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 287 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; 288 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index]; 289 struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc); 290 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 291 struct drm_display_mode *output_mode = &nv_encoder->mode; 292 struct drm_connector *connector = &nv_connector->base; 293 const struct drm_framebuffer *fb = encoder->crtc->primary->fb; 294 uint32_t mode_ratio, panel_ratio; 295 296 NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index); 297 drm_mode_debug_printmodeline(output_mode); 298 299 /* Initialize the FP registers in this CRTC. */ 300 regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; 301 regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; 302 if (!nv_gf4_disp_arch(dev) || 303 (output_mode->hsync_start - output_mode->hdisplay) >= 304 drm->vbios.digital_min_front_porch) 305 regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay; 306 else 307 regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1; 308 regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; 309 regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; 310 regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew; 311 regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1; 312 313 regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; 314 regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; 315 regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1; 316 regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; 317 regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; 318 regp->fp_vert_regs[FP_VALID_START] = 0; 319 regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1; 320 321 /* bit26: a bit seen on some g7x, no as yet discernable purpose */ 322 regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | 323 (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG)); 324 /* Deal with vsync/hsync polarity */ 325 /* LVDS screens do set this, but modes with +ve syncs are very rare */ 326 if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) 327 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; 328 if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) 329 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; 330 /* panel scaling first, as native would get set otherwise */ 331 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || 332 nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */ 333 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER; 334 else if (adjusted_mode->hdisplay == output_mode->hdisplay && 335 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */ 336 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE; 337 else /* gpu needs to scale */ 338 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE; 339 if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT) 340 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; 341 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && 342 output_mode->clock > 165000) 343 regp->fp_control |= (2 << 24); 344 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { 345 bool duallink = false, dummy; 346 if (nv_connector->edid && 347 nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 348 duallink = (((u8 *)nv_connector->edid)[121] == 2); 349 } else { 350 nouveau_bios_parse_lvds_table(dev, output_mode->clock, 351 &duallink, &dummy); 352 } 353 354 if (duallink) 355 regp->fp_control |= (8 << 28); 356 } else 357 if (output_mode->clock > 165000) 358 regp->fp_control |= (8 << 28); 359 360 regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | 361 NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | 362 NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | 363 NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | 364 NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | 365 NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | 366 NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; 367 368 /* We want automatic scaling */ 369 regp->fp_debug_1 = 0; 370 /* This can override HTOTAL and VTOTAL */ 371 regp->fp_debug_2 = 0; 372 373 /* Use 20.12 fixed point format to avoid floats */ 374 mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay; 375 panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay; 376 /* if ratios are equal, SCALE_ASPECT will automatically (and correctly) 377 * get treated the same as SCALE_FULLSCREEN */ 378 if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT && 379 mode_ratio != panel_ratio) { 380 uint32_t diff, scale; 381 bool divide_by_2 = nv_gf4_disp_arch(dev); 382 383 if (mode_ratio < panel_ratio) { 384 /* vertical needs to expand to glass size (automatic) 385 * horizontal needs to be scaled at vertical scale factor 386 * to maintain aspect */ 387 388 scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay; 389 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | 390 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); 391 392 /* restrict area of screen used, horizontally */ 393 diff = output_mode->hdisplay - 394 output_mode->vdisplay * mode_ratio / (1 << 12); 395 regp->fp_horiz_regs[FP_VALID_START] += diff / 2; 396 regp->fp_horiz_regs[FP_VALID_END] -= diff / 2; 397 } 398 399 if (mode_ratio > panel_ratio) { 400 /* horizontal needs to expand to glass size (automatic) 401 * vertical needs to be scaled at horizontal scale factor 402 * to maintain aspect */ 403 404 scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay; 405 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | 406 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE); 407 408 /* restrict area of screen used, vertically */ 409 diff = output_mode->vdisplay - 410 (1 << 12) * output_mode->hdisplay / mode_ratio; 411 regp->fp_vert_regs[FP_VALID_START] += diff / 2; 412 regp->fp_vert_regs[FP_VALID_END] -= diff / 2; 413 } 414 } 415 416 /* Output property. */ 417 if ((nv_connector->dithering_mode == DITHERING_MODE_ON) || 418 (nv_connector->dithering_mode == DITHERING_MODE_AUTO && 419 fb->format->depth > connector->display_info.bpc * 3)) { 420 if (drm->client.device.info.chipset == 0x11) 421 regp->dither = savep->dither | 0x00010000; 422 else { 423 int i; 424 regp->dither = savep->dither | 0x00000001; 425 for (i = 0; i < 3; i++) { 426 regp->dither_regs[i] = 0xe4e4e4e4; 427 regp->dither_regs[i + 3] = 0x44444444; 428 } 429 } 430 } else { 431 if (drm->client.device.info.chipset != 0x11) { 432 /* reset them */ 433 int i; 434 for (i = 0; i < 3; i++) { 435 regp->dither_regs[i] = savep->dither_regs[i]; 436 regp->dither_regs[i + 3] = savep->dither_regs[i + 3]; 437 } 438 } 439 regp->dither = savep->dither; 440 } 441 442 regp->fp_margin_color = 0; 443 } 444 445 static void nv04_dfp_commit(struct drm_encoder *encoder) 446 { 447 struct drm_device *dev = encoder->dev; 448 struct nouveau_drm *drm = nouveau_drm(dev); 449 const struct drm_encoder_helper_funcs *helper = encoder->helper_private; 450 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 451 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 452 struct dcb_output *dcbe = nv_encoder->dcb; 453 int head = nouveau_crtc(encoder->crtc)->index; 454 struct drm_encoder *slave_encoder; 455 456 if (dcbe->type == DCB_OUTPUT_TMDS) 457 run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock); 458 else if (dcbe->type == DCB_OUTPUT_LVDS) 459 call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock); 460 461 /* update fp_control state for any changes made by scripts, 462 * so correct value is written at DPMS on */ 463 nv04_display(dev)->mode_reg.crtc_reg[head].fp_control = 464 NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); 465 466 /* This could use refinement for flatpanels, but it should work this way */ 467 if (drm->client.device.info.chipset < 0x44) 468 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); 469 else 470 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); 471 472 /* Init external transmitters */ 473 slave_encoder = get_tmds_slave(encoder); 474 if (slave_encoder) 475 get_slave_funcs(slave_encoder)->mode_set( 476 slave_encoder, &nv_encoder->mode, &nv_encoder->mode); 477 478 helper->dpms(encoder, DRM_MODE_DPMS_ON); 479 480 NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n", 481 nouveau_encoder_connector_get(nv_encoder)->base.name, 482 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); 483 } 484 485 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode) 486 { 487 #ifdef __powerpc__ 488 struct drm_device *dev = encoder->dev; 489 struct nvif_object *device = &nouveau_drm(dev)->client.device.object; 490 491 /* BIOS scripts usually take care of the backlight, thanks 492 * Apple for your consistency. 493 */ 494 if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 || 495 dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) { 496 if (mode == DRM_MODE_DPMS_ON) { 497 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31); 498 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1); 499 } else { 500 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0); 501 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0); 502 } 503 } 504 #endif 505 } 506 507 static inline bool is_powersaving_dpms(int mode) 508 { 509 return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED; 510 } 511 512 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode) 513 { 514 struct drm_device *dev = encoder->dev; 515 struct drm_crtc *crtc = encoder->crtc; 516 struct nouveau_drm *drm = nouveau_drm(dev); 517 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 518 bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms); 519 520 if (nv_encoder->last_dpms == mode) 521 return; 522 nv_encoder->last_dpms = mode; 523 524 NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n", 525 mode, nv_encoder->dcb->index); 526 527 if (was_powersaving && is_powersaving_dpms(mode)) 528 return; 529 530 if (nv_encoder->dcb->lvdsconf.use_power_scripts) { 531 /* when removing an output, crtc may not be set, but PANEL_OFF 532 * must still be run 533 */ 534 int head = crtc ? nouveau_crtc(crtc)->index : 535 nv04_dfp_get_bound_head(dev, nv_encoder->dcb); 536 537 if (mode == DRM_MODE_DPMS_ON) { 538 call_lvds_script(dev, nv_encoder->dcb, head, 539 LVDS_PANEL_ON, nv_encoder->mode.clock); 540 } else 541 /* pxclk of 0 is fine for PANEL_OFF, and for a 542 * disconnected LVDS encoder there is no native_mode 543 */ 544 call_lvds_script(dev, nv_encoder->dcb, head, 545 LVDS_PANEL_OFF, 0); 546 } 547 548 nv04_dfp_update_backlight(encoder, mode); 549 nv04_dfp_update_fp_control(encoder, mode); 550 551 if (mode == DRM_MODE_DPMS_ON) 552 nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index); 553 else { 554 nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); 555 nv04_display(dev)->mode_reg.sel_clk &= ~0xf0; 556 } 557 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk); 558 } 559 560 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode) 561 { 562 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 563 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 564 565 if (nv_encoder->last_dpms == mode) 566 return; 567 nv_encoder->last_dpms = mode; 568 569 NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n", 570 mode, nv_encoder->dcb->index); 571 572 nv04_dfp_update_backlight(encoder, mode); 573 nv04_dfp_update_fp_control(encoder, mode); 574 } 575 576 static void nv04_dfp_save(struct drm_encoder *encoder) 577 { 578 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 579 struct drm_device *dev = encoder->dev; 580 581 if (nv_two_heads(dev)) 582 nv_encoder->restore.head = 583 nv04_dfp_get_bound_head(dev, nv_encoder->dcb); 584 } 585 586 static void nv04_dfp_restore(struct drm_encoder *encoder) 587 { 588 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 589 struct drm_device *dev = encoder->dev; 590 int head = nv_encoder->restore.head; 591 592 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { 593 struct nouveau_connector *connector = 594 nouveau_encoder_connector_get(nv_encoder); 595 596 if (connector && connector->native_mode) 597 call_lvds_script(dev, nv_encoder->dcb, head, 598 LVDS_PANEL_ON, 599 connector->native_mode->clock); 600 601 } else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) { 602 int clock = nouveau_hw_pllvals_to_clk 603 (&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals); 604 605 run_tmds_table(dev, nv_encoder->dcb, head, clock); 606 } 607 608 nv_encoder->last_dpms = NV_DPMS_CLEARED; 609 } 610 611 static void nv04_dfp_destroy(struct drm_encoder *encoder) 612 { 613 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 614 615 if (get_slave_funcs(encoder)) 616 get_slave_funcs(encoder)->destroy(encoder); 617 618 drm_encoder_cleanup(encoder); 619 kfree(nv_encoder); 620 } 621 622 static void nv04_tmds_slave_init(struct drm_encoder *encoder) 623 { 624 struct drm_device *dev = encoder->dev; 625 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; 626 struct nouveau_drm *drm = nouveau_drm(dev); 627 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 628 struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI); 629 struct nvkm_i2c_bus_probe info[] = { 630 { 631 { 632 .type = "sil164", 633 .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38), 634 .platform_data = &(struct sil164_encoder_params) { 635 SIL164_INPUT_EDGE_RISING 636 } 637 }, 0 638 }, 639 { } 640 }; 641 int type; 642 643 if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder)) 644 return; 645 646 type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL); 647 if (type < 0) 648 return; 649 650 drm_i2c_encoder_init(dev, to_encoder_slave(encoder), 651 &bus->i2c, &info[type].dev); 652 } 653 654 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = { 655 .dpms = nv04_lvds_dpms, 656 .mode_fixup = nv04_dfp_mode_fixup, 657 .prepare = nv04_dfp_prepare, 658 .commit = nv04_dfp_commit, 659 .mode_set = nv04_dfp_mode_set, 660 .detect = NULL, 661 }; 662 663 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = { 664 .dpms = nv04_tmds_dpms, 665 .mode_fixup = nv04_dfp_mode_fixup, 666 .prepare = nv04_dfp_prepare, 667 .commit = nv04_dfp_commit, 668 .mode_set = nv04_dfp_mode_set, 669 .detect = NULL, 670 }; 671 672 static const struct drm_encoder_funcs nv04_dfp_funcs = { 673 .destroy = nv04_dfp_destroy, 674 }; 675 676 int 677 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry) 678 { 679 const struct drm_encoder_helper_funcs *helper; 680 struct nouveau_encoder *nv_encoder = NULL; 681 struct drm_encoder *encoder; 682 int type; 683 684 switch (entry->type) { 685 case DCB_OUTPUT_TMDS: 686 type = DRM_MODE_ENCODER_TMDS; 687 helper = &nv04_tmds_helper_funcs; 688 break; 689 case DCB_OUTPUT_LVDS: 690 type = DRM_MODE_ENCODER_LVDS; 691 helper = &nv04_lvds_helper_funcs; 692 break; 693 default: 694 return -EINVAL; 695 } 696 697 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 698 if (!nv_encoder) 699 return -ENOMEM; 700 701 nv_encoder->enc_save = nv04_dfp_save; 702 nv_encoder->enc_restore = nv04_dfp_restore; 703 704 encoder = to_drm_encoder(nv_encoder); 705 706 nv_encoder->dcb = entry; 707 nv_encoder->or = ffs(entry->or) - 1; 708 709 drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL); 710 drm_encoder_helper_add(encoder, helper); 711 712 encoder->possible_crtcs = entry->heads; 713 encoder->possible_clones = 0; 714 715 if (entry->type == DCB_OUTPUT_TMDS && 716 entry->location != DCB_LOC_ON_CHIP) 717 nv04_tmds_slave_init(encoder); 718 719 drm_connector_attach_encoder(connector, encoder); 720 return 0; 721 } 722