1 /*
2  * Copyright 2003 NVIDIA, Corporation
3  * Copyright 2006 Dave Airlie
4  * Copyright 2007 Maarten Maathuis
5  * Copyright 2007-2009 Stuart Bennett
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 
30 #include "nouveau_drm.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_crtc.h"
35 #include "hw.h"
36 #include "nvreg.h"
37 
38 #include <drm/i2c/sil164.h>
39 
40 #include <subdev/i2c.h>
41 
42 #define FP_TG_CONTROL_ON  (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |	\
43 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS |		\
44 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE |	\
46 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE |	\
47 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
48 
49 static inline bool is_fpc_off(uint32_t fpc)
50 {
51 	return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
52 			FP_TG_CONTROL_OFF);
53 }
54 
55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
56 {
57 	/* special case of nv_read_tmds to find crtc associated with an output.
58 	 * this does not give a correct answer for off-chip dvi, but there's no
59 	 * use for such an answer anyway
60 	 */
61 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
62 
63 	NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
64 	NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
65 	return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
66 }
67 
68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 			int head, bool dl)
70 {
71 	/* The BIOS scripts don't do this for us, sadly
72 	 * Luckily we do know the values ;-)
73 	 *
74 	 * head < 0 indicates we wish to force a setting with the overrideval
75 	 * (for VT restore etc.)
76 	 */
77 
78 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 	uint8_t tmds04 = 0x80;
80 
81 	if (head != ramdac)
82 		tmds04 = 0x88;
83 
84 	if (dcbent->type == DCB_OUTPUT_LVDS)
85 		tmds04 |= 0x01;
86 
87 	nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
88 
89 	if (dl)	/* dual link */
90 		nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
91 }
92 
93 void nv04_dfp_disable(struct drm_device *dev, int head)
94 {
95 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
96 
97 	if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
98 	    FP_TG_CONTROL_ON) {
99 		/* digital remnants must be cleaned before new crtc
100 		 * values programmed.  delay is time for the vga stuff
101 		 * to realise it's in control again
102 		 */
103 		NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
104 			      FP_TG_CONTROL_OFF);
105 		msleep(50);
106 	}
107 	/* don't inadvertently turn it on when state written later */
108 	crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 	crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
110 		~NV_CIO_CRE_LCD_ROUTE_MASK;
111 }
112 
113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
114 {
115 	struct drm_device *dev = encoder->dev;
116 	struct drm_crtc *crtc;
117 	struct nouveau_crtc *nv_crtc;
118 	uint32_t *fpc;
119 
120 	if (mode == DRM_MODE_DPMS_ON) {
121 		nv_crtc = nouveau_crtc(encoder->crtc);
122 		fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
123 
124 		if (is_fpc_off(*fpc)) {
125 			/* using saved value is ok, as (is_digital && dpms_on &&
126 			 * fp_control==OFF) is (at present) *only* true when
127 			 * fpc's most recent change was by below "off" code
128 			 */
129 			*fpc = nv_crtc->dpms_saved_fp_control;
130 		}
131 
132 		nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
133 		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
134 	} else {
135 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 			nv_crtc = nouveau_crtc(crtc);
137 			fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
138 
139 			nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
140 			if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
141 				nv_crtc->dpms_saved_fp_control = *fpc;
142 				/* cut the FP output */
143 				*fpc &= ~FP_TG_CONTROL_ON;
144 				*fpc |= FP_TG_CONTROL_OFF;
145 				NVWriteRAMDAC(dev, nv_crtc->index,
146 					      NV_PRAMDAC_FP_TG_CONTROL, *fpc);
147 			}
148 		}
149 	}
150 }
151 
152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
153 {
154 	struct drm_device *dev = encoder->dev;
155 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 	struct drm_encoder *slave;
157 
158 	if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 		return NULL;
160 
161 	/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
162 	 * TMDS transmitters at the same I2C address, in the same I2C
163 	 * bus. This can still work because in that case one of them is
164 	 * always hard-wired to a reasonable configuration using straps,
165 	 * and the other one needs to be programmed.
166 	 *
167 	 * I don't think there's a way to know which is which, even the
168 	 * blob programs the one exposed via I2C for *both* heads, so
169 	 * let's do the same.
170 	 */
171 	list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172 		struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
173 
174 		if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 		    slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
176 			return slave;
177 	}
178 
179 	return NULL;
180 }
181 
182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183 				const struct drm_display_mode *mode,
184 				struct drm_display_mode *adjusted_mode)
185 {
186 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
187 	struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
188 
189 	if (!nv_connector->native_mode ||
190 	    nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
191 	    mode->hdisplay > nv_connector->native_mode->hdisplay ||
192 	    mode->vdisplay > nv_connector->native_mode->vdisplay) {
193 		nv_encoder->mode = *adjusted_mode;
194 
195 	} else {
196 		nv_encoder->mode = *nv_connector->native_mode;
197 		adjusted_mode->clock = nv_connector->native_mode->clock;
198 	}
199 
200 	return true;
201 }
202 
203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
204 				     struct nouveau_encoder *nv_encoder, int head)
205 {
206 	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
207 	uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
208 
209 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210 		return;
211 
212 	/* SEL_CLK is only used on the primary ramdac
213 	 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214 	 * to heads on digital outputs
215 	 */
216 	if (head)
217 		state->sel_clk |= bits1618;
218 	else
219 		state->sel_clk &= ~bits1618;
220 
221 	/* nv30:
222 	 *	bit 0		NVClk spread spectrum on/off
223 	 *	bit 2		MemClk spread spectrum on/off
224 	 * 	bit 4		PixClk1 spread spectrum on/off toggle
225 	 * 	bit 6		PixClk2 spread spectrum on/off toggle
226 	 *
227 	 * nv40 (observations from bios behaviour and mmio traces):
228 	 * 	bits 4&6	as for nv30
229 	 * 	bits 5&7	head dependent as for bits 4&6, but do not appear with 4&6;
230 	 * 			maybe a different spread mode
231 	 * 	bits 8&10	seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232 	 * 	The logic behind turning spread spectrum on/off in the first place,
233 	 * 	and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234 	 * 	entry has the necessary info)
235 	 */
236 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
237 		int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
238 
239 		state->sel_clk &= ~0xf0;
240 		state->sel_clk |= (head ? 0x40 : 0x10) << shift;
241 	}
242 }
243 
244 static void nv04_dfp_prepare(struct drm_encoder *encoder)
245 {
246 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 	struct drm_device *dev = encoder->dev;
249 	int head = nouveau_crtc(encoder->crtc)->index;
250 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
251 	uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
252 	uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
253 
254 	helper->dpms(encoder, DRM_MODE_DPMS_OFF);
255 
256 	nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
257 
258 	*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
259 
260 	if (nv_two_heads(dev)) {
261 		if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
262 			*cr_lcd |= head ? 0x0 : 0x8;
263 		else {
264 			*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
265 			if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
266 				*cr_lcd |= 0x30;
267 			if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
268 				/* avoid being connected to both crtcs */
269 				*cr_lcd_oth &= ~0x30;
270 				NVWriteVgaCrtc(dev, head ^ 1,
271 					       NV_CIO_CRE_LCD__INDEX,
272 					       *cr_lcd_oth);
273 			}
274 		}
275 	}
276 }
277 
278 
279 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
280 			      struct drm_display_mode *mode,
281 			      struct drm_display_mode *adjusted_mode)
282 {
283 	struct drm_device *dev = encoder->dev;
284 	struct nvif_object *device = &nouveau_drm(dev)->device.object;
285 	struct nouveau_drm *drm = nouveau_drm(dev);
286 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
288 	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
289 	struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291 	struct drm_display_mode *output_mode = &nv_encoder->mode;
292 	struct drm_connector *connector = &nv_connector->base;
293 	uint32_t mode_ratio, panel_ratio;
294 
295 	NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
296 	drm_mode_debug_printmodeline(output_mode);
297 
298 	/* Initialize the FP registers in this CRTC. */
299 	regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
300 	regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
301 	if (!nv_gf4_disp_arch(dev) ||
302 	    (output_mode->hsync_start - output_mode->hdisplay) >=
303 					drm->vbios.digital_min_front_porch)
304 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
305 	else
306 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
307 	regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
308 	regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
309 	regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
310 	regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
311 
312 	regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
313 	regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
314 	regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
315 	regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
316 	regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
317 	regp->fp_vert_regs[FP_VALID_START] = 0;
318 	regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
319 
320 	/* bit26: a bit seen on some g7x, no as yet discernable purpose */
321 	regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
322 			   (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
323 	/* Deal with vsync/hsync polarity */
324 	/* LVDS screens do set this, but modes with +ve syncs are very rare */
325 	if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
326 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
327 	if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
328 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
329 	/* panel scaling first, as native would get set otherwise */
330 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
331 	    nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER)	/* panel handles it */
332 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
333 	else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
334 		 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
335 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
336 	else /* gpu needs to scale */
337 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
338 	if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
339 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
340 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
341 	    output_mode->clock > 165000)
342 		regp->fp_control |= (2 << 24);
343 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
344 		bool duallink = false, dummy;
345 		if (nv_connector->edid &&
346 		    nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
347 			duallink = (((u8 *)nv_connector->edid)[121] == 2);
348 		} else {
349 			nouveau_bios_parse_lvds_table(dev, output_mode->clock,
350 						      &duallink, &dummy);
351 		}
352 
353 		if (duallink)
354 			regp->fp_control |= (8 << 28);
355 	} else
356 	if (output_mode->clock > 165000)
357 		regp->fp_control |= (8 << 28);
358 
359 	regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
360 			   NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
361 			   NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
362 			   NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
363 			   NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
364 			   NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
365 			   NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
366 
367 	/* We want automatic scaling */
368 	regp->fp_debug_1 = 0;
369 	/* This can override HTOTAL and VTOTAL */
370 	regp->fp_debug_2 = 0;
371 
372 	/* Use 20.12 fixed point format to avoid floats */
373 	mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
374 	panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
375 	/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
376 	 * get treated the same as SCALE_FULLSCREEN */
377 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
378 	    mode_ratio != panel_ratio) {
379 		uint32_t diff, scale;
380 		bool divide_by_2 = nv_gf4_disp_arch(dev);
381 
382 		if (mode_ratio < panel_ratio) {
383 			/* vertical needs to expand to glass size (automatic)
384 			 * horizontal needs to be scaled at vertical scale factor
385 			 * to maintain aspect */
386 
387 			scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
388 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
389 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
390 
391 			/* restrict area of screen used, horizontally */
392 			diff = output_mode->hdisplay -
393 			       output_mode->vdisplay * mode_ratio / (1 << 12);
394 			regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
395 			regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
396 		}
397 
398 		if (mode_ratio > panel_ratio) {
399 			/* horizontal needs to expand to glass size (automatic)
400 			 * vertical needs to be scaled at horizontal scale factor
401 			 * to maintain aspect */
402 
403 			scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
404 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
405 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
406 
407 			/* restrict area of screen used, vertically */
408 			diff = output_mode->vdisplay -
409 			       (1 << 12) * output_mode->hdisplay / mode_ratio;
410 			regp->fp_vert_regs[FP_VALID_START] += diff / 2;
411 			regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
412 		}
413 	}
414 
415 	/* Output property. */
416 	if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
417 	    (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
418 	     encoder->crtc->primary->fb->depth > connector->display_info.bpc * 3)) {
419 		if (drm->device.info.chipset == 0x11)
420 			regp->dither = savep->dither | 0x00010000;
421 		else {
422 			int i;
423 			regp->dither = savep->dither | 0x00000001;
424 			for (i = 0; i < 3; i++) {
425 				regp->dither_regs[i] = 0xe4e4e4e4;
426 				regp->dither_regs[i + 3] = 0x44444444;
427 			}
428 		}
429 	} else {
430 		if (drm->device.info.chipset != 0x11) {
431 			/* reset them */
432 			int i;
433 			for (i = 0; i < 3; i++) {
434 				regp->dither_regs[i] = savep->dither_regs[i];
435 				regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
436 			}
437 		}
438 		regp->dither = savep->dither;
439 	}
440 
441 	regp->fp_margin_color = 0;
442 }
443 
444 static void nv04_dfp_commit(struct drm_encoder *encoder)
445 {
446 	struct drm_device *dev = encoder->dev;
447 	struct nouveau_drm *drm = nouveau_drm(dev);
448 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
449 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
450 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
451 	struct dcb_output *dcbe = nv_encoder->dcb;
452 	int head = nouveau_crtc(encoder->crtc)->index;
453 	struct drm_encoder *slave_encoder;
454 
455 	if (dcbe->type == DCB_OUTPUT_TMDS)
456 		run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
457 	else if (dcbe->type == DCB_OUTPUT_LVDS)
458 		call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
459 
460 	/* update fp_control state for any changes made by scripts,
461 	 * so correct value is written at DPMS on */
462 	nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
463 		NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
464 
465 	/* This could use refinement for flatpanels, but it should work this way */
466 	if (drm->device.info.chipset < 0x44)
467 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
468 	else
469 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
470 
471 	/* Init external transmitters */
472 	slave_encoder = get_tmds_slave(encoder);
473 	if (slave_encoder)
474 		get_slave_funcs(slave_encoder)->mode_set(
475 			slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
476 
477 	helper->dpms(encoder, DRM_MODE_DPMS_ON);
478 
479 	NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
480 		 nouveau_encoder_connector_get(nv_encoder)->base.name,
481 		 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
482 }
483 
484 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
485 {
486 #ifdef __powerpc__
487 	struct drm_device *dev = encoder->dev;
488 	struct nvif_object *device = &nouveau_drm(dev)->device.object;
489 
490 	/* BIOS scripts usually take care of the backlight, thanks
491 	 * Apple for your consistency.
492 	 */
493 	if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
494 	    dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
495 		if (mode == DRM_MODE_DPMS_ON) {
496 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
497 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
498 		} else {
499 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
500 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
501 		}
502 	}
503 #endif
504 }
505 
506 static inline bool is_powersaving_dpms(int mode)
507 {
508 	return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
509 }
510 
511 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
512 {
513 	struct drm_device *dev = encoder->dev;
514 	struct drm_crtc *crtc = encoder->crtc;
515 	struct nouveau_drm *drm = nouveau_drm(dev);
516 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
517 	bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
518 
519 	if (nv_encoder->last_dpms == mode)
520 		return;
521 	nv_encoder->last_dpms = mode;
522 
523 	NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
524 		 mode, nv_encoder->dcb->index);
525 
526 	if (was_powersaving && is_powersaving_dpms(mode))
527 		return;
528 
529 	if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
530 		/* when removing an output, crtc may not be set, but PANEL_OFF
531 		 * must still be run
532 		 */
533 		int head = crtc ? nouveau_crtc(crtc)->index :
534 			   nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
535 
536 		if (mode == DRM_MODE_DPMS_ON) {
537 			call_lvds_script(dev, nv_encoder->dcb, head,
538 					 LVDS_PANEL_ON, nv_encoder->mode.clock);
539 		} else
540 			/* pxclk of 0 is fine for PANEL_OFF, and for a
541 			 * disconnected LVDS encoder there is no native_mode
542 			 */
543 			call_lvds_script(dev, nv_encoder->dcb, head,
544 					 LVDS_PANEL_OFF, 0);
545 	}
546 
547 	nv04_dfp_update_backlight(encoder, mode);
548 	nv04_dfp_update_fp_control(encoder, mode);
549 
550 	if (mode == DRM_MODE_DPMS_ON)
551 		nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
552 	else {
553 		nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
554 		nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
555 	}
556 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
557 }
558 
559 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
560 {
561 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
562 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
563 
564 	if (nv_encoder->last_dpms == mode)
565 		return;
566 	nv_encoder->last_dpms = mode;
567 
568 	NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
569 		 mode, nv_encoder->dcb->index);
570 
571 	nv04_dfp_update_backlight(encoder, mode);
572 	nv04_dfp_update_fp_control(encoder, mode);
573 }
574 
575 static void nv04_dfp_save(struct drm_encoder *encoder)
576 {
577 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
578 	struct drm_device *dev = encoder->dev;
579 
580 	if (nv_two_heads(dev))
581 		nv_encoder->restore.head =
582 			nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
583 }
584 
585 static void nv04_dfp_restore(struct drm_encoder *encoder)
586 {
587 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
588 	struct drm_device *dev = encoder->dev;
589 	int head = nv_encoder->restore.head;
590 
591 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
592 		struct nouveau_connector *connector =
593 			nouveau_encoder_connector_get(nv_encoder);
594 
595 		if (connector && connector->native_mode)
596 			call_lvds_script(dev, nv_encoder->dcb, head,
597 					 LVDS_PANEL_ON,
598 					 connector->native_mode->clock);
599 
600 	} else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
601 		int clock = nouveau_hw_pllvals_to_clk
602 					(&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
603 
604 		run_tmds_table(dev, nv_encoder->dcb, head, clock);
605 	}
606 
607 	nv_encoder->last_dpms = NV_DPMS_CLEARED;
608 }
609 
610 static void nv04_dfp_destroy(struct drm_encoder *encoder)
611 {
612 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
613 
614 	if (get_slave_funcs(encoder))
615 		get_slave_funcs(encoder)->destroy(encoder);
616 
617 	drm_encoder_cleanup(encoder);
618 	kfree(nv_encoder);
619 }
620 
621 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
622 {
623 	struct drm_device *dev = encoder->dev;
624 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
625 	struct nouveau_drm *drm = nouveau_drm(dev);
626 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
627 	struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI);
628 	struct nvkm_i2c_bus_probe info[] = {
629 		{
630 		    {
631 		        .type = "sil164",
632 		        .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
633 		        .platform_data = &(struct sil164_encoder_params) {
634 		            SIL164_INPUT_EDGE_RISING
635 		         }
636 		    }, 0
637 		},
638 		{ }
639 	};
640 	int type;
641 
642 	if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder))
643 		return;
644 
645 	type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL);
646 	if (type < 0)
647 		return;
648 
649 	drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
650 			     &bus->i2c, &info[type].dev);
651 }
652 
653 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
654 	.dpms = nv04_lvds_dpms,
655 	.save = nv04_dfp_save,
656 	.restore = nv04_dfp_restore,
657 	.mode_fixup = nv04_dfp_mode_fixup,
658 	.prepare = nv04_dfp_prepare,
659 	.commit = nv04_dfp_commit,
660 	.mode_set = nv04_dfp_mode_set,
661 	.detect = NULL,
662 };
663 
664 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
665 	.dpms = nv04_tmds_dpms,
666 	.save = nv04_dfp_save,
667 	.restore = nv04_dfp_restore,
668 	.mode_fixup = nv04_dfp_mode_fixup,
669 	.prepare = nv04_dfp_prepare,
670 	.commit = nv04_dfp_commit,
671 	.mode_set = nv04_dfp_mode_set,
672 	.detect = NULL,
673 };
674 
675 static const struct drm_encoder_funcs nv04_dfp_funcs = {
676 	.destroy = nv04_dfp_destroy,
677 };
678 
679 int
680 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
681 {
682 	const struct drm_encoder_helper_funcs *helper;
683 	struct nouveau_encoder *nv_encoder = NULL;
684 	struct drm_encoder *encoder;
685 	int type;
686 
687 	switch (entry->type) {
688 	case DCB_OUTPUT_TMDS:
689 		type = DRM_MODE_ENCODER_TMDS;
690 		helper = &nv04_tmds_helper_funcs;
691 		break;
692 	case DCB_OUTPUT_LVDS:
693 		type = DRM_MODE_ENCODER_LVDS;
694 		helper = &nv04_lvds_helper_funcs;
695 		break;
696 	default:
697 		return -EINVAL;
698 	}
699 
700 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
701 	if (!nv_encoder)
702 		return -ENOMEM;
703 
704 	encoder = to_drm_encoder(nv_encoder);
705 
706 	nv_encoder->dcb = entry;
707 	nv_encoder->or = ffs(entry->or) - 1;
708 
709 	drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
710 	drm_encoder_helper_add(encoder, helper);
711 
712 	encoder->possible_crtcs = entry->heads;
713 	encoder->possible_clones = 0;
714 
715 	if (entry->type == DCB_OUTPUT_TMDS &&
716 	    entry->location != DCB_LOC_ON_CHIP)
717 		nv04_tmds_slave_init(encoder);
718 
719 	drm_mode_connector_attach_encoder(connector, encoder);
720 	return 0;
721 }
722