1 /* 2 * Copyright 2003 NVIDIA, Corporation 3 * Copyright 2006 Dave Airlie 4 * Copyright 2007 Maarten Maathuis 5 * Copyright 2007-2009 Stuart Bennett 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 24 * DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drmP.h> 28 #include <drm/drm_crtc_helper.h> 29 30 #include "nouveau_drm.h" 31 #include "nouveau_reg.h" 32 #include "nouveau_encoder.h" 33 #include "nouveau_connector.h" 34 #include "nouveau_crtc.h" 35 #include "hw.h" 36 #include "nvreg.h" 37 38 #include <drm/i2c/sil164.h> 39 40 #include <subdev/i2c.h> 41 42 #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \ 43 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \ 44 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS) 45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \ 46 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \ 47 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE) 48 49 static inline bool is_fpc_off(uint32_t fpc) 50 { 51 return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) == 52 FP_TG_CONTROL_OFF); 53 } 54 55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent) 56 { 57 /* special case of nv_read_tmds to find crtc associated with an output. 58 * this does not give a correct answer for off-chip dvi, but there's no 59 * use for such an answer anyway 60 */ 61 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; 62 63 NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL, 64 NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4); 65 return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac; 66 } 67 68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent, 69 int head, bool dl) 70 { 71 /* The BIOS scripts don't do this for us, sadly 72 * Luckily we do know the values ;-) 73 * 74 * head < 0 indicates we wish to force a setting with the overrideval 75 * (for VT restore etc.) 76 */ 77 78 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; 79 uint8_t tmds04 = 0x80; 80 81 if (head != ramdac) 82 tmds04 = 0x88; 83 84 if (dcbent->type == DCB_OUTPUT_LVDS) 85 tmds04 |= 0x01; 86 87 nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04); 88 89 if (dl) /* dual link */ 90 nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08); 91 } 92 93 void nv04_dfp_disable(struct drm_device *dev, int head) 94 { 95 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; 96 97 if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) & 98 FP_TG_CONTROL_ON) { 99 /* digital remnants must be cleaned before new crtc 100 * values programmed. delay is time for the vga stuff 101 * to realise it's in control again 102 */ 103 NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, 104 FP_TG_CONTROL_OFF); 105 msleep(50); 106 } 107 /* don't inadvertently turn it on when state written later */ 108 crtcstate[head].fp_control = FP_TG_CONTROL_OFF; 109 crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &= 110 ~NV_CIO_CRE_LCD_ROUTE_MASK; 111 } 112 113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode) 114 { 115 struct drm_device *dev = encoder->dev; 116 struct drm_crtc *crtc; 117 struct nouveau_crtc *nv_crtc; 118 uint32_t *fpc; 119 120 if (mode == DRM_MODE_DPMS_ON) { 121 nv_crtc = nouveau_crtc(encoder->crtc); 122 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; 123 124 if (is_fpc_off(*fpc)) { 125 /* using saved value is ok, as (is_digital && dpms_on && 126 * fp_control==OFF) is (at present) *only* true when 127 * fpc's most recent change was by below "off" code 128 */ 129 *fpc = nv_crtc->dpms_saved_fp_control; 130 } 131 132 nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index; 133 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); 134 } else { 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 nv_crtc = nouveau_crtc(crtc); 137 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; 138 139 nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index); 140 if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) { 141 nv_crtc->dpms_saved_fp_control = *fpc; 142 /* cut the FP output */ 143 *fpc &= ~FP_TG_CONTROL_ON; 144 *fpc |= FP_TG_CONTROL_OFF; 145 NVWriteRAMDAC(dev, nv_crtc->index, 146 NV_PRAMDAC_FP_TG_CONTROL, *fpc); 147 } 148 } 149 } 150 } 151 152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder) 153 { 154 struct drm_device *dev = encoder->dev; 155 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; 156 struct drm_encoder *slave; 157 158 if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP) 159 return NULL; 160 161 /* Some BIOSes (e.g. the one in a Quadro FX1000) report several 162 * TMDS transmitters at the same I2C address, in the same I2C 163 * bus. This can still work because in that case one of them is 164 * always hard-wired to a reasonable configuration using straps, 165 * and the other one needs to be programmed. 166 * 167 * I don't think there's a way to know which is which, even the 168 * blob programs the one exposed via I2C for *both* heads, so 169 * let's do the same. 170 */ 171 list_for_each_entry(slave, &dev->mode_config.encoder_list, head) { 172 struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb; 173 174 if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) && 175 slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr) 176 return slave; 177 } 178 179 return NULL; 180 } 181 182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder, 183 const struct drm_display_mode *mode, 184 struct drm_display_mode *adjusted_mode) 185 { 186 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 187 struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); 188 189 if (!nv_connector->native_mode || 190 nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || 191 mode->hdisplay > nv_connector->native_mode->hdisplay || 192 mode->vdisplay > nv_connector->native_mode->vdisplay) { 193 nv_encoder->mode = *adjusted_mode; 194 195 } else { 196 nv_encoder->mode = *nv_connector->native_mode; 197 adjusted_mode->clock = nv_connector->native_mode->clock; 198 } 199 200 return true; 201 } 202 203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev, 204 struct nouveau_encoder *nv_encoder, int head) 205 { 206 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; 207 uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000; 208 209 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP) 210 return; 211 212 /* SEL_CLK is only used on the primary ramdac 213 * It toggles spread spectrum PLL output and sets the bindings of PLLs 214 * to heads on digital outputs 215 */ 216 if (head) 217 state->sel_clk |= bits1618; 218 else 219 state->sel_clk &= ~bits1618; 220 221 /* nv30: 222 * bit 0 NVClk spread spectrum on/off 223 * bit 2 MemClk spread spectrum on/off 224 * bit 4 PixClk1 spread spectrum on/off toggle 225 * bit 6 PixClk2 spread spectrum on/off toggle 226 * 227 * nv40 (observations from bios behaviour and mmio traces): 228 * bits 4&6 as for nv30 229 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6; 230 * maybe a different spread mode 231 * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts) 232 * The logic behind turning spread spectrum on/off in the first place, 233 * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table 234 * entry has the necessary info) 235 */ 236 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) { 237 int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1; 238 239 state->sel_clk &= ~0xf0; 240 state->sel_clk |= (head ? 0x40 : 0x10) << shift; 241 } 242 } 243 244 static void nv04_dfp_prepare(struct drm_encoder *encoder) 245 { 246 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 247 const struct drm_encoder_helper_funcs *helper = encoder->helper_private; 248 struct drm_device *dev = encoder->dev; 249 int head = nouveau_crtc(encoder->crtc)->index; 250 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; 251 uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX]; 252 uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX]; 253 254 helper->dpms(encoder, DRM_MODE_DPMS_OFF); 255 256 nv04_dfp_prepare_sel_clk(dev, nv_encoder, head); 257 258 *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3; 259 260 if (nv_two_heads(dev)) { 261 if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP) 262 *cr_lcd |= head ? 0x0 : 0x8; 263 else { 264 *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30; 265 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) 266 *cr_lcd |= 0x30; 267 if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) { 268 /* avoid being connected to both crtcs */ 269 *cr_lcd_oth &= ~0x30; 270 NVWriteVgaCrtc(dev, head ^ 1, 271 NV_CIO_CRE_LCD__INDEX, 272 *cr_lcd_oth); 273 } 274 } 275 } 276 } 277 278 279 static void nv04_dfp_mode_set(struct drm_encoder *encoder, 280 struct drm_display_mode *mode, 281 struct drm_display_mode *adjusted_mode) 282 { 283 struct drm_device *dev = encoder->dev; 284 struct nvif_object *device = &nouveau_drm(dev)->device.object; 285 struct nouveau_drm *drm = nouveau_drm(dev); 286 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 287 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; 288 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index]; 289 struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc); 290 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 291 struct drm_display_mode *output_mode = &nv_encoder->mode; 292 struct drm_connector *connector = &nv_connector->base; 293 uint32_t mode_ratio, panel_ratio; 294 295 NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index); 296 drm_mode_debug_printmodeline(output_mode); 297 298 /* Initialize the FP registers in this CRTC. */ 299 regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; 300 regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; 301 if (!nv_gf4_disp_arch(dev) || 302 (output_mode->hsync_start - output_mode->hdisplay) >= 303 drm->vbios.digital_min_front_porch) 304 regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay; 305 else 306 regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1; 307 regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; 308 regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; 309 regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew; 310 regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1; 311 312 regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; 313 regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; 314 regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1; 315 regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; 316 regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; 317 regp->fp_vert_regs[FP_VALID_START] = 0; 318 regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1; 319 320 /* bit26: a bit seen on some g7x, no as yet discernable purpose */ 321 regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | 322 (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG)); 323 /* Deal with vsync/hsync polarity */ 324 /* LVDS screens do set this, but modes with +ve syncs are very rare */ 325 if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) 326 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; 327 if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) 328 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; 329 /* panel scaling first, as native would get set otherwise */ 330 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || 331 nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */ 332 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER; 333 else if (adjusted_mode->hdisplay == output_mode->hdisplay && 334 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */ 335 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE; 336 else /* gpu needs to scale */ 337 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE; 338 if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT) 339 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; 340 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && 341 output_mode->clock > 165000) 342 regp->fp_control |= (2 << 24); 343 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { 344 bool duallink = false, dummy; 345 if (nv_connector->edid && 346 nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 347 duallink = (((u8 *)nv_connector->edid)[121] == 2); 348 } else { 349 nouveau_bios_parse_lvds_table(dev, output_mode->clock, 350 &duallink, &dummy); 351 } 352 353 if (duallink) 354 regp->fp_control |= (8 << 28); 355 } else 356 if (output_mode->clock > 165000) 357 regp->fp_control |= (8 << 28); 358 359 regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | 360 NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | 361 NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | 362 NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | 363 NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | 364 NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | 365 NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; 366 367 /* We want automatic scaling */ 368 regp->fp_debug_1 = 0; 369 /* This can override HTOTAL and VTOTAL */ 370 regp->fp_debug_2 = 0; 371 372 /* Use 20.12 fixed point format to avoid floats */ 373 mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay; 374 panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay; 375 /* if ratios are equal, SCALE_ASPECT will automatically (and correctly) 376 * get treated the same as SCALE_FULLSCREEN */ 377 if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT && 378 mode_ratio != panel_ratio) { 379 uint32_t diff, scale; 380 bool divide_by_2 = nv_gf4_disp_arch(dev); 381 382 if (mode_ratio < panel_ratio) { 383 /* vertical needs to expand to glass size (automatic) 384 * horizontal needs to be scaled at vertical scale factor 385 * to maintain aspect */ 386 387 scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay; 388 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | 389 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); 390 391 /* restrict area of screen used, horizontally */ 392 diff = output_mode->hdisplay - 393 output_mode->vdisplay * mode_ratio / (1 << 12); 394 regp->fp_horiz_regs[FP_VALID_START] += diff / 2; 395 regp->fp_horiz_regs[FP_VALID_END] -= diff / 2; 396 } 397 398 if (mode_ratio > panel_ratio) { 399 /* horizontal needs to expand to glass size (automatic) 400 * vertical needs to be scaled at horizontal scale factor 401 * to maintain aspect */ 402 403 scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay; 404 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | 405 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE); 406 407 /* restrict area of screen used, vertically */ 408 diff = output_mode->vdisplay - 409 (1 << 12) * output_mode->hdisplay / mode_ratio; 410 regp->fp_vert_regs[FP_VALID_START] += diff / 2; 411 regp->fp_vert_regs[FP_VALID_END] -= diff / 2; 412 } 413 } 414 415 /* Output property. */ 416 if ((nv_connector->dithering_mode == DITHERING_MODE_ON) || 417 (nv_connector->dithering_mode == DITHERING_MODE_AUTO && 418 encoder->crtc->primary->fb->depth > connector->display_info.bpc * 3)) { 419 if (drm->device.info.chipset == 0x11) 420 regp->dither = savep->dither | 0x00010000; 421 else { 422 int i; 423 regp->dither = savep->dither | 0x00000001; 424 for (i = 0; i < 3; i++) { 425 regp->dither_regs[i] = 0xe4e4e4e4; 426 regp->dither_regs[i + 3] = 0x44444444; 427 } 428 } 429 } else { 430 if (drm->device.info.chipset != 0x11) { 431 /* reset them */ 432 int i; 433 for (i = 0; i < 3; i++) { 434 regp->dither_regs[i] = savep->dither_regs[i]; 435 regp->dither_regs[i + 3] = savep->dither_regs[i + 3]; 436 } 437 } 438 regp->dither = savep->dither; 439 } 440 441 regp->fp_margin_color = 0; 442 } 443 444 static void nv04_dfp_commit(struct drm_encoder *encoder) 445 { 446 struct drm_device *dev = encoder->dev; 447 struct nouveau_drm *drm = nouveau_drm(dev); 448 const struct drm_encoder_helper_funcs *helper = encoder->helper_private; 449 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); 450 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 451 struct dcb_output *dcbe = nv_encoder->dcb; 452 int head = nouveau_crtc(encoder->crtc)->index; 453 struct drm_encoder *slave_encoder; 454 455 if (dcbe->type == DCB_OUTPUT_TMDS) 456 run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock); 457 else if (dcbe->type == DCB_OUTPUT_LVDS) 458 call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock); 459 460 /* update fp_control state for any changes made by scripts, 461 * so correct value is written at DPMS on */ 462 nv04_display(dev)->mode_reg.crtc_reg[head].fp_control = 463 NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); 464 465 /* This could use refinement for flatpanels, but it should work this way */ 466 if (drm->device.info.chipset < 0x44) 467 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); 468 else 469 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); 470 471 /* Init external transmitters */ 472 slave_encoder = get_tmds_slave(encoder); 473 if (slave_encoder) 474 get_slave_funcs(slave_encoder)->mode_set( 475 slave_encoder, &nv_encoder->mode, &nv_encoder->mode); 476 477 helper->dpms(encoder, DRM_MODE_DPMS_ON); 478 479 NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n", 480 nouveau_encoder_connector_get(nv_encoder)->base.name, 481 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); 482 } 483 484 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode) 485 { 486 #ifdef __powerpc__ 487 struct drm_device *dev = encoder->dev; 488 struct nvif_device *device = &nouveau_drm(dev)->device; 489 490 /* BIOS scripts usually take care of the backlight, thanks 491 * Apple for your consistency. 492 */ 493 if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 || 494 dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) { 495 if (mode == DRM_MODE_DPMS_ON) { 496 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31); 497 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1); 498 } else { 499 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0); 500 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0); 501 } 502 } 503 #endif 504 } 505 506 static inline bool is_powersaving_dpms(int mode) 507 { 508 return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED; 509 } 510 511 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode) 512 { 513 struct drm_device *dev = encoder->dev; 514 struct drm_crtc *crtc = encoder->crtc; 515 struct nouveau_drm *drm = nouveau_drm(dev); 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms); 518 519 if (nv_encoder->last_dpms == mode) 520 return; 521 nv_encoder->last_dpms = mode; 522 523 NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n", 524 mode, nv_encoder->dcb->index); 525 526 if (was_powersaving && is_powersaving_dpms(mode)) 527 return; 528 529 if (nv_encoder->dcb->lvdsconf.use_power_scripts) { 530 /* when removing an output, crtc may not be set, but PANEL_OFF 531 * must still be run 532 */ 533 int head = crtc ? nouveau_crtc(crtc)->index : 534 nv04_dfp_get_bound_head(dev, nv_encoder->dcb); 535 536 if (mode == DRM_MODE_DPMS_ON) { 537 call_lvds_script(dev, nv_encoder->dcb, head, 538 LVDS_PANEL_ON, nv_encoder->mode.clock); 539 } else 540 /* pxclk of 0 is fine for PANEL_OFF, and for a 541 * disconnected LVDS encoder there is no native_mode 542 */ 543 call_lvds_script(dev, nv_encoder->dcb, head, 544 LVDS_PANEL_OFF, 0); 545 } 546 547 nv04_dfp_update_backlight(encoder, mode); 548 nv04_dfp_update_fp_control(encoder, mode); 549 550 if (mode == DRM_MODE_DPMS_ON) 551 nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index); 552 else { 553 nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); 554 nv04_display(dev)->mode_reg.sel_clk &= ~0xf0; 555 } 556 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk); 557 } 558 559 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode) 560 { 561 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 562 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 563 564 if (nv_encoder->last_dpms == mode) 565 return; 566 nv_encoder->last_dpms = mode; 567 568 NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n", 569 mode, nv_encoder->dcb->index); 570 571 nv04_dfp_update_backlight(encoder, mode); 572 nv04_dfp_update_fp_control(encoder, mode); 573 } 574 575 static void nv04_dfp_save(struct drm_encoder *encoder) 576 { 577 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 578 struct drm_device *dev = encoder->dev; 579 580 if (nv_two_heads(dev)) 581 nv_encoder->restore.head = 582 nv04_dfp_get_bound_head(dev, nv_encoder->dcb); 583 } 584 585 static void nv04_dfp_restore(struct drm_encoder *encoder) 586 { 587 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 588 struct drm_device *dev = encoder->dev; 589 int head = nv_encoder->restore.head; 590 591 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { 592 struct nouveau_connector *connector = 593 nouveau_encoder_connector_get(nv_encoder); 594 595 if (connector && connector->native_mode) 596 call_lvds_script(dev, nv_encoder->dcb, head, 597 LVDS_PANEL_ON, 598 connector->native_mode->clock); 599 600 } else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) { 601 int clock = nouveau_hw_pllvals_to_clk 602 (&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals); 603 604 run_tmds_table(dev, nv_encoder->dcb, head, clock); 605 } 606 607 nv_encoder->last_dpms = NV_DPMS_CLEARED; 608 } 609 610 static void nv04_dfp_destroy(struct drm_encoder *encoder) 611 { 612 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 613 614 if (get_slave_funcs(encoder)) 615 get_slave_funcs(encoder)->destroy(encoder); 616 617 drm_encoder_cleanup(encoder); 618 kfree(nv_encoder); 619 } 620 621 static void nv04_tmds_slave_init(struct drm_encoder *encoder) 622 { 623 struct drm_device *dev = encoder->dev; 624 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; 625 struct nouveau_drm *drm = nouveau_drm(dev); 626 struct nvkm_i2c *i2c = nvxx_i2c(&drm->device); 627 struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI); 628 struct nvkm_i2c_bus_probe info[] = { 629 { 630 { 631 .type = "sil164", 632 .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38), 633 .platform_data = &(struct sil164_encoder_params) { 634 SIL164_INPUT_EDGE_RISING 635 } 636 }, 0 637 }, 638 { } 639 }; 640 int type; 641 642 if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder)) 643 return; 644 645 type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL); 646 if (type < 0) 647 return; 648 649 drm_i2c_encoder_init(dev, to_encoder_slave(encoder), 650 &bus->i2c, &info[type].dev); 651 } 652 653 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = { 654 .dpms = nv04_lvds_dpms, 655 .save = nv04_dfp_save, 656 .restore = nv04_dfp_restore, 657 .mode_fixup = nv04_dfp_mode_fixup, 658 .prepare = nv04_dfp_prepare, 659 .commit = nv04_dfp_commit, 660 .mode_set = nv04_dfp_mode_set, 661 .detect = NULL, 662 }; 663 664 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = { 665 .dpms = nv04_tmds_dpms, 666 .save = nv04_dfp_save, 667 .restore = nv04_dfp_restore, 668 .mode_fixup = nv04_dfp_mode_fixup, 669 .prepare = nv04_dfp_prepare, 670 .commit = nv04_dfp_commit, 671 .mode_set = nv04_dfp_mode_set, 672 .detect = NULL, 673 }; 674 675 static const struct drm_encoder_funcs nv04_dfp_funcs = { 676 .destroy = nv04_dfp_destroy, 677 }; 678 679 int 680 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry) 681 { 682 const struct drm_encoder_helper_funcs *helper; 683 struct nouveau_encoder *nv_encoder = NULL; 684 struct drm_encoder *encoder; 685 int type; 686 687 switch (entry->type) { 688 case DCB_OUTPUT_TMDS: 689 type = DRM_MODE_ENCODER_TMDS; 690 helper = &nv04_tmds_helper_funcs; 691 break; 692 case DCB_OUTPUT_LVDS: 693 type = DRM_MODE_ENCODER_LVDS; 694 helper = &nv04_lvds_helper_funcs; 695 break; 696 default: 697 return -EINVAL; 698 } 699 700 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); 701 if (!nv_encoder) 702 return -ENOMEM; 703 704 encoder = to_drm_encoder(nv_encoder); 705 706 nv_encoder->dcb = entry; 707 nv_encoder->or = ffs(entry->or) - 1; 708 709 drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type); 710 drm_encoder_helper_add(encoder, helper); 711 712 encoder->possible_crtcs = entry->heads; 713 encoder->possible_clones = 0; 714 715 if (entry->type == DCB_OUTPUT_TMDS && 716 entry->location != DCB_LOC_ON_CHIP) 717 nv04_tmds_slave_init(encoder); 718 719 drm_mode_connector_attach_encoder(connector, encoder); 720 return 0; 721 } 722