1 /*
2  * Copyright 1993-2003 NVIDIA, Corporation
3  * Copyright 2006 Dave Airlie
4  * Copyright 2007 Maarten Maathuis
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23  * DEALINGS IN THE SOFTWARE.
24  */
25 #include <linux/pm_runtime.h>
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 #include <drm/drm_plane_helper.h>
30 
31 #include "nouveau_drv.h"
32 #include "nouveau_reg.h"
33 #include "nouveau_ttm.h"
34 #include "nouveau_bo.h"
35 #include "nouveau_gem.h"
36 #include "nouveau_encoder.h"
37 #include "nouveau_connector.h"
38 #include "nouveau_crtc.h"
39 #include "hw.h"
40 #include "nvreg.h"
41 #include "nouveau_fbcon.h"
42 #include "disp.h"
43 
44 #include <subdev/bios/pll.h>
45 #include <subdev/clk.h>
46 
47 static int
48 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
49 			struct drm_framebuffer *old_fb);
50 
51 static void
52 crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
53 {
54 	NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
55 		       crtcstate->CRTC[index]);
56 }
57 
58 static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
59 {
60 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
61 	struct drm_device *dev = crtc->dev;
62 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
63 
64 	regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
65 	if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
66 		regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
67 		regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
68 		crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
69 	}
70 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
71 }
72 
73 static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
74 {
75 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
76 	struct drm_device *dev = crtc->dev;
77 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
78 
79 	nv_crtc->sharpness = level;
80 	if (level < 0)	/* blur is in hw range 0x3f -> 0x20 */
81 		level += 0x40;
82 	regp->ramdac_634 = level;
83 	NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
84 }
85 
86 #define PLLSEL_VPLL1_MASK				\
87 	(NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL	\
88 	 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
89 #define PLLSEL_VPLL2_MASK				\
90 	(NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2		\
91 	 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
92 #define PLLSEL_TV_MASK					\
93 	(NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1		\
94 	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1		\
95 	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2	\
96 	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
97 
98 /* NV4x 0x40.. pll notes:
99  * gpu pll: 0x4000 + 0x4004
100  * ?gpu? pll: 0x4008 + 0x400c
101  * vpll1: 0x4010 + 0x4014
102  * vpll2: 0x4018 + 0x401c
103  * mpll: 0x4020 + 0x4024
104  * mpll: 0x4038 + 0x403c
105  *
106  * the first register of each pair has some unknown details:
107  * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
108  * bits 20-23: (mpll) something to do with post divider?
109  * bits 28-31: related to single stage mode? (bit 8/12)
110  */
111 
112 static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
113 {
114 	struct drm_device *dev = crtc->dev;
115 	struct nouveau_drm *drm = nouveau_drm(dev);
116 	struct nvkm_bios *bios = nvxx_bios(&drm->device);
117 	struct nvkm_clk *clk = nvxx_clk(&drm->device);
118 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
119 	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
120 	struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
121 	struct nvkm_pll_vals *pv = &regp->pllvals;
122 	struct nvbios_pll pll_lim;
123 
124 	if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
125 			    &pll_lim))
126 		return;
127 
128 	/* NM2 == 0 is used to determine single stage mode on two stage plls */
129 	pv->NM2 = 0;
130 
131 	/* for newer nv4x the blob uses only the first stage of the vpll below a
132 	 * certain clock.  for a certain nv4b this is 150MHz.  since the max
133 	 * output frequency of the first stage for this card is 300MHz, it is
134 	 * assumed the threshold is given by vco1 maxfreq/2
135 	 */
136 	/* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
137 	 * not 8, others unknown), the blob always uses both plls.  no problem
138 	 * has yet been observed in allowing the use a single stage pll on all
139 	 * nv43 however.  the behaviour of single stage use is untested on nv40
140 	 */
141 	if (drm->device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
142 		memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));
143 
144 
145 	if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
146 		return;
147 
148 	state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;
149 
150 	/* The blob uses this always, so let's do the same */
151 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
152 		state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
153 	/* again nv40 and some nv43 act more like nv3x as described above */
154 	if (drm->device.info.chipset < 0x41)
155 		state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
156 				 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
157 	state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;
158 
159 	if (pv->NM2)
160 		NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
161 			 pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
162 	else
163 		NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
164 			 pv->N1, pv->M1, pv->log2P);
165 
166 	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
167 }
168 
169 static void
170 nv_crtc_dpms(struct drm_crtc *crtc, int mode)
171 {
172 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
173 	struct drm_device *dev = crtc->dev;
174 	struct nouveau_drm *drm = nouveau_drm(dev);
175 	unsigned char seq1 = 0, crtc17 = 0;
176 	unsigned char crtc1A;
177 
178 	NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
179 							nv_crtc->index);
180 
181 	if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
182 		return;
183 
184 	nv_crtc->last_dpms = mode;
185 
186 	if (nv_two_heads(dev))
187 		NVSetOwner(dev, nv_crtc->index);
188 
189 	/* nv4ref indicates these two RPC1 bits inhibit h/v sync */
190 	crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
191 					NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
192 	switch (mode) {
193 	case DRM_MODE_DPMS_STANDBY:
194 		/* Screen: Off; HSync: Off, VSync: On -- Not Supported */
195 		seq1 = 0x20;
196 		crtc17 = 0x80;
197 		crtc1A |= 0x80;
198 		break;
199 	case DRM_MODE_DPMS_SUSPEND:
200 		/* Screen: Off; HSync: On, VSync: Off -- Not Supported */
201 		seq1 = 0x20;
202 		crtc17 = 0x80;
203 		crtc1A |= 0x40;
204 		break;
205 	case DRM_MODE_DPMS_OFF:
206 		/* Screen: Off; HSync: Off, VSync: Off */
207 		seq1 = 0x20;
208 		crtc17 = 0x00;
209 		crtc1A |= 0xC0;
210 		break;
211 	case DRM_MODE_DPMS_ON:
212 	default:
213 		/* Screen: On; HSync: On, VSync: On */
214 		seq1 = 0x00;
215 		crtc17 = 0x80;
216 		break;
217 	}
218 
219 	NVVgaSeqReset(dev, nv_crtc->index, true);
220 	/* Each head has it's own sequencer, so we can turn it off when we want */
221 	seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
222 	NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
223 	crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
224 	mdelay(10);
225 	NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
226 	NVVgaSeqReset(dev, nv_crtc->index, false);
227 
228 	NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
229 }
230 
231 static void
232 nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
233 {
234 	struct drm_device *dev = crtc->dev;
235 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
236 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
237 	struct drm_framebuffer *fb = crtc->primary->fb;
238 
239 	/* Calculate our timings */
240 	int horizDisplay	= (mode->crtc_hdisplay >> 3)		- 1;
241 	int horizStart		= (mode->crtc_hsync_start >> 3) 	+ 1;
242 	int horizEnd		= (mode->crtc_hsync_end >> 3)		+ 1;
243 	int horizTotal		= (mode->crtc_htotal >> 3)		- 5;
244 	int horizBlankStart	= (mode->crtc_hdisplay >> 3)		- 1;
245 	int horizBlankEnd	= (mode->crtc_htotal >> 3)		- 1;
246 	int vertDisplay		= mode->crtc_vdisplay			- 1;
247 	int vertStart		= mode->crtc_vsync_start 		- 1;
248 	int vertEnd		= mode->crtc_vsync_end			- 1;
249 	int vertTotal		= mode->crtc_vtotal 			- 2;
250 	int vertBlankStart	= mode->crtc_vdisplay 			- 1;
251 	int vertBlankEnd	= mode->crtc_vtotal			- 1;
252 
253 	struct drm_encoder *encoder;
254 	bool fp_output = false;
255 
256 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
257 		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
258 
259 		if (encoder->crtc == crtc &&
260 		    (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
261 		     nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
262 			fp_output = true;
263 	}
264 
265 	if (fp_output) {
266 		vertStart = vertTotal - 3;
267 		vertEnd = vertTotal - 2;
268 		vertBlankStart = vertStart;
269 		horizStart = horizTotal - 5;
270 		horizEnd = horizTotal - 2;
271 		horizBlankEnd = horizTotal + 4;
272 #if 0
273 		if (dev->overlayAdaptor && drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
274 			/* This reportedly works around some video overlay bandwidth problems */
275 			horizTotal += 2;
276 #endif
277 	}
278 
279 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
280 		vertTotal |= 1;
281 
282 #if 0
283 	ErrorF("horizDisplay: 0x%X \n", horizDisplay);
284 	ErrorF("horizStart: 0x%X \n", horizStart);
285 	ErrorF("horizEnd: 0x%X \n", horizEnd);
286 	ErrorF("horizTotal: 0x%X \n", horizTotal);
287 	ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
288 	ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
289 	ErrorF("vertDisplay: 0x%X \n", vertDisplay);
290 	ErrorF("vertStart: 0x%X \n", vertStart);
291 	ErrorF("vertEnd: 0x%X \n", vertEnd);
292 	ErrorF("vertTotal: 0x%X \n", vertTotal);
293 	ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
294 	ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
295 #endif
296 
297 	/*
298 	* compute correct Hsync & Vsync polarity
299 	*/
300 	if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
301 		&& (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {
302 
303 		regp->MiscOutReg = 0x23;
304 		if (mode->flags & DRM_MODE_FLAG_NHSYNC)
305 			regp->MiscOutReg |= 0x40;
306 		if (mode->flags & DRM_MODE_FLAG_NVSYNC)
307 			regp->MiscOutReg |= 0x80;
308 	} else {
309 		int vdisplay = mode->vdisplay;
310 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
311 			vdisplay *= 2;
312 		if (mode->vscan > 1)
313 			vdisplay *= mode->vscan;
314 		if (vdisplay < 400)
315 			regp->MiscOutReg = 0xA3;	/* +hsync -vsync */
316 		else if (vdisplay < 480)
317 			regp->MiscOutReg = 0x63;	/* -hsync +vsync */
318 		else if (vdisplay < 768)
319 			regp->MiscOutReg = 0xE3;	/* -hsync -vsync */
320 		else
321 			regp->MiscOutReg = 0x23;	/* +hsync +vsync */
322 	}
323 
324 	/*
325 	 * Time Sequencer
326 	 */
327 	regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
328 	/* 0x20 disables the sequencer */
329 	if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
330 		regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
331 	else
332 		regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
333 	regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
334 	regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
335 	regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;
336 
337 	/*
338 	 * CRTC
339 	 */
340 	regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
341 	regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
342 	regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
343 	regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
344 					  XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
345 	regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
346 	regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
347 					  XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
348 	regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
349 	regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
350 					  XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
351 					  XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
352 					  (1 << 4) |
353 					  XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
354 					  XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
355 					  XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
356 					  XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
357 	regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
358 	regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
359 					      1 << 6 |
360 					      XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
361 	regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
362 	regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
363 	regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
364 	regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
365 	regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
366 	regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
367 	regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
368 	regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
369 	regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
370 	/* framebuffer can be larger than crtc scanout area. */
371 	regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
372 	regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
373 	regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
374 	regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
375 	regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
376 	regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;
377 
378 	/*
379 	 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
380 	 */
381 
382 	/* framebuffer can be larger than crtc scanout area. */
383 	regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
384 		XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
385 	regp->CRTC[NV_CIO_CRE_42] =
386 		XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
387 	regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
388 					    MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
389 	regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
390 					   XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
391 					   XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
392 					   XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
393 					   XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
394 	regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
395 					    XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
396 					    XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
397 					    XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
398 	regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
399 					   XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
400 					   XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
401 					   XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);
402 
403 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
404 		horizTotal = (horizTotal >> 1) & ~1;
405 		regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
406 		regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
407 	} else
408 		regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff;  /* interlace off */
409 
410 	/*
411 	* Graphics Display Controller
412 	*/
413 	regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
414 	regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
415 	regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
416 	regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
417 	regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
418 	regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
419 	regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
420 	regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
421 	regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;
422 
423 	regp->Attribute[0]  = 0x00; /* standard colormap translation */
424 	regp->Attribute[1]  = 0x01;
425 	regp->Attribute[2]  = 0x02;
426 	regp->Attribute[3]  = 0x03;
427 	regp->Attribute[4]  = 0x04;
428 	regp->Attribute[5]  = 0x05;
429 	regp->Attribute[6]  = 0x06;
430 	regp->Attribute[7]  = 0x07;
431 	regp->Attribute[8]  = 0x08;
432 	regp->Attribute[9]  = 0x09;
433 	regp->Attribute[10] = 0x0A;
434 	regp->Attribute[11] = 0x0B;
435 	regp->Attribute[12] = 0x0C;
436 	regp->Attribute[13] = 0x0D;
437 	regp->Attribute[14] = 0x0E;
438 	regp->Attribute[15] = 0x0F;
439 	regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
440 	/* Non-vga */
441 	regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
442 	regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
443 	regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
444 	regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
445 }
446 
447 /**
448  * Sets up registers for the given mode/adjusted_mode pair.
449  *
450  * The clocks, CRTCs and outputs attached to this CRTC must be off.
451  *
452  * This shouldn't enable any clocks, CRTCs, or outputs, but they should
453  * be easily turned on/off after this.
454  */
455 static void
456 nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
457 {
458 	struct drm_device *dev = crtc->dev;
459 	struct nouveau_drm *drm = nouveau_drm(dev);
460 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
461 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
462 	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
463 	struct drm_encoder *encoder;
464 	bool lvds_output = false, tmds_output = false, tv_output = false,
465 		off_chip_digital = false;
466 
467 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
468 		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
469 		bool digital = false;
470 
471 		if (encoder->crtc != crtc)
472 			continue;
473 
474 		if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
475 			digital = lvds_output = true;
476 		if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
477 			tv_output = true;
478 		if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
479 			digital = tmds_output = true;
480 		if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
481 			off_chip_digital = true;
482 	}
483 
484 	/* Registers not directly related to the (s)vga mode */
485 
486 	/* What is the meaning of this register? */
487 	/* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
488 	regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);
489 
490 	regp->crtc_eng_ctrl = 0;
491 	/* Except for rare conditions I2C is enabled on the primary crtc */
492 	if (nv_crtc->index == 0)
493 		regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
494 #if 0
495 	/* Set overlay to desired crtc. */
496 	if (dev->overlayAdaptor) {
497 		NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
498 		if (pPriv->overlayCRTC == nv_crtc->index)
499 			regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
500 	}
501 #endif
502 
503 	/* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
504 	regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
505 			     NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
506 			     NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
507 	if (drm->device.info.chipset >= 0x11)
508 		regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
509 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
510 		regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;
511 
512 	/* Unblock some timings */
513 	regp->CRTC[NV_CIO_CRE_53] = 0;
514 	regp->CRTC[NV_CIO_CRE_54] = 0;
515 
516 	/* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
517 	if (lvds_output)
518 		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
519 	else if (tmds_output)
520 		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
521 	else
522 		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;
523 
524 	/* These values seem to vary */
525 	/* This register seems to be used by the bios to make certain decisions on some G70 cards? */
526 	regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];
527 
528 	nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);
529 
530 	/* probably a scratch reg, but kept for cargo-cult purposes:
531 	 * bit0: crtc0?, head A
532 	 * bit6: lvds, head A
533 	 * bit7: (only in X), head A
534 	 */
535 	if (nv_crtc->index == 0)
536 		regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;
537 
538 	/* The blob seems to take the current value from crtc 0, add 4 to that
539 	 * and reuse the old value for crtc 1 */
540 	regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
541 	if (!nv_crtc->index)
542 		regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;
543 
544 	/* the blob sometimes sets |= 0x10 (which is the same as setting |=
545 	 * 1 << 30 on 0x60.830), for no apparent reason */
546 	regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;
547 
548 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
549 		regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;
550 
551 	regp->crtc_830 = mode->crtc_vdisplay - 3;
552 	regp->crtc_834 = mode->crtc_vdisplay - 1;
553 
554 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
555 		/* This is what the blob does */
556 		regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);
557 
558 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
559 		regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);
560 
561 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
562 		regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
563 	else
564 		regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
565 
566 	/* Some misc regs */
567 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
568 		regp->CRTC[NV_CIO_CRE_85] = 0xFF;
569 		regp->CRTC[NV_CIO_CRE_86] = 0x1;
570 	}
571 
572 	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (crtc->primary->fb->depth + 1) / 8;
573 	/* Enable slaved mode (called MODE_TV in nv4ref.h) */
574 	if (lvds_output || tmds_output || tv_output)
575 		regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);
576 
577 	/* Generic PRAMDAC regs */
578 
579 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
580 		/* Only bit that bios and blob set. */
581 		regp->nv10_cursync = (1 << 25);
582 
583 	regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
584 				NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
585 				NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
586 	if (crtc->primary->fb->depth == 16)
587 		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
588 	if (drm->device.info.chipset >= 0x11)
589 		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;
590 
591 	regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
592 	regp->tv_setup = 0;
593 
594 	nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);
595 
596 	/* Some values the blob sets */
597 	regp->ramdac_8c0 = 0x100;
598 	regp->ramdac_a20 = 0x0;
599 	regp->ramdac_a24 = 0xfffff;
600 	regp->ramdac_a34 = 0x1;
601 }
602 
603 static int
604 nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
605 {
606 	struct nv04_display *disp = nv04_display(crtc->dev);
607 	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
608 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
609 	int ret;
610 
611 	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, false);
612 	if (ret == 0) {
613 		if (disp->image[nv_crtc->index])
614 			nouveau_bo_unpin(disp->image[nv_crtc->index]);
615 		nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]);
616 	}
617 
618 	return ret;
619 }
620 
621 /**
622  * Sets up registers for the given mode/adjusted_mode pair.
623  *
624  * The clocks, CRTCs and outputs attached to this CRTC must be off.
625  *
626  * This shouldn't enable any clocks, CRTCs, or outputs, but they should
627  * be easily turned on/off after this.
628  */
629 static int
630 nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
631 		 struct drm_display_mode *adjusted_mode,
632 		 int x, int y, struct drm_framebuffer *old_fb)
633 {
634 	struct drm_device *dev = crtc->dev;
635 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
636 	struct nouveau_drm *drm = nouveau_drm(dev);
637 	int ret;
638 
639 	NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
640 	drm_mode_debug_printmodeline(adjusted_mode);
641 
642 	ret = nv_crtc_swap_fbs(crtc, old_fb);
643 	if (ret)
644 		return ret;
645 
646 	/* unlock must come after turning off FP_TG_CONTROL in output_prepare */
647 	nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);
648 
649 	nv_crtc_mode_set_vga(crtc, adjusted_mode);
650 	/* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
651 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
652 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
653 	nv_crtc_mode_set_regs(crtc, adjusted_mode);
654 	nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
655 	return 0;
656 }
657 
658 static void nv_crtc_save(struct drm_crtc *crtc)
659 {
660 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
661 	struct drm_device *dev = crtc->dev;
662 	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
663 	struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
664 	struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
665 	struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];
666 
667 	if (nv_two_heads(crtc->dev))
668 		NVSetOwner(crtc->dev, nv_crtc->index);
669 
670 	nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);
671 
672 	/* init some state to saved value */
673 	state->sel_clk = saved->sel_clk & ~(0x5 << 16);
674 	crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
675 	state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
676 	crtc_state->gpio_ext = crtc_saved->gpio_ext;
677 }
678 
679 static void nv_crtc_restore(struct drm_crtc *crtc)
680 {
681 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
682 	struct drm_device *dev = crtc->dev;
683 	int head = nv_crtc->index;
684 	uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
685 
686 	if (nv_two_heads(crtc->dev))
687 		NVSetOwner(crtc->dev, head);
688 
689 	nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
690 	nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);
691 
692 	nv_crtc->last_dpms = NV_DPMS_CLEARED;
693 }
694 
695 static void nv_crtc_prepare(struct drm_crtc *crtc)
696 {
697 	struct drm_device *dev = crtc->dev;
698 	struct nouveau_drm *drm = nouveau_drm(dev);
699 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
700 	const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
701 
702 	if (nv_two_heads(dev))
703 		NVSetOwner(dev, nv_crtc->index);
704 
705 	drm_vblank_pre_modeset(dev, nv_crtc->index);
706 	funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
707 
708 	NVBlankScreen(dev, nv_crtc->index, true);
709 
710 	/* Some more preparation. */
711 	NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
712 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
713 		uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
714 		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
715 	}
716 }
717 
718 static void nv_crtc_commit(struct drm_crtc *crtc)
719 {
720 	struct drm_device *dev = crtc->dev;
721 	const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
722 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
723 
724 	nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
725 	nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);
726 
727 #ifdef __BIG_ENDIAN
728 	/* turn on LFB swapping */
729 	{
730 		uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
731 		tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
732 		NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
733 	}
734 #endif
735 
736 	funcs->dpms(crtc, DRM_MODE_DPMS_ON);
737 	drm_vblank_post_modeset(dev, nv_crtc->index);
738 }
739 
740 static void nv_crtc_destroy(struct drm_crtc *crtc)
741 {
742 	struct nv04_display *disp = nv04_display(crtc->dev);
743 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
744 
745 	if (!nv_crtc)
746 		return;
747 
748 	drm_crtc_cleanup(crtc);
749 
750 	if (disp->image[nv_crtc->index])
751 		nouveau_bo_unpin(disp->image[nv_crtc->index]);
752 	nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
753 
754 	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
755 	nouveau_bo_unpin(nv_crtc->cursor.nvbo);
756 	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
757 	kfree(nv_crtc);
758 }
759 
760 static void
761 nv_crtc_gamma_load(struct drm_crtc *crtc)
762 {
763 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
764 	struct drm_device *dev = nv_crtc->base.dev;
765 	struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
766 	int i;
767 
768 	rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
769 	for (i = 0; i < 256; i++) {
770 		rgbs[i].r = nv_crtc->lut.r[i] >> 8;
771 		rgbs[i].g = nv_crtc->lut.g[i] >> 8;
772 		rgbs[i].b = nv_crtc->lut.b[i] >> 8;
773 	}
774 
775 	nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
776 }
777 
778 static void
779 nv_crtc_disable(struct drm_crtc *crtc)
780 {
781 	struct nv04_display *disp = nv04_display(crtc->dev);
782 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
783 	if (disp->image[nv_crtc->index])
784 		nouveau_bo_unpin(disp->image[nv_crtc->index]);
785 	nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
786 }
787 
788 static void
789 nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start,
790 		  uint32_t size)
791 {
792 	int end = (start + size > 256) ? 256 : start + size, i;
793 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
794 
795 	for (i = start; i < end; i++) {
796 		nv_crtc->lut.r[i] = r[i];
797 		nv_crtc->lut.g[i] = g[i];
798 		nv_crtc->lut.b[i] = b[i];
799 	}
800 
801 	/* We need to know the depth before we upload, but it's possible to
802 	 * get called before a framebuffer is bound.  If this is the case,
803 	 * mark the lut values as dirty by setting depth==0, and it'll be
804 	 * uploaded on the first mode_set_base()
805 	 */
806 	if (!nv_crtc->base.primary->fb) {
807 		nv_crtc->lut.depth = 0;
808 		return;
809 	}
810 
811 	nv_crtc_gamma_load(crtc);
812 }
813 
814 static int
815 nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
816 			   struct drm_framebuffer *passed_fb,
817 			   int x, int y, bool atomic)
818 {
819 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
820 	struct drm_device *dev = crtc->dev;
821 	struct nouveau_drm *drm = nouveau_drm(dev);
822 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
823 	struct drm_framebuffer *drm_fb;
824 	struct nouveau_framebuffer *fb;
825 	int arb_burst, arb_lwm;
826 
827 	NV_DEBUG(drm, "index %d\n", nv_crtc->index);
828 
829 	/* no fb bound */
830 	if (!atomic && !crtc->primary->fb) {
831 		NV_DEBUG(drm, "No FB bound\n");
832 		return 0;
833 	}
834 
835 	/* If atomic, we want to switch to the fb we were passed, so
836 	 * now we update pointers to do that.
837 	 */
838 	if (atomic) {
839 		drm_fb = passed_fb;
840 		fb = nouveau_framebuffer(passed_fb);
841 	} else {
842 		drm_fb = crtc->primary->fb;
843 		fb = nouveau_framebuffer(crtc->primary->fb);
844 	}
845 
846 	nv_crtc->fb.offset = fb->nvbo->bo.offset;
847 
848 	if (nv_crtc->lut.depth != drm_fb->depth) {
849 		nv_crtc->lut.depth = drm_fb->depth;
850 		nv_crtc_gamma_load(crtc);
851 	}
852 
853 	/* Update the framebuffer format. */
854 	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
855 	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (crtc->primary->fb->depth + 1) / 8;
856 	regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
857 	if (crtc->primary->fb->depth == 16)
858 		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
859 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
860 	NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
861 		      regp->ramdac_gen_ctrl);
862 
863 	regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
864 	regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
865 		XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
866 	regp->CRTC[NV_CIO_CRE_42] =
867 		XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
868 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
869 	crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
870 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
871 
872 	/* Update the framebuffer location. */
873 	regp->fb_start = nv_crtc->fb.offset & ~3;
874 	regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->bits_per_pixel / 8);
875 	nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
876 
877 	/* Update the arbitration parameters. */
878 	nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->bits_per_pixel,
879 			 &arb_burst, &arb_lwm);
880 
881 	regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
882 	regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
883 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
884 	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);
885 
886 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN) {
887 		regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
888 		crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
889 	}
890 
891 	return 0;
892 }
893 
894 static int
895 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
896 			struct drm_framebuffer *old_fb)
897 {
898 	int ret = nv_crtc_swap_fbs(crtc, old_fb);
899 	if (ret)
900 		return ret;
901 	return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
902 }
903 
904 static int
905 nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
906 			       struct drm_framebuffer *fb,
907 			       int x, int y, enum mode_set_atomic state)
908 {
909 	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
910 	struct drm_device *dev = drm->dev;
911 
912 	if (state == ENTER_ATOMIC_MODE_SET)
913 		nouveau_fbcon_accel_save_disable(dev);
914 	else
915 		nouveau_fbcon_accel_restore(dev);
916 
917 	return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
918 }
919 
920 static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
921 			       struct nouveau_bo *dst)
922 {
923 	int width = nv_cursor_width(dev);
924 	uint32_t pixel;
925 	int i, j;
926 
927 	for (i = 0; i < width; i++) {
928 		for (j = 0; j < width; j++) {
929 			pixel = nouveau_bo_rd32(src, i*64 + j);
930 
931 			nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
932 				     | (pixel & 0xf80000) >> 9
933 				     | (pixel & 0xf800) >> 6
934 				     | (pixel & 0xf8) >> 3);
935 		}
936 	}
937 }
938 
939 static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
940 			       struct nouveau_bo *dst)
941 {
942 	uint32_t pixel;
943 	int alpha, i;
944 
945 	/* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
946 	 * cursors (though NPM in combination with fp dithering may not work on
947 	 * nv11, from "nv" driver history)
948 	 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
949 	 * blob uses, however we get given PM cursors so we use PM mode
950 	 */
951 	for (i = 0; i < 64 * 64; i++) {
952 		pixel = nouveau_bo_rd32(src, i);
953 
954 		/* hw gets unhappy if alpha <= rgb values.  for a PM image "less
955 		 * than" shouldn't happen; fix "equal to" case by adding one to
956 		 * alpha channel (slightly inaccurate, but so is attempting to
957 		 * get back to NPM images, due to limits of integer precision)
958 		 */
959 		alpha = pixel >> 24;
960 		if (alpha > 0 && alpha < 255)
961 			pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);
962 
963 #ifdef __BIG_ENDIAN
964 		{
965 			struct nouveau_drm *drm = nouveau_drm(dev);
966 
967 			if (drm->device.info.chipset == 0x11) {
968 				pixel = ((pixel & 0x000000ff) << 24) |
969 					((pixel & 0x0000ff00) << 8) |
970 					((pixel & 0x00ff0000) >> 8) |
971 					((pixel & 0xff000000) >> 24);
972 			}
973 		}
974 #endif
975 
976 		nouveau_bo_wr32(dst, i, pixel);
977 	}
978 }
979 
980 static int
981 nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
982 		     uint32_t buffer_handle, uint32_t width, uint32_t height)
983 {
984 	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
985 	struct drm_device *dev = drm->dev;
986 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
987 	struct nouveau_bo *cursor = NULL;
988 	struct drm_gem_object *gem;
989 	int ret = 0;
990 
991 	if (!buffer_handle) {
992 		nv_crtc->cursor.hide(nv_crtc, true);
993 		return 0;
994 	}
995 
996 	if (width != 64 || height != 64)
997 		return -EINVAL;
998 
999 	gem = drm_gem_object_lookup(file_priv, buffer_handle);
1000 	if (!gem)
1001 		return -ENOENT;
1002 	cursor = nouveau_gem_object(gem);
1003 
1004 	ret = nouveau_bo_map(cursor);
1005 	if (ret)
1006 		goto out;
1007 
1008 	if (drm->device.info.chipset >= 0x11)
1009 		nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1010 	else
1011 		nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1012 
1013 	nouveau_bo_unmap(cursor);
1014 	nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
1015 	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
1016 	nv_crtc->cursor.show(nv_crtc, true);
1017 out:
1018 	drm_gem_object_unreference_unlocked(gem);
1019 	return ret;
1020 }
1021 
1022 static int
1023 nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1024 {
1025 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1026 
1027 	nv_crtc->cursor.set_pos(nv_crtc, x, y);
1028 	return 0;
1029 }
1030 
1031 int
1032 nouveau_crtc_set_config(struct drm_mode_set *set)
1033 {
1034 	struct drm_device *dev;
1035 	struct nouveau_drm *drm;
1036 	int ret;
1037 	struct drm_crtc *crtc;
1038 	bool active = false;
1039 	if (!set || !set->crtc)
1040 		return -EINVAL;
1041 
1042 	dev = set->crtc->dev;
1043 
1044 	/* get a pm reference here */
1045 	ret = pm_runtime_get_sync(dev->dev);
1046 	if (ret < 0 && ret != -EACCES)
1047 		return ret;
1048 
1049 	ret = drm_crtc_helper_set_config(set);
1050 
1051 	drm = nouveau_drm(dev);
1052 
1053 	/* if we get here with no crtcs active then we can drop a reference */
1054 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1055 		if (crtc->enabled)
1056 			active = true;
1057 	}
1058 
1059 	pm_runtime_mark_last_busy(dev->dev);
1060 	/* if we have active crtcs and we don't have a power ref,
1061 	   take the current one */
1062 	if (active && !drm->have_disp_power_ref) {
1063 		drm->have_disp_power_ref = true;
1064 		return ret;
1065 	}
1066 	/* if we have no active crtcs, then drop the power ref
1067 	   we got before */
1068 	if (!active && drm->have_disp_power_ref) {
1069 		pm_runtime_put_autosuspend(dev->dev);
1070 		drm->have_disp_power_ref = false;
1071 	}
1072 	/* drop the power reference we got coming in here */
1073 	pm_runtime_put_autosuspend(dev->dev);
1074 	return ret;
1075 }
1076 
1077 static const struct drm_crtc_funcs nv04_crtc_funcs = {
1078 	.cursor_set = nv04_crtc_cursor_set,
1079 	.cursor_move = nv04_crtc_cursor_move,
1080 	.gamma_set = nv_crtc_gamma_set,
1081 	.set_config = nouveau_crtc_set_config,
1082 	.page_flip = nouveau_crtc_page_flip,
1083 	.destroy = nv_crtc_destroy,
1084 };
1085 
1086 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
1087 	.dpms = nv_crtc_dpms,
1088 	.prepare = nv_crtc_prepare,
1089 	.commit = nv_crtc_commit,
1090 	.mode_set = nv_crtc_mode_set,
1091 	.mode_set_base = nv04_crtc_mode_set_base,
1092 	.mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
1093 	.load_lut = nv_crtc_gamma_load,
1094 	.disable = nv_crtc_disable,
1095 };
1096 
1097 int
1098 nv04_crtc_create(struct drm_device *dev, int crtc_num)
1099 {
1100 	struct nouveau_crtc *nv_crtc;
1101 	int ret, i;
1102 
1103 	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
1104 	if (!nv_crtc)
1105 		return -ENOMEM;
1106 
1107 	for (i = 0; i < 256; i++) {
1108 		nv_crtc->lut.r[i] = i << 8;
1109 		nv_crtc->lut.g[i] = i << 8;
1110 		nv_crtc->lut.b[i] = i << 8;
1111 	}
1112 	nv_crtc->lut.depth = 0;
1113 
1114 	nv_crtc->index = crtc_num;
1115 	nv_crtc->last_dpms = NV_DPMS_CLEARED;
1116 
1117 	nv_crtc->save = nv_crtc_save;
1118 	nv_crtc->restore = nv_crtc_restore;
1119 
1120 	drm_crtc_init(dev, &nv_crtc->base, &nv04_crtc_funcs);
1121 	drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
1122 	drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
1123 
1124 	ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
1125 			     0, 0x0000, NULL, NULL, &nv_crtc->cursor.nvbo);
1126 	if (!ret) {
1127 		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM, false);
1128 		if (!ret) {
1129 			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
1130 			if (ret)
1131 				nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1132 		}
1133 		if (ret)
1134 			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1135 	}
1136 
1137 	nv04_cursor_init(nv_crtc);
1138 
1139 	return 0;
1140 }
1141