xref: /openbmc/linux/drivers/gpu/drm/mxsfb/lcdif_kms.c (revision 801b27e8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2022 Marek Vasut <marex@denx.de>
4  *
5  * This code is based on drivers/gpu/drm/mxsfb/mxsfb*
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/io.h>
11 #include <linux/iopoll.h>
12 #include <linux/media-bus-format.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/spinlock.h>
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_color_mgmt.h>
20 #include <drm/drm_connector.h>
21 #include <drm/drm_crtc.h>
22 #include <drm/drm_encoder.h>
23 #include <drm/drm_fb_dma_helper.h>
24 #include <drm/drm_fourcc.h>
25 #include <drm/drm_framebuffer.h>
26 #include <drm/drm_gem_atomic_helper.h>
27 #include <drm/drm_gem_dma_helper.h>
28 #include <drm/drm_plane.h>
29 #include <drm/drm_vblank.h>
30 
31 #include "lcdif_drv.h"
32 #include "lcdif_regs.h"
33 
34 struct lcdif_crtc_state {
35 	struct drm_crtc_state	base;	/* always be the first member */
36 	u32			bus_format;
37 	u32			bus_flags;
38 };
39 
40 static inline struct lcdif_crtc_state *
41 to_lcdif_crtc_state(struct drm_crtc_state *s)
42 {
43 	return container_of(s, struct lcdif_crtc_state, base);
44 }
45 
46 /* -----------------------------------------------------------------------------
47  * CRTC
48  */
49 
50 /*
51  * For conversion from YCbCr to RGB, the CSC operates as follows:
52  *
53  * |R|   |A1 A2 A3|   |Y  + D1|
54  * |G| = |B1 B2 B3| * |Cb + D2|
55  * |B|   |C1 C2 C3|   |Cr + D3|
56  *
57  * The A, B and C coefficients are expressed as Q2.8 fixed point values, and
58  * the D coefficients as Q0.8. Despite the reference manual stating the
59  * opposite, the D1, D2 and D3 offset values are added to Y, Cb and Cr, not
60  * subtracted. They must thus be programmed with negative values.
61  */
62 static const u32 lcdif_yuv2rgb_coeffs[3][2][6] = {
63 	[DRM_COLOR_YCBCR_BT601] = {
64 		[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
65 			/*
66 			 * BT.601 limited range:
67 			 *
68 			 * |R|   |1.1644  0.0000  1.5960|   |Y  - 16 |
69 			 * |G| = |1.1644 -0.3917 -0.8129| * |Cb - 128|
70 			 * |B|   |1.1644  2.0172  0.0000|   |Cr - 128|
71 			 */
72 			CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
73 			CSC0_COEF1_A3(0x199) | CSC0_COEF1_B1(0x12a),
74 			CSC0_COEF2_B2(0x79c) | CSC0_COEF2_B3(0x730),
75 			CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x204),
76 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
77 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
78 		},
79 		[DRM_COLOR_YCBCR_FULL_RANGE] = {
80 			/*
81 			 * BT.601 full range:
82 			 *
83 			 * |R|   |1.0000  0.0000  1.4020|   |Y  - 0  |
84 			 * |G| = |1.0000 -0.3441 -0.7141| * |Cb - 128|
85 			 * |B|   |1.0000  1.7720  0.0000|   |Cr - 128|
86 			 */
87 			CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
88 			CSC0_COEF1_A3(0x167) | CSC0_COEF1_B1(0x100),
89 			CSC0_COEF2_B2(0x7a8) | CSC0_COEF2_B3(0x749),
90 			CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1c6),
91 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
92 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
93 		},
94 	},
95 	[DRM_COLOR_YCBCR_BT709] = {
96 		[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
97 			/*
98 			 * Rec.709 limited range:
99 			 *
100 			 * |R|   |1.1644  0.0000  1.7927|   |Y  - 16 |
101 			 * |G| = |1.1644 -0.2132 -0.5329| * |Cb - 128|
102 			 * |B|   |1.1644  2.1124  0.0000|   |Cr - 128|
103 			 */
104 			CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
105 			CSC0_COEF1_A3(0x1cb) | CSC0_COEF1_B1(0x12a),
106 			CSC0_COEF2_B2(0x7c9) | CSC0_COEF2_B3(0x778),
107 			CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x21d),
108 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
109 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
110 		},
111 		[DRM_COLOR_YCBCR_FULL_RANGE] = {
112 			/*
113 			 * Rec.709 full range:
114 			 *
115 			 * |R|   |1.0000  0.0000  1.5748|   |Y  - 0  |
116 			 * |G| = |1.0000 -0.1873 -0.4681| * |Cb - 128|
117 			 * |B|   |1.0000  1.8556  0.0000|   |Cr - 128|
118 			 */
119 			CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
120 			CSC0_COEF1_A3(0x193) | CSC0_COEF1_B1(0x100),
121 			CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x788),
122 			CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1db),
123 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
124 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
125 		},
126 	},
127 	[DRM_COLOR_YCBCR_BT2020] = {
128 		[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
129 			/*
130 			 * BT.2020 limited range:
131 			 *
132 			 * |R|   |1.1644  0.0000  1.6787|   |Y  - 16 |
133 			 * |G| = |1.1644 -0.1874 -0.6505| * |Cb - 128|
134 			 * |B|   |1.1644  2.1418  0.0000|   |Cr - 128|
135 			 */
136 			CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
137 			CSC0_COEF1_A3(0x1ae) | CSC0_COEF1_B1(0x12a),
138 			CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x759),
139 			CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x224),
140 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
141 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
142 		},
143 		[DRM_COLOR_YCBCR_FULL_RANGE] = {
144 			/*
145 			 * BT.2020 full range:
146 			 *
147 			 * |R|   |1.0000  0.0000  1.4746|   |Y  - 0  |
148 			 * |G| = |1.0000 -0.1646 -0.5714| * |Cb - 128|
149 			 * |B|   |1.0000  1.8814  0.0000|   |Cr - 128|
150 			 */
151 			CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
152 			CSC0_COEF1_A3(0x179) | CSC0_COEF1_B1(0x100),
153 			CSC0_COEF2_B2(0x7d6) | CSC0_COEF2_B3(0x76e),
154 			CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1e2),
155 			CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
156 			CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
157 		},
158 	},
159 };
160 
161 static void lcdif_set_formats(struct lcdif_drm_private *lcdif,
162 			      struct drm_plane_state *plane_state,
163 			      const u32 bus_format)
164 {
165 	struct drm_device *drm = lcdif->drm;
166 	const u32 format = plane_state->fb->format->format;
167 	bool in_yuv = false;
168 	bool out_yuv = false;
169 
170 	switch (bus_format) {
171 	case MEDIA_BUS_FMT_RGB565_1X16:
172 		writel(DISP_PARA_LINE_PATTERN_RGB565,
173 		       lcdif->base + LCDC_V8_DISP_PARA);
174 		break;
175 	case MEDIA_BUS_FMT_RGB888_1X24:
176 		writel(DISP_PARA_LINE_PATTERN_RGB888,
177 		       lcdif->base + LCDC_V8_DISP_PARA);
178 		break;
179 	case MEDIA_BUS_FMT_UYVY8_1X16:
180 		writel(DISP_PARA_LINE_PATTERN_UYVY_H,
181 		       lcdif->base + LCDC_V8_DISP_PARA);
182 		out_yuv = true;
183 		break;
184 	default:
185 		dev_err(drm->dev, "Unknown media bus format 0x%x\n", bus_format);
186 		break;
187 	}
188 
189 	switch (format) {
190 	/* RGB Formats */
191 	case DRM_FORMAT_RGB565:
192 		writel(CTRLDESCL0_5_BPP_16_RGB565,
193 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
194 		break;
195 	case DRM_FORMAT_RGB888:
196 		writel(CTRLDESCL0_5_BPP_24_RGB888,
197 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
198 		break;
199 	case DRM_FORMAT_XRGB1555:
200 		writel(CTRLDESCL0_5_BPP_16_ARGB1555,
201 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
202 		break;
203 	case DRM_FORMAT_XRGB4444:
204 		writel(CTRLDESCL0_5_BPP_16_ARGB4444,
205 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
206 		break;
207 	case DRM_FORMAT_XBGR8888:
208 		writel(CTRLDESCL0_5_BPP_32_ABGR8888,
209 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
210 		break;
211 	case DRM_FORMAT_XRGB8888:
212 		writel(CTRLDESCL0_5_BPP_32_ARGB8888,
213 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
214 		break;
215 
216 	/* YUV Formats */
217 	case DRM_FORMAT_YUYV:
218 		writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_VY2UY1,
219 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
220 		in_yuv = true;
221 		break;
222 	case DRM_FORMAT_YVYU:
223 		writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_UY2VY1,
224 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
225 		in_yuv = true;
226 		break;
227 	case DRM_FORMAT_UYVY:
228 		writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2VY1U,
229 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
230 		in_yuv = true;
231 		break;
232 	case DRM_FORMAT_VYUY:
233 		writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2UY1V,
234 		       lcdif->base + LCDC_V8_CTRLDESCL0_5);
235 		in_yuv = true;
236 		break;
237 
238 	default:
239 		dev_err(drm->dev, "Unknown pixel format 0x%x\n", format);
240 		break;
241 	}
242 
243 	/*
244 	 * The CSC differentiates between "YCbCr" and "YUV", but the reference
245 	 * manual doesn't detail how they differ. Experiments showed that the
246 	 * luminance value is unaffected, only the calculations involving chroma
247 	 * values differ. The YCbCr mode behaves as expected, with chroma values
248 	 * being offset by 128. The YUV mode isn't fully understood.
249 	 */
250 	if (!in_yuv && out_yuv) {
251 		/* RGB -> YCbCr */
252 		writel(CSC0_CTRL_CSC_MODE_RGB2YCbCr,
253 		       lcdif->base + LCDC_V8_CSC0_CTRL);
254 
255 		/*
256 		 * CSC: BT.601 Limited Range RGB to YCbCr coefficients.
257 		 *
258 		 * |Y |   | 0.2568  0.5041  0.0979|   |R|   |16 |
259 		 * |Cb| = |-0.1482 -0.2910  0.4392| * |G| + |128|
260 		 * |Cr|   | 0.4392  0.4392 -0.3678|   |B|   |128|
261 		 */
262 		writel(CSC0_COEF0_A2(0x081) | CSC0_COEF0_A1(0x041),
263 		       lcdif->base + LCDC_V8_CSC0_COEF0);
264 		writel(CSC0_COEF1_B1(0x7db) | CSC0_COEF1_A3(0x019),
265 		       lcdif->base + LCDC_V8_CSC0_COEF1);
266 		writel(CSC0_COEF2_B3(0x070) | CSC0_COEF2_B2(0x7b6),
267 		       lcdif->base + LCDC_V8_CSC0_COEF2);
268 		writel(CSC0_COEF3_C2(0x7a2) | CSC0_COEF3_C1(0x070),
269 		       lcdif->base + LCDC_V8_CSC0_COEF3);
270 		writel(CSC0_COEF4_D1(0x010) | CSC0_COEF4_C3(0x7ee),
271 		       lcdif->base + LCDC_V8_CSC0_COEF4);
272 		writel(CSC0_COEF5_D3(0x080) | CSC0_COEF5_D2(0x080),
273 		       lcdif->base + LCDC_V8_CSC0_COEF5);
274 	} else if (in_yuv && !out_yuv) {
275 		/* YCbCr -> RGB */
276 		const u32 *coeffs =
277 			lcdif_yuv2rgb_coeffs[plane_state->color_encoding]
278 					    [plane_state->color_range];
279 
280 		writel(CSC0_CTRL_CSC_MODE_YCbCr2RGB,
281 		       lcdif->base + LCDC_V8_CSC0_CTRL);
282 
283 		writel(coeffs[0], lcdif->base + LCDC_V8_CSC0_COEF0);
284 		writel(coeffs[1], lcdif->base + LCDC_V8_CSC0_COEF1);
285 		writel(coeffs[2], lcdif->base + LCDC_V8_CSC0_COEF2);
286 		writel(coeffs[3], lcdif->base + LCDC_V8_CSC0_COEF3);
287 		writel(coeffs[4], lcdif->base + LCDC_V8_CSC0_COEF4);
288 		writel(coeffs[5], lcdif->base + LCDC_V8_CSC0_COEF5);
289 	} else {
290 		/* RGB -> RGB, YCbCr -> YCbCr: bypass colorspace converter. */
291 		writel(CSC0_CTRL_BYPASS, lcdif->base + LCDC_V8_CSC0_CTRL);
292 	}
293 }
294 
295 static void lcdif_set_mode(struct lcdif_drm_private *lcdif, u32 bus_flags)
296 {
297 	struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
298 	u32 ctrl = 0;
299 
300 	if (m->flags & DRM_MODE_FLAG_NHSYNC)
301 		ctrl |= CTRL_INV_HS;
302 	if (m->flags & DRM_MODE_FLAG_NVSYNC)
303 		ctrl |= CTRL_INV_VS;
304 	if (bus_flags & DRM_BUS_FLAG_DE_LOW)
305 		ctrl |= CTRL_INV_DE;
306 	if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
307 		ctrl |= CTRL_INV_PXCK;
308 
309 	writel(ctrl, lcdif->base + LCDC_V8_CTRL);
310 
311 	writel(DISP_SIZE_DELTA_Y(m->vdisplay) |
312 	       DISP_SIZE_DELTA_X(m->hdisplay),
313 	       lcdif->base + LCDC_V8_DISP_SIZE);
314 
315 	writel(HSYN_PARA_BP_H(m->htotal - m->hsync_end) |
316 	       HSYN_PARA_FP_H(m->hsync_start - m->hdisplay),
317 	       lcdif->base + LCDC_V8_HSYN_PARA);
318 
319 	writel(VSYN_PARA_BP_V(m->vtotal - m->vsync_end) |
320 	       VSYN_PARA_FP_V(m->vsync_start - m->vdisplay),
321 	       lcdif->base + LCDC_V8_VSYN_PARA);
322 
323 	writel(VSYN_HSYN_WIDTH_PW_V(m->vsync_end - m->vsync_start) |
324 	       VSYN_HSYN_WIDTH_PW_H(m->hsync_end - m->hsync_start),
325 	       lcdif->base + LCDC_V8_VSYN_HSYN_WIDTH);
326 
327 	writel(CTRLDESCL0_1_HEIGHT(m->vdisplay) |
328 	       CTRLDESCL0_1_WIDTH(m->hdisplay),
329 	       lcdif->base + LCDC_V8_CTRLDESCL0_1);
330 
331 	/*
332 	 * Undocumented P_SIZE and T_SIZE register but those written in the
333 	 * downstream kernel those registers control the AXI burst size. As of
334 	 * now there are two known values:
335 	 *  1 - 128Byte
336 	 *  2 - 256Byte
337 	 * Downstream set it to 256B burst size to improve the memory
338 	 * efficiency so set it here too.
339 	 */
340 	ctrl = CTRLDESCL0_3_P_SIZE(2) | CTRLDESCL0_3_T_SIZE(2) |
341 	       CTRLDESCL0_3_PITCH(lcdif->crtc.primary->state->fb->pitches[0]);
342 	writel(ctrl, lcdif->base + LCDC_V8_CTRLDESCL0_3);
343 }
344 
345 static void lcdif_enable_controller(struct lcdif_drm_private *lcdif)
346 {
347 	u32 reg;
348 
349 	/* Set FIFO Panic watermarks, low 1/3, high 2/3 . */
350 	writel(FIELD_PREP(PANIC0_THRES_LOW_MASK, 1 * PANIC0_THRES_MAX / 3) |
351 	       FIELD_PREP(PANIC0_THRES_HIGH_MASK, 2 * PANIC0_THRES_MAX / 3),
352 	       lcdif->base + LCDC_V8_PANIC0_THRES);
353 
354 	/*
355 	 * Enable FIFO Panic, this does not generate interrupt, but
356 	 * boosts NoC priority based on FIFO Panic watermarks.
357 	 */
358 	writel(INT_ENABLE_D1_PLANE_PANIC_EN,
359 	       lcdif->base + LCDC_V8_INT_ENABLE_D1);
360 
361 	reg = readl(lcdif->base + LCDC_V8_DISP_PARA);
362 	reg |= DISP_PARA_DISP_ON;
363 	writel(reg, lcdif->base + LCDC_V8_DISP_PARA);
364 
365 	reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
366 	reg |= CTRLDESCL0_5_EN;
367 	writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
368 }
369 
370 static void lcdif_disable_controller(struct lcdif_drm_private *lcdif)
371 {
372 	u32 reg;
373 	int ret;
374 
375 	reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
376 	reg &= ~CTRLDESCL0_5_EN;
377 	writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
378 
379 	ret = readl_poll_timeout(lcdif->base + LCDC_V8_CTRLDESCL0_5,
380 				 reg, !(reg & CTRLDESCL0_5_EN),
381 				 0, 36000);	/* Wait ~2 frame times max */
382 	if (ret)
383 		drm_err(lcdif->drm, "Failed to disable controller!\n");
384 
385 	reg = readl(lcdif->base + LCDC_V8_DISP_PARA);
386 	reg &= ~DISP_PARA_DISP_ON;
387 	writel(reg, lcdif->base + LCDC_V8_DISP_PARA);
388 
389 	/* Disable FIFO Panic NoC priority booster. */
390 	writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D1);
391 }
392 
393 static void lcdif_reset_block(struct lcdif_drm_private *lcdif)
394 {
395 	writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_SET);
396 	readl(lcdif->base + LCDC_V8_CTRL);
397 	writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_CLR);
398 	readl(lcdif->base + LCDC_V8_CTRL);
399 }
400 
401 static void lcdif_crtc_mode_set_nofb(struct drm_crtc_state *crtc_state,
402 				     struct drm_plane_state *plane_state)
403 {
404 	struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state);
405 	struct drm_device *drm = crtc_state->crtc->dev;
406 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm);
407 	struct drm_display_mode *m = &crtc_state->adjusted_mode;
408 
409 	DRM_DEV_DEBUG_DRIVER(drm->dev, "Pixel clock: %dkHz (actual: %dkHz)\n",
410 			     m->crtc_clock,
411 			     (int)(clk_get_rate(lcdif->clk) / 1000));
412 	DRM_DEV_DEBUG_DRIVER(drm->dev, "Bridge bus_flags: 0x%08X\n",
413 			     lcdif_crtc_state->bus_flags);
414 	DRM_DEV_DEBUG_DRIVER(drm->dev, "Mode flags: 0x%08X\n", m->flags);
415 
416 	/* Mandatory eLCDIF reset as per the Reference Manual */
417 	lcdif_reset_block(lcdif);
418 
419 	lcdif_set_formats(lcdif, plane_state, lcdif_crtc_state->bus_format);
420 
421 	lcdif_set_mode(lcdif, lcdif_crtc_state->bus_flags);
422 }
423 
424 static int lcdif_crtc_atomic_check(struct drm_crtc *crtc,
425 				   struct drm_atomic_state *state)
426 {
427 	struct drm_device *drm = crtc->dev;
428 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
429 									  crtc);
430 	struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state);
431 	bool has_primary = crtc_state->plane_mask &
432 			   drm_plane_mask(crtc->primary);
433 	struct drm_connector_state *connector_state;
434 	struct drm_connector *connector;
435 	struct drm_encoder *encoder;
436 	struct drm_bridge_state *bridge_state;
437 	struct drm_bridge *bridge;
438 	u32 bus_format, bus_flags;
439 	bool format_set = false, flags_set = false;
440 	int ret, i;
441 
442 	/* The primary plane has to be enabled when the CRTC is active. */
443 	if (crtc_state->active && !has_primary)
444 		return -EINVAL;
445 
446 	ret = drm_atomic_add_affected_planes(state, crtc);
447 	if (ret)
448 		return ret;
449 
450 	/* Try to find consistent bus format and flags across first bridges. */
451 	for_each_new_connector_in_state(state, connector, connector_state, i) {
452 		if (!connector_state->crtc)
453 			continue;
454 
455 		encoder = connector_state->best_encoder;
456 
457 		bridge = drm_bridge_chain_get_first_bridge(encoder);
458 		if (!bridge)
459 			continue;
460 
461 		bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
462 		if (!bridge_state)
463 			bus_format = MEDIA_BUS_FMT_FIXED;
464 		else
465 			bus_format = bridge_state->input_bus_cfg.format;
466 
467 		if (bus_format == MEDIA_BUS_FMT_FIXED) {
468 			dev_warn(drm->dev,
469 				 "[ENCODER:%d:%s]'s bridge does not provide bus format, assuming MEDIA_BUS_FMT_RGB888_1X24.\n"
470 				 "Please fix bridge driver by handling atomic_get_input_bus_fmts.\n",
471 				 encoder->base.id, encoder->name);
472 			bus_format = MEDIA_BUS_FMT_RGB888_1X24;
473 		} else if (!bus_format) {
474 			/* If all else fails, default to RGB888_1X24 */
475 			bus_format = MEDIA_BUS_FMT_RGB888_1X24;
476 		}
477 
478 		if (!format_set) {
479 			lcdif_crtc_state->bus_format = bus_format;
480 			format_set = true;
481 		} else if (lcdif_crtc_state->bus_format != bus_format) {
482 			DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus format\n");
483 			return -EINVAL;
484 		}
485 
486 		if (bridge->timings)
487 			bus_flags = bridge->timings->input_bus_flags;
488 		else if (bridge_state)
489 			bus_flags = bridge_state->input_bus_cfg.flags;
490 		else
491 			bus_flags = 0;
492 
493 		if (!flags_set) {
494 			lcdif_crtc_state->bus_flags = bus_flags;
495 			flags_set = true;
496 		} else if (lcdif_crtc_state->bus_flags != bus_flags) {
497 			DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus flags\n");
498 			return -EINVAL;
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 static void lcdif_crtc_atomic_flush(struct drm_crtc *crtc,
506 				    struct drm_atomic_state *state)
507 {
508 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
509 	struct drm_pending_vblank_event *event;
510 	u32 reg;
511 
512 	reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
513 	reg |= CTRLDESCL0_5_SHADOW_LOAD_EN;
514 	writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
515 
516 	event = crtc->state->event;
517 	crtc->state->event = NULL;
518 
519 	if (!event)
520 		return;
521 
522 	spin_lock_irq(&crtc->dev->event_lock);
523 	if (drm_crtc_vblank_get(crtc) == 0)
524 		drm_crtc_arm_vblank_event(crtc, event);
525 	else
526 		drm_crtc_send_vblank_event(crtc, event);
527 	spin_unlock_irq(&crtc->dev->event_lock);
528 }
529 
530 static void lcdif_crtc_atomic_enable(struct drm_crtc *crtc,
531 				     struct drm_atomic_state *state)
532 {
533 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
534 	struct drm_crtc_state *new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
535 	struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
536 									    crtc->primary);
537 	struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
538 	struct drm_device *drm = lcdif->drm;
539 	dma_addr_t paddr;
540 
541 	clk_set_rate(lcdif->clk, m->crtc_clock * 1000);
542 
543 	pm_runtime_get_sync(drm->dev);
544 
545 	lcdif_crtc_mode_set_nofb(new_cstate, new_pstate);
546 
547 	/* Write cur_buf as well to avoid an initial corrupt frame */
548 	paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0);
549 	if (paddr) {
550 		writel(lower_32_bits(paddr),
551 		       lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
552 		writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
553 		       lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
554 	}
555 	lcdif_enable_controller(lcdif);
556 
557 	drm_crtc_vblank_on(crtc);
558 }
559 
560 static void lcdif_crtc_atomic_disable(struct drm_crtc *crtc,
561 				      struct drm_atomic_state *state)
562 {
563 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
564 	struct drm_device *drm = lcdif->drm;
565 	struct drm_pending_vblank_event *event;
566 
567 	drm_crtc_vblank_off(crtc);
568 
569 	lcdif_disable_controller(lcdif);
570 
571 	spin_lock_irq(&drm->event_lock);
572 	event = crtc->state->event;
573 	if (event) {
574 		crtc->state->event = NULL;
575 		drm_crtc_send_vblank_event(crtc, event);
576 	}
577 	spin_unlock_irq(&drm->event_lock);
578 
579 	pm_runtime_put_sync(drm->dev);
580 }
581 
582 static void lcdif_crtc_atomic_destroy_state(struct drm_crtc *crtc,
583 					    struct drm_crtc_state *state)
584 {
585 	__drm_atomic_helper_crtc_destroy_state(state);
586 	kfree(to_lcdif_crtc_state(state));
587 }
588 
589 static void lcdif_crtc_reset(struct drm_crtc *crtc)
590 {
591 	struct lcdif_crtc_state *state;
592 
593 	if (crtc->state)
594 		lcdif_crtc_atomic_destroy_state(crtc, crtc->state);
595 
596 	crtc->state = NULL;
597 
598 	state = kzalloc(sizeof(*state), GFP_KERNEL);
599 	if (state)
600 		__drm_atomic_helper_crtc_reset(crtc, &state->base);
601 }
602 
603 static struct drm_crtc_state *
604 lcdif_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
605 {
606 	struct lcdif_crtc_state *old = to_lcdif_crtc_state(crtc->state);
607 	struct lcdif_crtc_state *new;
608 
609 	if (WARN_ON(!crtc->state))
610 		return NULL;
611 
612 	new = kzalloc(sizeof(*new), GFP_KERNEL);
613 	if (!new)
614 		return NULL;
615 
616 	__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
617 
618 	new->bus_format = old->bus_format;
619 	new->bus_flags = old->bus_flags;
620 
621 	return &new->base;
622 }
623 
624 static int lcdif_crtc_enable_vblank(struct drm_crtc *crtc)
625 {
626 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
627 
628 	/* Clear and enable VBLANK IRQ */
629 	writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0);
630 	writel(INT_ENABLE_D0_VS_BLANK_EN, lcdif->base + LCDC_V8_INT_ENABLE_D0);
631 
632 	return 0;
633 }
634 
635 static void lcdif_crtc_disable_vblank(struct drm_crtc *crtc)
636 {
637 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
638 
639 	/* Disable and clear VBLANK IRQ */
640 	writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D0);
641 	writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0);
642 }
643 
644 static const struct drm_crtc_helper_funcs lcdif_crtc_helper_funcs = {
645 	.atomic_check = lcdif_crtc_atomic_check,
646 	.atomic_flush = lcdif_crtc_atomic_flush,
647 	.atomic_enable = lcdif_crtc_atomic_enable,
648 	.atomic_disable = lcdif_crtc_atomic_disable,
649 };
650 
651 static const struct drm_crtc_funcs lcdif_crtc_funcs = {
652 	.reset = lcdif_crtc_reset,
653 	.destroy = drm_crtc_cleanup,
654 	.set_config = drm_atomic_helper_set_config,
655 	.page_flip = drm_atomic_helper_page_flip,
656 	.atomic_duplicate_state = lcdif_crtc_atomic_duplicate_state,
657 	.atomic_destroy_state = lcdif_crtc_atomic_destroy_state,
658 	.enable_vblank = lcdif_crtc_enable_vblank,
659 	.disable_vblank = lcdif_crtc_disable_vblank,
660 };
661 
662 /* -----------------------------------------------------------------------------
663  * Planes
664  */
665 
666 static int lcdif_plane_atomic_check(struct drm_plane *plane,
667 				    struct drm_atomic_state *state)
668 {
669 	struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state,
670 									     plane);
671 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev);
672 	struct drm_crtc_state *crtc_state;
673 
674 	crtc_state = drm_atomic_get_new_crtc_state(state,
675 						   &lcdif->crtc);
676 
677 	return drm_atomic_helper_check_plane_state(plane_state, crtc_state,
678 						   DRM_PLANE_NO_SCALING,
679 						   DRM_PLANE_NO_SCALING,
680 						   false, true);
681 }
682 
683 static void lcdif_plane_primary_atomic_update(struct drm_plane *plane,
684 					      struct drm_atomic_state *state)
685 {
686 	struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev);
687 	struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
688 									    plane);
689 	dma_addr_t paddr;
690 
691 	paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0);
692 	if (paddr) {
693 		writel(lower_32_bits(paddr),
694 		       lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
695 		writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
696 		       lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
697 	}
698 }
699 
700 static bool lcdif_format_mod_supported(struct drm_plane *plane,
701 				       uint32_t format,
702 				       uint64_t modifier)
703 {
704 	return modifier == DRM_FORMAT_MOD_LINEAR;
705 }
706 
707 static const struct drm_plane_helper_funcs lcdif_plane_primary_helper_funcs = {
708 	.atomic_check = lcdif_plane_atomic_check,
709 	.atomic_update = lcdif_plane_primary_atomic_update,
710 };
711 
712 static const struct drm_plane_funcs lcdif_plane_funcs = {
713 	.format_mod_supported	= lcdif_format_mod_supported,
714 	.update_plane		= drm_atomic_helper_update_plane,
715 	.disable_plane		= drm_atomic_helper_disable_plane,
716 	.destroy		= drm_plane_cleanup,
717 	.reset			= drm_atomic_helper_plane_reset,
718 	.atomic_duplicate_state	= drm_atomic_helper_plane_duplicate_state,
719 	.atomic_destroy_state	= drm_atomic_helper_plane_destroy_state,
720 };
721 
722 static const u32 lcdif_primary_plane_formats[] = {
723 	/* RGB */
724 	DRM_FORMAT_RGB565,
725 	DRM_FORMAT_RGB888,
726 	DRM_FORMAT_XBGR8888,
727 	DRM_FORMAT_XRGB1555,
728 	DRM_FORMAT_XRGB4444,
729 	DRM_FORMAT_XRGB8888,
730 
731 	/* Packed YCbCr */
732 	DRM_FORMAT_YUYV,
733 	DRM_FORMAT_YVYU,
734 	DRM_FORMAT_UYVY,
735 	DRM_FORMAT_VYUY,
736 };
737 
738 static const u64 lcdif_modifiers[] = {
739 	DRM_FORMAT_MOD_LINEAR,
740 	DRM_FORMAT_MOD_INVALID
741 };
742 
743 /* -----------------------------------------------------------------------------
744  * Initialization
745  */
746 
747 int lcdif_kms_init(struct lcdif_drm_private *lcdif)
748 {
749 	const u32 supported_encodings = BIT(DRM_COLOR_YCBCR_BT601) |
750 					BIT(DRM_COLOR_YCBCR_BT709) |
751 					BIT(DRM_COLOR_YCBCR_BT2020);
752 	const u32 supported_ranges = BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
753 				     BIT(DRM_COLOR_YCBCR_FULL_RANGE);
754 	struct drm_crtc *crtc = &lcdif->crtc;
755 	int ret;
756 
757 	drm_plane_helper_add(&lcdif->planes.primary,
758 			     &lcdif_plane_primary_helper_funcs);
759 	ret = drm_universal_plane_init(lcdif->drm, &lcdif->planes.primary, 1,
760 				       &lcdif_plane_funcs,
761 				       lcdif_primary_plane_formats,
762 				       ARRAY_SIZE(lcdif_primary_plane_formats),
763 				       lcdif_modifiers, DRM_PLANE_TYPE_PRIMARY,
764 				       NULL);
765 	if (ret)
766 		return ret;
767 
768 	ret = drm_plane_create_color_properties(&lcdif->planes.primary,
769 						supported_encodings,
770 						supported_ranges,
771 						DRM_COLOR_YCBCR_BT601,
772 						DRM_COLOR_YCBCR_LIMITED_RANGE);
773 	if (ret)
774 		return ret;
775 
776 	drm_crtc_helper_add(crtc, &lcdif_crtc_helper_funcs);
777 	return drm_crtc_init_with_planes(lcdif->drm, crtc,
778 					 &lcdif->planes.primary, NULL,
779 					 &lcdif_crtc_funcs, NULL);
780 }
781