1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2022 Marek Vasut <marex@denx.de> 4 * 5 * This code is based on drivers/gpu/drm/mxsfb/mxsfb* 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/clk.h> 10 #include <linux/io.h> 11 #include <linux/iopoll.h> 12 #include <linux/media-bus-format.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/spinlock.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_bridge.h> 19 #include <drm/drm_color_mgmt.h> 20 #include <drm/drm_connector.h> 21 #include <drm/drm_crtc.h> 22 #include <drm/drm_encoder.h> 23 #include <drm/drm_fb_dma_helper.h> 24 #include <drm/drm_fourcc.h> 25 #include <drm/drm_framebuffer.h> 26 #include <drm/drm_gem_atomic_helper.h> 27 #include <drm/drm_gem_dma_helper.h> 28 #include <drm/drm_plane.h> 29 #include <drm/drm_vblank.h> 30 31 #include "lcdif_drv.h" 32 #include "lcdif_regs.h" 33 34 struct lcdif_crtc_state { 35 struct drm_crtc_state base; /* always be the first member */ 36 u32 bus_format; 37 u32 bus_flags; 38 }; 39 40 static inline struct lcdif_crtc_state * 41 to_lcdif_crtc_state(struct drm_crtc_state *s) 42 { 43 return container_of(s, struct lcdif_crtc_state, base); 44 } 45 46 /* ----------------------------------------------------------------------------- 47 * CRTC 48 */ 49 50 /* 51 * For conversion from YCbCr to RGB, the CSC operates as follows: 52 * 53 * |R| |A1 A2 A3| |Y + D1| 54 * |G| = |B1 B2 B3| * |Cb + D2| 55 * |B| |C1 C2 C3| |Cr + D3| 56 * 57 * The A, B and C coefficients are expressed as Q2.8 fixed point values, and 58 * the D coefficients as Q0.8. Despite the reference manual stating the 59 * opposite, the D1, D2 and D3 offset values are added to Y, Cb and Cr, not 60 * subtracted. They must thus be programmed with negative values. 61 */ 62 static const u32 lcdif_yuv2rgb_coeffs[3][2][6] = { 63 [DRM_COLOR_YCBCR_BT601] = { 64 [DRM_COLOR_YCBCR_LIMITED_RANGE] = { 65 /* 66 * BT.601 limited range: 67 * 68 * |R| |1.1644 0.0000 1.5960| |Y - 16 | 69 * |G| = |1.1644 -0.3917 -0.8129| * |Cb - 128| 70 * |B| |1.1644 2.0172 0.0000| |Cr - 128| 71 */ 72 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000), 73 CSC0_COEF1_A3(0x199) | CSC0_COEF1_B1(0x12a), 74 CSC0_COEF2_B2(0x79c) | CSC0_COEF2_B3(0x730), 75 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x204), 76 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0), 77 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 78 }, 79 [DRM_COLOR_YCBCR_FULL_RANGE] = { 80 /* 81 * BT.601 full range: 82 * 83 * |R| |1.0000 0.0000 1.4020| |Y - 0 | 84 * |G| = |1.0000 -0.3441 -0.7141| * |Cb - 128| 85 * |B| |1.0000 1.7720 0.0000| |Cr - 128| 86 */ 87 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000), 88 CSC0_COEF1_A3(0x167) | CSC0_COEF1_B1(0x100), 89 CSC0_COEF2_B2(0x7a8) | CSC0_COEF2_B3(0x749), 90 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1c6), 91 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000), 92 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 93 }, 94 }, 95 [DRM_COLOR_YCBCR_BT709] = { 96 [DRM_COLOR_YCBCR_LIMITED_RANGE] = { 97 /* 98 * Rec.709 limited range: 99 * 100 * |R| |1.1644 0.0000 1.7927| |Y - 16 | 101 * |G| = |1.1644 -0.2132 -0.5329| * |Cb - 128| 102 * |B| |1.1644 2.1124 0.0000| |Cr - 128| 103 */ 104 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000), 105 CSC0_COEF1_A3(0x1cb) | CSC0_COEF1_B1(0x12a), 106 CSC0_COEF2_B2(0x7c9) | CSC0_COEF2_B3(0x778), 107 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x21d), 108 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0), 109 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 110 }, 111 [DRM_COLOR_YCBCR_FULL_RANGE] = { 112 /* 113 * Rec.709 full range: 114 * 115 * |R| |1.0000 0.0000 1.5748| |Y - 0 | 116 * |G| = |1.0000 -0.1873 -0.4681| * |Cb - 128| 117 * |B| |1.0000 1.8556 0.0000| |Cr - 128| 118 */ 119 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000), 120 CSC0_COEF1_A3(0x193) | CSC0_COEF1_B1(0x100), 121 CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x788), 122 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1db), 123 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000), 124 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 125 }, 126 }, 127 [DRM_COLOR_YCBCR_BT2020] = { 128 [DRM_COLOR_YCBCR_LIMITED_RANGE] = { 129 /* 130 * BT.2020 limited range: 131 * 132 * |R| |1.1644 0.0000 1.6787| |Y - 16 | 133 * |G| = |1.1644 -0.1874 -0.6505| * |Cb - 128| 134 * |B| |1.1644 2.1418 0.0000| |Cr - 128| 135 */ 136 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000), 137 CSC0_COEF1_A3(0x1ae) | CSC0_COEF1_B1(0x12a), 138 CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x759), 139 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x224), 140 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0), 141 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 142 }, 143 [DRM_COLOR_YCBCR_FULL_RANGE] = { 144 /* 145 * BT.2020 full range: 146 * 147 * |R| |1.0000 0.0000 1.4746| |Y - 0 | 148 * |G| = |1.0000 -0.1646 -0.5714| * |Cb - 128| 149 * |B| |1.0000 1.8814 0.0000| |Cr - 128| 150 */ 151 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000), 152 CSC0_COEF1_A3(0x179) | CSC0_COEF1_B1(0x100), 153 CSC0_COEF2_B2(0x7d6) | CSC0_COEF2_B3(0x76e), 154 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1e2), 155 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000), 156 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180), 157 }, 158 }, 159 }; 160 161 static void lcdif_set_formats(struct lcdif_drm_private *lcdif, 162 struct drm_plane_state *plane_state, 163 const u32 bus_format) 164 { 165 struct drm_device *drm = lcdif->drm; 166 const u32 format = plane_state->fb->format->format; 167 bool in_yuv = false; 168 bool out_yuv = false; 169 170 switch (bus_format) { 171 case MEDIA_BUS_FMT_RGB565_1X16: 172 writel(DISP_PARA_LINE_PATTERN_RGB565, 173 lcdif->base + LCDC_V8_DISP_PARA); 174 break; 175 case MEDIA_BUS_FMT_RGB888_1X24: 176 writel(DISP_PARA_LINE_PATTERN_RGB888, 177 lcdif->base + LCDC_V8_DISP_PARA); 178 break; 179 case MEDIA_BUS_FMT_UYVY8_1X16: 180 writel(DISP_PARA_LINE_PATTERN_UYVY_H, 181 lcdif->base + LCDC_V8_DISP_PARA); 182 out_yuv = true; 183 break; 184 default: 185 dev_err(drm->dev, "Unknown media bus format 0x%x\n", bus_format); 186 break; 187 } 188 189 switch (format) { 190 /* RGB Formats */ 191 case DRM_FORMAT_RGB565: 192 writel(CTRLDESCL0_5_BPP_16_RGB565, 193 lcdif->base + LCDC_V8_CTRLDESCL0_5); 194 break; 195 case DRM_FORMAT_RGB888: 196 writel(CTRLDESCL0_5_BPP_24_RGB888, 197 lcdif->base + LCDC_V8_CTRLDESCL0_5); 198 break; 199 case DRM_FORMAT_XRGB1555: 200 writel(CTRLDESCL0_5_BPP_16_ARGB1555, 201 lcdif->base + LCDC_V8_CTRLDESCL0_5); 202 break; 203 case DRM_FORMAT_XRGB4444: 204 writel(CTRLDESCL0_5_BPP_16_ARGB4444, 205 lcdif->base + LCDC_V8_CTRLDESCL0_5); 206 break; 207 case DRM_FORMAT_XBGR8888: 208 writel(CTRLDESCL0_5_BPP_32_ABGR8888, 209 lcdif->base + LCDC_V8_CTRLDESCL0_5); 210 break; 211 case DRM_FORMAT_XRGB8888: 212 writel(CTRLDESCL0_5_BPP_32_ARGB8888, 213 lcdif->base + LCDC_V8_CTRLDESCL0_5); 214 break; 215 216 /* YUV Formats */ 217 case DRM_FORMAT_YUYV: 218 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_VY2UY1, 219 lcdif->base + LCDC_V8_CTRLDESCL0_5); 220 in_yuv = true; 221 break; 222 case DRM_FORMAT_YVYU: 223 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_UY2VY1, 224 lcdif->base + LCDC_V8_CTRLDESCL0_5); 225 in_yuv = true; 226 break; 227 case DRM_FORMAT_UYVY: 228 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2VY1U, 229 lcdif->base + LCDC_V8_CTRLDESCL0_5); 230 in_yuv = true; 231 break; 232 case DRM_FORMAT_VYUY: 233 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2UY1V, 234 lcdif->base + LCDC_V8_CTRLDESCL0_5); 235 in_yuv = true; 236 break; 237 238 default: 239 dev_err(drm->dev, "Unknown pixel format 0x%x\n", format); 240 break; 241 } 242 243 /* 244 * The CSC differentiates between "YCbCr" and "YUV", but the reference 245 * manual doesn't detail how they differ. Experiments showed that the 246 * luminance value is unaffected, only the calculations involving chroma 247 * values differ. The YCbCr mode behaves as expected, with chroma values 248 * being offset by 128. The YUV mode isn't fully understood. 249 */ 250 if (!in_yuv && out_yuv) { 251 /* RGB -> YCbCr */ 252 writel(CSC0_CTRL_CSC_MODE_RGB2YCbCr, 253 lcdif->base + LCDC_V8_CSC0_CTRL); 254 255 /* 256 * CSC: BT.601 Limited Range RGB to YCbCr coefficients. 257 * 258 * |Y | | 0.2568 0.5041 0.0979| |R| |16 | 259 * |Cb| = |-0.1482 -0.2910 0.4392| * |G| + |128| 260 * |Cr| | 0.4392 0.4392 -0.3678| |B| |128| 261 */ 262 writel(CSC0_COEF0_A2(0x081) | CSC0_COEF0_A1(0x041), 263 lcdif->base + LCDC_V8_CSC0_COEF0); 264 writel(CSC0_COEF1_B1(0x7db) | CSC0_COEF1_A3(0x019), 265 lcdif->base + LCDC_V8_CSC0_COEF1); 266 writel(CSC0_COEF2_B3(0x070) | CSC0_COEF2_B2(0x7b6), 267 lcdif->base + LCDC_V8_CSC0_COEF2); 268 writel(CSC0_COEF3_C2(0x7a2) | CSC0_COEF3_C1(0x070), 269 lcdif->base + LCDC_V8_CSC0_COEF3); 270 writel(CSC0_COEF4_D1(0x010) | CSC0_COEF4_C3(0x7ee), 271 lcdif->base + LCDC_V8_CSC0_COEF4); 272 writel(CSC0_COEF5_D3(0x080) | CSC0_COEF5_D2(0x080), 273 lcdif->base + LCDC_V8_CSC0_COEF5); 274 } else if (in_yuv && !out_yuv) { 275 /* YCbCr -> RGB */ 276 const u32 *coeffs = 277 lcdif_yuv2rgb_coeffs[plane_state->color_encoding] 278 [plane_state->color_range]; 279 280 writel(CSC0_CTRL_CSC_MODE_YCbCr2RGB, 281 lcdif->base + LCDC_V8_CSC0_CTRL); 282 283 writel(coeffs[0], lcdif->base + LCDC_V8_CSC0_COEF0); 284 writel(coeffs[1], lcdif->base + LCDC_V8_CSC0_COEF1); 285 writel(coeffs[2], lcdif->base + LCDC_V8_CSC0_COEF2); 286 writel(coeffs[3], lcdif->base + LCDC_V8_CSC0_COEF3); 287 writel(coeffs[4], lcdif->base + LCDC_V8_CSC0_COEF4); 288 writel(coeffs[5], lcdif->base + LCDC_V8_CSC0_COEF5); 289 } else { 290 /* RGB -> RGB, YCbCr -> YCbCr: bypass colorspace converter. */ 291 writel(CSC0_CTRL_BYPASS, lcdif->base + LCDC_V8_CSC0_CTRL); 292 } 293 } 294 295 static void lcdif_set_mode(struct lcdif_drm_private *lcdif, u32 bus_flags) 296 { 297 struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode; 298 u32 ctrl = 0; 299 300 if (m->flags & DRM_MODE_FLAG_NHSYNC) 301 ctrl |= CTRL_INV_HS; 302 if (m->flags & DRM_MODE_FLAG_NVSYNC) 303 ctrl |= CTRL_INV_VS; 304 if (bus_flags & DRM_BUS_FLAG_DE_LOW) 305 ctrl |= CTRL_INV_DE; 306 if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE) 307 ctrl |= CTRL_INV_PXCK; 308 309 writel(ctrl, lcdif->base + LCDC_V8_CTRL); 310 311 writel(DISP_SIZE_DELTA_Y(m->vdisplay) | 312 DISP_SIZE_DELTA_X(m->hdisplay), 313 lcdif->base + LCDC_V8_DISP_SIZE); 314 315 writel(HSYN_PARA_BP_H(m->htotal - m->hsync_end) | 316 HSYN_PARA_FP_H(m->hsync_start - m->hdisplay), 317 lcdif->base + LCDC_V8_HSYN_PARA); 318 319 writel(VSYN_PARA_BP_V(m->vtotal - m->vsync_end) | 320 VSYN_PARA_FP_V(m->vsync_start - m->vdisplay), 321 lcdif->base + LCDC_V8_VSYN_PARA); 322 323 writel(VSYN_HSYN_WIDTH_PW_V(m->vsync_end - m->vsync_start) | 324 VSYN_HSYN_WIDTH_PW_H(m->hsync_end - m->hsync_start), 325 lcdif->base + LCDC_V8_VSYN_HSYN_WIDTH); 326 327 writel(CTRLDESCL0_1_HEIGHT(m->vdisplay) | 328 CTRLDESCL0_1_WIDTH(m->hdisplay), 329 lcdif->base + LCDC_V8_CTRLDESCL0_1); 330 331 /* 332 * Undocumented P_SIZE and T_SIZE register but those written in the 333 * downstream kernel those registers control the AXI burst size. As of 334 * now there are two known values: 335 * 1 - 128Byte 336 * 2 - 256Byte 337 * Downstream set it to 256B burst size to improve the memory 338 * efficiency so set it here too. 339 */ 340 ctrl = CTRLDESCL0_3_P_SIZE(2) | CTRLDESCL0_3_T_SIZE(2) | 341 CTRLDESCL0_3_PITCH(lcdif->crtc.primary->state->fb->pitches[0]); 342 writel(ctrl, lcdif->base + LCDC_V8_CTRLDESCL0_3); 343 } 344 345 static void lcdif_enable_controller(struct lcdif_drm_private *lcdif) 346 { 347 u32 reg; 348 349 /* Set FIFO Panic watermarks, low 1/3, high 2/3 . */ 350 writel(FIELD_PREP(PANIC0_THRES_LOW_MASK, 1 * PANIC0_THRES_MAX / 3) | 351 FIELD_PREP(PANIC0_THRES_HIGH_MASK, 2 * PANIC0_THRES_MAX / 3), 352 lcdif->base + LCDC_V8_PANIC0_THRES); 353 354 /* 355 * Enable FIFO Panic, this does not generate interrupt, but 356 * boosts NoC priority based on FIFO Panic watermarks. 357 */ 358 writel(INT_ENABLE_D1_PLANE_PANIC_EN, 359 lcdif->base + LCDC_V8_INT_ENABLE_D1); 360 361 reg = readl(lcdif->base + LCDC_V8_DISP_PARA); 362 reg |= DISP_PARA_DISP_ON; 363 writel(reg, lcdif->base + LCDC_V8_DISP_PARA); 364 365 reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5); 366 reg |= CTRLDESCL0_5_EN; 367 writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5); 368 } 369 370 static void lcdif_disable_controller(struct lcdif_drm_private *lcdif) 371 { 372 u32 reg; 373 int ret; 374 375 reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5); 376 reg &= ~CTRLDESCL0_5_EN; 377 writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5); 378 379 ret = readl_poll_timeout(lcdif->base + LCDC_V8_CTRLDESCL0_5, 380 reg, !(reg & CTRLDESCL0_5_EN), 381 0, 36000); /* Wait ~2 frame times max */ 382 if (ret) 383 drm_err(lcdif->drm, "Failed to disable controller!\n"); 384 385 reg = readl(lcdif->base + LCDC_V8_DISP_PARA); 386 reg &= ~DISP_PARA_DISP_ON; 387 writel(reg, lcdif->base + LCDC_V8_DISP_PARA); 388 389 /* Disable FIFO Panic NoC priority booster. */ 390 writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D1); 391 } 392 393 static void lcdif_reset_block(struct lcdif_drm_private *lcdif) 394 { 395 writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_SET); 396 readl(lcdif->base + LCDC_V8_CTRL); 397 writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_CLR); 398 readl(lcdif->base + LCDC_V8_CTRL); 399 } 400 401 static void lcdif_crtc_mode_set_nofb(struct drm_crtc_state *crtc_state, 402 struct drm_plane_state *plane_state) 403 { 404 struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state); 405 struct drm_device *drm = crtc_state->crtc->dev; 406 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm); 407 struct drm_display_mode *m = &crtc_state->adjusted_mode; 408 409 DRM_DEV_DEBUG_DRIVER(drm->dev, "Pixel clock: %dkHz (actual: %dkHz)\n", 410 m->crtc_clock, 411 (int)(clk_get_rate(lcdif->clk) / 1000)); 412 DRM_DEV_DEBUG_DRIVER(drm->dev, "Bridge bus_flags: 0x%08X\n", 413 lcdif_crtc_state->bus_flags); 414 DRM_DEV_DEBUG_DRIVER(drm->dev, "Mode flags: 0x%08X\n", m->flags); 415 416 /* Mandatory eLCDIF reset as per the Reference Manual */ 417 lcdif_reset_block(lcdif); 418 419 lcdif_set_formats(lcdif, plane_state, lcdif_crtc_state->bus_format); 420 421 lcdif_set_mode(lcdif, lcdif_crtc_state->bus_flags); 422 } 423 424 static int lcdif_crtc_atomic_check(struct drm_crtc *crtc, 425 struct drm_atomic_state *state) 426 { 427 struct drm_device *drm = crtc->dev; 428 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 429 crtc); 430 struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state); 431 bool has_primary = crtc_state->plane_mask & 432 drm_plane_mask(crtc->primary); 433 struct drm_connector_state *connector_state; 434 struct drm_connector *connector; 435 struct drm_encoder *encoder; 436 struct drm_bridge_state *bridge_state; 437 struct drm_bridge *bridge; 438 u32 bus_format, bus_flags; 439 bool format_set = false, flags_set = false; 440 int ret, i; 441 442 /* The primary plane has to be enabled when the CRTC is active. */ 443 if (crtc_state->active && !has_primary) 444 return -EINVAL; 445 446 ret = drm_atomic_add_affected_planes(state, crtc); 447 if (ret) 448 return ret; 449 450 /* Try to find consistent bus format and flags across first bridges. */ 451 for_each_new_connector_in_state(state, connector, connector_state, i) { 452 if (!connector_state->crtc) 453 continue; 454 455 encoder = connector_state->best_encoder; 456 457 bridge = drm_bridge_chain_get_first_bridge(encoder); 458 if (!bridge) 459 continue; 460 461 bridge_state = drm_atomic_get_new_bridge_state(state, bridge); 462 if (!bridge_state) 463 bus_format = MEDIA_BUS_FMT_FIXED; 464 else 465 bus_format = bridge_state->input_bus_cfg.format; 466 467 if (bus_format == MEDIA_BUS_FMT_FIXED) { 468 dev_warn(drm->dev, 469 "[ENCODER:%d:%s]'s bridge does not provide bus format, assuming MEDIA_BUS_FMT_RGB888_1X24.\n" 470 "Please fix bridge driver by handling atomic_get_input_bus_fmts.\n", 471 encoder->base.id, encoder->name); 472 bus_format = MEDIA_BUS_FMT_RGB888_1X24; 473 } else if (!bus_format) { 474 /* If all else fails, default to RGB888_1X24 */ 475 bus_format = MEDIA_BUS_FMT_RGB888_1X24; 476 } 477 478 if (!format_set) { 479 lcdif_crtc_state->bus_format = bus_format; 480 format_set = true; 481 } else if (lcdif_crtc_state->bus_format != bus_format) { 482 DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus format\n"); 483 return -EINVAL; 484 } 485 486 if (bridge->timings) 487 bus_flags = bridge->timings->input_bus_flags; 488 else if (bridge_state) 489 bus_flags = bridge_state->input_bus_cfg.flags; 490 else 491 bus_flags = 0; 492 493 if (!flags_set) { 494 lcdif_crtc_state->bus_flags = bus_flags; 495 flags_set = true; 496 } else if (lcdif_crtc_state->bus_flags != bus_flags) { 497 DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus flags\n"); 498 return -EINVAL; 499 } 500 } 501 502 return 0; 503 } 504 505 static void lcdif_crtc_atomic_flush(struct drm_crtc *crtc, 506 struct drm_atomic_state *state) 507 { 508 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev); 509 struct drm_pending_vblank_event *event; 510 u32 reg; 511 512 reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5); 513 reg |= CTRLDESCL0_5_SHADOW_LOAD_EN; 514 writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5); 515 516 event = crtc->state->event; 517 crtc->state->event = NULL; 518 519 if (!event) 520 return; 521 522 spin_lock_irq(&crtc->dev->event_lock); 523 if (drm_crtc_vblank_get(crtc) == 0) 524 drm_crtc_arm_vblank_event(crtc, event); 525 else 526 drm_crtc_send_vblank_event(crtc, event); 527 spin_unlock_irq(&crtc->dev->event_lock); 528 } 529 530 static void lcdif_crtc_atomic_enable(struct drm_crtc *crtc, 531 struct drm_atomic_state *state) 532 { 533 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev); 534 struct drm_crtc_state *new_cstate = drm_atomic_get_new_crtc_state(state, crtc); 535 struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state, 536 crtc->primary); 537 struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode; 538 struct drm_device *drm = lcdif->drm; 539 dma_addr_t paddr; 540 541 clk_set_rate(lcdif->clk, m->crtc_clock * 1000); 542 543 pm_runtime_get_sync(drm->dev); 544 545 lcdif_crtc_mode_set_nofb(new_cstate, new_pstate); 546 547 /* Write cur_buf as well to avoid an initial corrupt frame */ 548 paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0); 549 if (paddr) { 550 writel(lower_32_bits(paddr), 551 lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4); 552 writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)), 553 lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4); 554 } 555 lcdif_enable_controller(lcdif); 556 557 drm_crtc_vblank_on(crtc); 558 } 559 560 static void lcdif_crtc_atomic_disable(struct drm_crtc *crtc, 561 struct drm_atomic_state *state) 562 { 563 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev); 564 struct drm_device *drm = lcdif->drm; 565 struct drm_pending_vblank_event *event; 566 567 drm_crtc_vblank_off(crtc); 568 569 lcdif_disable_controller(lcdif); 570 571 spin_lock_irq(&drm->event_lock); 572 event = crtc->state->event; 573 if (event) { 574 crtc->state->event = NULL; 575 drm_crtc_send_vblank_event(crtc, event); 576 } 577 spin_unlock_irq(&drm->event_lock); 578 579 pm_runtime_put_sync(drm->dev); 580 } 581 582 static void lcdif_crtc_atomic_destroy_state(struct drm_crtc *crtc, 583 struct drm_crtc_state *state) 584 { 585 __drm_atomic_helper_crtc_destroy_state(state); 586 kfree(to_lcdif_crtc_state(state)); 587 } 588 589 static void lcdif_crtc_reset(struct drm_crtc *crtc) 590 { 591 struct lcdif_crtc_state *state; 592 593 if (crtc->state) 594 lcdif_crtc_atomic_destroy_state(crtc, crtc->state); 595 596 crtc->state = NULL; 597 598 state = kzalloc(sizeof(*state), GFP_KERNEL); 599 if (state) 600 __drm_atomic_helper_crtc_reset(crtc, &state->base); 601 } 602 603 static struct drm_crtc_state * 604 lcdif_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 605 { 606 struct lcdif_crtc_state *old = to_lcdif_crtc_state(crtc->state); 607 struct lcdif_crtc_state *new; 608 609 if (WARN_ON(!crtc->state)) 610 return NULL; 611 612 new = kzalloc(sizeof(*new), GFP_KERNEL); 613 if (!new) 614 return NULL; 615 616 __drm_atomic_helper_crtc_duplicate_state(crtc, &new->base); 617 618 new->bus_format = old->bus_format; 619 new->bus_flags = old->bus_flags; 620 621 return &new->base; 622 } 623 624 static int lcdif_crtc_enable_vblank(struct drm_crtc *crtc) 625 { 626 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev); 627 628 /* Clear and enable VBLANK IRQ */ 629 writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0); 630 writel(INT_ENABLE_D0_VS_BLANK_EN, lcdif->base + LCDC_V8_INT_ENABLE_D0); 631 632 return 0; 633 } 634 635 static void lcdif_crtc_disable_vblank(struct drm_crtc *crtc) 636 { 637 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev); 638 639 /* Disable and clear VBLANK IRQ */ 640 writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D0); 641 writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0); 642 } 643 644 static const struct drm_crtc_helper_funcs lcdif_crtc_helper_funcs = { 645 .atomic_check = lcdif_crtc_atomic_check, 646 .atomic_flush = lcdif_crtc_atomic_flush, 647 .atomic_enable = lcdif_crtc_atomic_enable, 648 .atomic_disable = lcdif_crtc_atomic_disable, 649 }; 650 651 static const struct drm_crtc_funcs lcdif_crtc_funcs = { 652 .reset = lcdif_crtc_reset, 653 .destroy = drm_crtc_cleanup, 654 .set_config = drm_atomic_helper_set_config, 655 .page_flip = drm_atomic_helper_page_flip, 656 .atomic_duplicate_state = lcdif_crtc_atomic_duplicate_state, 657 .atomic_destroy_state = lcdif_crtc_atomic_destroy_state, 658 .enable_vblank = lcdif_crtc_enable_vblank, 659 .disable_vblank = lcdif_crtc_disable_vblank, 660 }; 661 662 /* ----------------------------------------------------------------------------- 663 * Planes 664 */ 665 666 static int lcdif_plane_atomic_check(struct drm_plane *plane, 667 struct drm_atomic_state *state) 668 { 669 struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, 670 plane); 671 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev); 672 struct drm_crtc_state *crtc_state; 673 674 crtc_state = drm_atomic_get_new_crtc_state(state, 675 &lcdif->crtc); 676 677 return drm_atomic_helper_check_plane_state(plane_state, crtc_state, 678 DRM_PLANE_NO_SCALING, 679 DRM_PLANE_NO_SCALING, 680 false, true); 681 } 682 683 static void lcdif_plane_primary_atomic_update(struct drm_plane *plane, 684 struct drm_atomic_state *state) 685 { 686 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev); 687 struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state, 688 plane); 689 dma_addr_t paddr; 690 691 paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0); 692 if (paddr) { 693 writel(lower_32_bits(paddr), 694 lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4); 695 writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)), 696 lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4); 697 } 698 } 699 700 static bool lcdif_format_mod_supported(struct drm_plane *plane, 701 uint32_t format, 702 uint64_t modifier) 703 { 704 return modifier == DRM_FORMAT_MOD_LINEAR; 705 } 706 707 static const struct drm_plane_helper_funcs lcdif_plane_primary_helper_funcs = { 708 .atomic_check = lcdif_plane_atomic_check, 709 .atomic_update = lcdif_plane_primary_atomic_update, 710 }; 711 712 static const struct drm_plane_funcs lcdif_plane_funcs = { 713 .format_mod_supported = lcdif_format_mod_supported, 714 .update_plane = drm_atomic_helper_update_plane, 715 .disable_plane = drm_atomic_helper_disable_plane, 716 .destroy = drm_plane_cleanup, 717 .reset = drm_atomic_helper_plane_reset, 718 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 719 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 720 }; 721 722 static const u32 lcdif_primary_plane_formats[] = { 723 /* RGB */ 724 DRM_FORMAT_RGB565, 725 DRM_FORMAT_RGB888, 726 DRM_FORMAT_XBGR8888, 727 DRM_FORMAT_XRGB1555, 728 DRM_FORMAT_XRGB4444, 729 DRM_FORMAT_XRGB8888, 730 731 /* Packed YCbCr */ 732 DRM_FORMAT_YUYV, 733 DRM_FORMAT_YVYU, 734 DRM_FORMAT_UYVY, 735 DRM_FORMAT_VYUY, 736 }; 737 738 static const u64 lcdif_modifiers[] = { 739 DRM_FORMAT_MOD_LINEAR, 740 DRM_FORMAT_MOD_INVALID 741 }; 742 743 /* ----------------------------------------------------------------------------- 744 * Initialization 745 */ 746 747 int lcdif_kms_init(struct lcdif_drm_private *lcdif) 748 { 749 const u32 supported_encodings = BIT(DRM_COLOR_YCBCR_BT601) | 750 BIT(DRM_COLOR_YCBCR_BT709) | 751 BIT(DRM_COLOR_YCBCR_BT2020); 752 const u32 supported_ranges = BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) | 753 BIT(DRM_COLOR_YCBCR_FULL_RANGE); 754 struct drm_crtc *crtc = &lcdif->crtc; 755 int ret; 756 757 drm_plane_helper_add(&lcdif->planes.primary, 758 &lcdif_plane_primary_helper_funcs); 759 ret = drm_universal_plane_init(lcdif->drm, &lcdif->planes.primary, 1, 760 &lcdif_plane_funcs, 761 lcdif_primary_plane_formats, 762 ARRAY_SIZE(lcdif_primary_plane_formats), 763 lcdif_modifiers, DRM_PLANE_TYPE_PRIMARY, 764 NULL); 765 if (ret) 766 return ret; 767 768 ret = drm_plane_create_color_properties(&lcdif->planes.primary, 769 supported_encodings, 770 supported_ranges, 771 DRM_COLOR_YCBCR_BT601, 772 DRM_COLOR_YCBCR_LIMITED_RANGE); 773 if (ret) 774 return ret; 775 776 drm_crtc_helper_add(crtc, &lcdif_crtc_helper_funcs); 777 return drm_crtc_init_with_planes(lcdif->drm, crtc, 778 &lcdif->planes.primary, NULL, 779 &lcdif_crtc_funcs, NULL); 780 } 781