1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #ifndef __MSM_KMS_H__ 9 #define __MSM_KMS_H__ 10 11 #include <linux/clk.h> 12 #include <linux/regulator/consumer.h> 13 14 #include "msm_drv.h" 15 16 #define MAX_PLANE 4 17 18 /* As there are different display controller blocks depending on the 19 * snapdragon version, the kms support is split out and the appropriate 20 * implementation is loaded at runtime. The kms module is responsible 21 * for constructing the appropriate planes/crtcs/encoders/connectors. 22 */ 23 struct msm_kms_funcs { 24 /* hw initialization: */ 25 int (*hw_init)(struct msm_kms *kms); 26 /* irq handling: */ 27 void (*irq_preinstall)(struct msm_kms *kms); 28 int (*irq_postinstall)(struct msm_kms *kms); 29 void (*irq_uninstall)(struct msm_kms *kms); 30 irqreturn_t (*irq)(struct msm_kms *kms); 31 int (*enable_vblank)(struct msm_kms *kms, struct drm_crtc *crtc); 32 void (*disable_vblank)(struct msm_kms *kms, struct drm_crtc *crtc); 33 34 /* 35 * Atomic commit handling: 36 * 37 * Note that in the case of async commits, the funcs which take 38 * a crtc_mask (ie. ->flush_commit(), and ->complete_commit()) 39 * might not be evenly balanced with ->prepare_commit(), however 40 * each crtc that effected by a ->prepare_commit() (potentially 41 * multiple times) will eventually (at end of vsync period) be 42 * flushed and completed. 43 * 44 * This has some implications about tracking of cleanup state, 45 * for example SMP blocks to release after commit completes. Ie. 46 * cleanup state should be also duplicated in the various 47 * duplicate_state() methods, as the current cleanup state at 48 * ->complete_commit() time may have accumulated cleanup work 49 * from multiple commits. 50 */ 51 52 /** 53 * Enable/disable power/clks needed for hw access done in other 54 * commit related methods. 55 * 56 * If mdp4 is migrated to runpm, we could probably drop these 57 * and use runpm directly. 58 */ 59 void (*enable_commit)(struct msm_kms *kms); 60 void (*disable_commit)(struct msm_kms *kms); 61 62 /** 63 * If the kms backend supports async commit, it should implement 64 * this method to return the time of the next vsync. This is 65 * used to determine a time slightly before vsync, for the async 66 * commit timer to run and complete an async commit. 67 */ 68 ktime_t (*vsync_time)(struct msm_kms *kms, struct drm_crtc *crtc); 69 70 /** 71 * Prepare for atomic commit. This is called after any previous 72 * (async or otherwise) commit has completed. 73 */ 74 void (*prepare_commit)(struct msm_kms *kms, struct drm_atomic_state *state); 75 76 /** 77 * Flush an atomic commit. This is called after the hardware 78 * updates have already been pushed down to effected planes/ 79 * crtcs/encoders/connectors. 80 */ 81 void (*flush_commit)(struct msm_kms *kms, unsigned crtc_mask); 82 83 /** 84 * Wait for any in-progress flush to complete on the specified 85 * crtcs. This should not block if there is no in-progress 86 * commit (ie. don't just wait for a vblank), as it will also 87 * be called before ->prepare_commit() to ensure any potential 88 * "async" commit has completed. 89 */ 90 void (*wait_flush)(struct msm_kms *kms, unsigned crtc_mask); 91 92 /** 93 * Clean up after commit is completed. This is called after 94 * ->wait_flush(), to give the backend a chance to do any 95 * post-commit cleanup. 96 */ 97 void (*complete_commit)(struct msm_kms *kms, unsigned crtc_mask); 98 99 /* 100 * Format handling: 101 */ 102 103 /* get msm_format w/ optional format modifiers from drm_mode_fb_cmd2 */ 104 const struct msm_format *(*get_format)(struct msm_kms *kms, 105 const uint32_t format, 106 const uint64_t modifiers); 107 /* do format checking on format modified through fb_cmd2 modifiers */ 108 int (*check_modified_format)(const struct msm_kms *kms, 109 const struct msm_format *msm_fmt, 110 const struct drm_mode_fb_cmd2 *cmd, 111 struct drm_gem_object **bos); 112 113 /* misc: */ 114 long (*round_pixclk)(struct msm_kms *kms, unsigned long rate, 115 struct drm_encoder *encoder); 116 int (*set_split_display)(struct msm_kms *kms, 117 struct drm_encoder *encoder, 118 struct drm_encoder *slave_encoder, 119 bool is_cmd_mode); 120 void (*set_encoder_mode)(struct msm_kms *kms, 121 struct drm_encoder *encoder, 122 bool cmd_mode); 123 /* cleanup: */ 124 void (*destroy)(struct msm_kms *kms); 125 126 /* snapshot: */ 127 void (*snapshot)(struct msm_disp_state *disp_state, struct msm_kms *kms); 128 129 #ifdef CONFIG_DEBUG_FS 130 /* debugfs: */ 131 int (*debugfs_init)(struct msm_kms *kms, struct drm_minor *minor); 132 #endif 133 }; 134 135 struct msm_kms; 136 137 /* 138 * A per-crtc timer for pending async atomic flushes. Scheduled to expire 139 * shortly before vblank to flush pending async updates. 140 */ 141 struct msm_pending_timer { 142 struct hrtimer timer; 143 struct kthread_work work; 144 struct kthread_worker *worker; 145 struct msm_kms *kms; 146 unsigned crtc_idx; 147 }; 148 149 struct msm_kms { 150 const struct msm_kms_funcs *funcs; 151 struct drm_device *dev; 152 153 /* irq number to be passed on to drm_irq_install */ 154 int irq; 155 156 /* mapper-id used to request GEM buffer mapped for scanout: */ 157 struct msm_gem_address_space *aspace; 158 159 /* disp snapshot support */ 160 struct kthread_worker *dump_worker; 161 struct kthread_work dump_work; 162 struct mutex dump_mutex; 163 164 /* 165 * For async commit, where ->flush_commit() and later happens 166 * from the crtc's pending_timer close to end of the frame: 167 */ 168 struct mutex commit_lock[MAX_CRTCS]; 169 unsigned pending_crtc_mask; 170 struct msm_pending_timer pending_timers[MAX_CRTCS]; 171 }; 172 173 static inline int msm_kms_init(struct msm_kms *kms, 174 const struct msm_kms_funcs *funcs) 175 { 176 unsigned i, ret; 177 178 for (i = 0; i < ARRAY_SIZE(kms->commit_lock); i++) 179 mutex_init(&kms->commit_lock[i]); 180 181 kms->funcs = funcs; 182 183 for (i = 0; i < ARRAY_SIZE(kms->pending_timers); i++) { 184 ret = msm_atomic_init_pending_timer(&kms->pending_timers[i], kms, i); 185 if (ret) { 186 return ret; 187 } 188 } 189 190 return 0; 191 } 192 193 static inline void msm_kms_destroy(struct msm_kms *kms) 194 { 195 unsigned i; 196 197 for (i = 0; i < ARRAY_SIZE(kms->pending_timers); i++) 198 msm_atomic_destroy_pending_timer(&kms->pending_timers[i]); 199 } 200 201 struct msm_kms *mdp4_kms_init(struct drm_device *dev); 202 struct msm_kms *mdp5_kms_init(struct drm_device *dev); 203 struct msm_kms *dpu_kms_init(struct drm_device *dev); 204 205 struct msm_mdss_funcs { 206 int (*enable)(struct msm_mdss *mdss); 207 int (*disable)(struct msm_mdss *mdss); 208 void (*destroy)(struct drm_device *dev); 209 }; 210 211 struct msm_mdss { 212 struct drm_device *dev; 213 const struct msm_mdss_funcs *funcs; 214 }; 215 216 int mdp5_mdss_init(struct drm_device *dev); 217 int dpu_mdss_init(struct drm_device *dev); 218 219 #define for_each_crtc_mask(dev, crtc, crtc_mask) \ 220 drm_for_each_crtc(crtc, dev) \ 221 for_each_if (drm_crtc_mask(crtc) & (crtc_mask)) 222 223 #define for_each_crtc_mask_reverse(dev, crtc, crtc_mask) \ 224 drm_for_each_crtc_reverse(crtc, dev) \ 225 for_each_if (drm_crtc_mask(crtc) & (crtc_mask)) 226 227 #endif /* __MSM_KMS_H__ */ 228