1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gpu_perfcntr; 24 struct msm_gpu_state; 25 struct msm_file_private; 26 27 struct msm_gpu_config { 28 const char *ioname; 29 unsigned int nr_rings; 30 }; 31 32 /* So far, with hardware that I've seen to date, we can have: 33 * + zero, one, or two z180 2d cores 34 * + a3xx or a2xx 3d core, which share a common CP (the firmware 35 * for the CP seems to implement some different PM4 packet types 36 * but the basics of cmdstream submission are the same) 37 * 38 * Which means that the eventual complete "class" hierarchy, once 39 * support for all past and present hw is in place, becomes: 40 * + msm_gpu 41 * + adreno_gpu 42 * + a3xx_gpu 43 * + a2xx_gpu 44 * + z180_gpu 45 */ 46 struct msm_gpu_funcs { 47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t *value, uint32_t *len); 49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 50 uint32_t param, uint64_t value, uint32_t len); 51 int (*hw_init)(struct msm_gpu *gpu); 52 int (*pm_suspend)(struct msm_gpu *gpu); 53 int (*pm_resume)(struct msm_gpu *gpu); 54 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 55 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 56 irqreturn_t (*irq)(struct msm_gpu *irq); 57 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 58 void (*recover)(struct msm_gpu *gpu); 59 void (*destroy)(struct msm_gpu *gpu); 60 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 61 /* show GPU status in debugfs: */ 62 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 63 struct drm_printer *p); 64 /* for generation specific debugfs: */ 65 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 66 #endif 67 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 68 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 69 int (*gpu_state_put)(struct msm_gpu_state *state); 70 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 71 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 72 struct msm_gem_address_space *(*create_address_space) 73 (struct msm_gpu *gpu, struct platform_device *pdev); 74 struct msm_gem_address_space *(*create_private_address_space) 75 (struct msm_gpu *gpu); 76 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 77 }; 78 79 /* Additional state for iommu faults: */ 80 struct msm_gpu_fault_info { 81 u64 ttbr0; 82 unsigned long iova; 83 int flags; 84 const char *type; 85 const char *block; 86 }; 87 88 /** 89 * struct msm_gpu_devfreq - devfreq related state 90 */ 91 struct msm_gpu_devfreq { 92 /** devfreq: devfreq instance */ 93 struct devfreq *devfreq; 94 95 /** 96 * idle_constraint: 97 * 98 * A PM QoS constraint to limit max freq while the GPU is idle. 99 */ 100 struct dev_pm_qos_request idle_freq; 101 102 /** 103 * boost_constraint: 104 * 105 * A PM QoS constraint to boost min freq for a period of time 106 * until the boost expires. 107 */ 108 struct dev_pm_qos_request boost_freq; 109 110 /** 111 * busy_cycles: Last busy counter value, for calculating elapsed busy 112 * cycles since last sampling period. 113 */ 114 u64 busy_cycles; 115 116 /** time: Time of last sampling period. */ 117 ktime_t time; 118 119 /** idle_time: Time of last transition to idle: */ 120 ktime_t idle_time; 121 122 struct devfreq_dev_status average_status; 123 124 /** 125 * idle_work: 126 * 127 * Used to delay clamping to idle freq on active->idle transition. 128 */ 129 struct msm_hrtimer_work idle_work; 130 131 /** 132 * boost_work: 133 * 134 * Used to reset the boost_constraint after the boost period has 135 * elapsed 136 */ 137 struct msm_hrtimer_work boost_work; 138 }; 139 140 struct msm_gpu { 141 const char *name; 142 struct drm_device *dev; 143 struct platform_device *pdev; 144 const struct msm_gpu_funcs *funcs; 145 146 struct adreno_smmu_priv adreno_smmu; 147 148 /* performance counters (hw & sw): */ 149 spinlock_t perf_lock; 150 bool perfcntr_active; 151 struct { 152 bool active; 153 ktime_t time; 154 } last_sample; 155 uint32_t totaltime, activetime; /* sw counters */ 156 uint32_t last_cntrs[5]; /* hw counters */ 157 const struct msm_gpu_perfcntr *perfcntrs; 158 uint32_t num_perfcntrs; 159 160 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 161 int nr_rings; 162 163 /** 164 * sysprof_active: 165 * 166 * The count of contexts that have enabled system profiling. 167 */ 168 refcount_t sysprof_active; 169 170 /** 171 * cur_ctx_seqno: 172 * 173 * The ctx->seqno value of the last context to submit rendering, 174 * and the one with current pgtables installed (for generations 175 * that support per-context pgtables). Tracked by seqno rather 176 * than pointer value to avoid dangling pointers, and cases where 177 * a ctx can be freed and a new one created with the same address. 178 */ 179 int cur_ctx_seqno; 180 181 /* 182 * List of GEM active objects on this gpu. Protected by 183 * msm_drm_private::mm_lock 184 */ 185 struct list_head active_list; 186 187 /** 188 * lock: 189 * 190 * General lock for serializing all the gpu things. 191 * 192 * TODO move to per-ring locking where feasible (ie. submit/retire 193 * path, etc) 194 */ 195 struct mutex lock; 196 197 /** 198 * active_submits: 199 * 200 * The number of submitted but not yet retired submits, used to 201 * determine transitions between active and idle. 202 * 203 * Protected by active_lock 204 */ 205 int active_submits; 206 207 /** lock: protects active_submits and idle/active transitions */ 208 struct mutex active_lock; 209 210 /* does gpu need hw_init? */ 211 bool needs_hw_init; 212 213 /** 214 * global_faults: number of GPU hangs not attributed to a particular 215 * address space 216 */ 217 int global_faults; 218 219 void __iomem *mmio; 220 int irq; 221 222 struct msm_gem_address_space *aspace; 223 224 /* Power Control: */ 225 struct regulator *gpu_reg, *gpu_cx; 226 struct clk_bulk_data *grp_clks; 227 int nr_clocks; 228 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 229 uint32_t fast_rate; 230 231 /* Hang and Inactivity Detection: 232 */ 233 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 234 235 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 236 struct timer_list hangcheck_timer; 237 238 /* Fault info for most recent iova fault: */ 239 struct msm_gpu_fault_info fault_info; 240 241 /* work for handling GPU ioval faults: */ 242 struct kthread_work fault_work; 243 244 /* work for handling GPU recovery: */ 245 struct kthread_work recover_work; 246 247 /** retire_event: notified when submits are retired: */ 248 wait_queue_head_t retire_event; 249 250 /* work for handling active-list retiring: */ 251 struct kthread_work retire_work; 252 253 /* worker for retire/recover: */ 254 struct kthread_worker *worker; 255 256 struct drm_gem_object *memptrs_bo; 257 258 struct msm_gpu_devfreq devfreq; 259 260 uint32_t suspend_count; 261 262 struct msm_gpu_state *crashstate; 263 264 /* Enable clamping to idle freq when inactive: */ 265 bool clamp_to_idle; 266 267 /* True if the hardware supports expanded apriv (a650 and newer) */ 268 bool hw_apriv; 269 270 struct thermal_cooling_device *cooling; 271 }; 272 273 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 274 { 275 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 276 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 277 } 278 279 /* It turns out that all targets use the same ringbuffer size */ 280 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 281 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 282 283 #define MSM_GPU_RB_CNTL_DEFAULT \ 284 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 285 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 286 287 static inline bool msm_gpu_active(struct msm_gpu *gpu) 288 { 289 int i; 290 291 for (i = 0; i < gpu->nr_rings; i++) { 292 struct msm_ringbuffer *ring = gpu->rb[i]; 293 294 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 295 return true; 296 } 297 298 return false; 299 } 300 301 /* Perf-Counters: 302 * The select_reg and select_val are just there for the benefit of the child 303 * class that actually enables the perf counter.. but msm_gpu base class 304 * will handle sampling/displaying the counters. 305 */ 306 307 struct msm_gpu_perfcntr { 308 uint32_t select_reg; 309 uint32_t sample_reg; 310 uint32_t select_val; 311 const char *name; 312 }; 313 314 /* 315 * The number of priority levels provided by drm gpu scheduler. The 316 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 317 * cases, so we don't use it (no need for kernel generated jobs). 318 */ 319 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 320 321 /** 322 * struct msm_file_private - per-drm_file context 323 * 324 * @queuelock: synchronizes access to submitqueues list 325 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 326 * @queueid: counter incremented each time a submitqueue is created, 327 * used to assign &msm_gpu_submitqueue.id 328 * @aspace: the per-process GPU address-space 329 * @ref: reference count 330 * @seqno: unique per process seqno 331 */ 332 struct msm_file_private { 333 rwlock_t queuelock; 334 struct list_head submitqueues; 335 int queueid; 336 struct msm_gem_address_space *aspace; 337 struct kref ref; 338 int seqno; 339 340 /** 341 * sysprof: 342 * 343 * The value of MSM_PARAM_SYSPROF set by userspace. This is 344 * intended to be used by system profiling tools like Mesa's 345 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 346 * 347 * Setting a value of 1 will preserve performance counters across 348 * context switches. Setting a value of 2 will in addition 349 * suppress suspend. (Performance counters lose state across 350 * power collapse, which is undesirable for profiling in some 351 * cases.) 352 * 353 * The value automatically reverts to zero when the drm device 354 * file is closed. 355 */ 356 int sysprof; 357 358 /** comm: Overridden task comm, see MSM_PARAM_COMM */ 359 char *comm; 360 361 /** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */ 362 char *cmdline; 363 364 /** 365 * entities: 366 * 367 * Table of per-priority-level sched entities used by submitqueues 368 * associated with this &drm_file. Because some userspace apps 369 * make assumptions about rendering from multiple gl contexts 370 * (of the same priority) within the process happening in FIFO 371 * order without requiring any fencing beyond MakeCurrent(), we 372 * create at most one &drm_sched_entity per-process per-priority- 373 * level. 374 */ 375 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 376 }; 377 378 /** 379 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 380 * 381 * @gpu: the gpu instance 382 * @prio: the userspace priority level 383 * @ring_nr: [out] the ringbuffer the userspace priority maps to 384 * @sched_prio: [out] the gpu scheduler priority level which the userspace 385 * priority maps to 386 * 387 * With drm/scheduler providing it's own level of prioritization, our total 388 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 389 * Each ring is associated with it's own scheduler instance. However, our 390 * UABI is that lower numerical values are higher priority. So mapping the 391 * single userspace priority level into ring_nr and sched_prio takes some 392 * care. The userspace provided priority (when a submitqueue is created) 393 * is mapped to ring nr and scheduler priority as such: 394 * 395 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 396 * sched_prio = NR_SCHED_PRIORITIES - 397 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 398 * 399 * This allows generations without preemption (nr_rings==1) to have some 400 * amount of prioritization, and provides more priority levels for gens 401 * that do have preemption. 402 */ 403 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 404 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 405 { 406 unsigned rn, sp; 407 408 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 409 410 /* invert sched priority to map to higher-numeric-is-higher- 411 * priority convention 412 */ 413 sp = NR_SCHED_PRIORITIES - sp - 1; 414 415 if (rn >= gpu->nr_rings) 416 return -EINVAL; 417 418 *ring_nr = rn; 419 *sched_prio = sp; 420 421 return 0; 422 } 423 424 /** 425 * struct msm_gpu_submitqueues - Userspace created context. 426 * 427 * A submitqueue is associated with a gl context or vk queue (or equiv) 428 * in userspace. 429 * 430 * @id: userspace id for the submitqueue, unique within the drm_file 431 * @flags: userspace flags for the submitqueue, specified at creation 432 * (currently unusued) 433 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 434 * by the submitqueue's priority 435 * @faults: the number of GPU hangs associated with this submitqueue 436 * @last_fence: the sequence number of the last allocated fence (for error 437 * checking) 438 * @ctx: the per-drm_file context associated with the submitqueue (ie. 439 * which set of pgtables do submits jobs associated with the 440 * submitqueue use) 441 * @node: node in the context's list of submitqueues 442 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 443 * seqno, protected by submitqueue lock 444 * @lock: submitqueue lock 445 * @ref: reference count 446 * @entity: the submit job-queue 447 */ 448 struct msm_gpu_submitqueue { 449 int id; 450 u32 flags; 451 u32 ring_nr; 452 int faults; 453 uint32_t last_fence; 454 struct msm_file_private *ctx; 455 struct list_head node; 456 struct idr fence_idr; 457 struct mutex lock; 458 struct kref ref; 459 struct drm_sched_entity *entity; 460 }; 461 462 struct msm_gpu_state_bo { 463 u64 iova; 464 size_t size; 465 void *data; 466 bool encoded; 467 }; 468 469 struct msm_gpu_state { 470 struct kref ref; 471 struct timespec64 time; 472 473 struct { 474 u64 iova; 475 u32 fence; 476 u32 seqno; 477 u32 rptr; 478 u32 wptr; 479 void *data; 480 int data_size; 481 bool encoded; 482 } ring[MSM_GPU_MAX_RINGS]; 483 484 int nr_registers; 485 u32 *registers; 486 487 u32 rbbm_status; 488 489 char *comm; 490 char *cmd; 491 492 struct msm_gpu_fault_info fault_info; 493 494 int nr_bos; 495 struct msm_gpu_state_bo *bos; 496 }; 497 498 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 499 { 500 msm_writel(data, gpu->mmio + (reg << 2)); 501 } 502 503 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 504 { 505 return msm_readl(gpu->mmio + (reg << 2)); 506 } 507 508 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 509 { 510 msm_rmw(gpu->mmio + (reg << 2), mask, or); 511 } 512 513 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 514 { 515 u64 val; 516 517 /* 518 * Why not a readq here? Two reasons: 1) many of the LO registers are 519 * not quad word aligned and 2) the GPU hardware designers have a bit 520 * of a history of putting registers where they fit, especially in 521 * spins. The longer a GPU family goes the higher the chance that 522 * we'll get burned. We could do a series of validity checks if we 523 * wanted to, but really is a readq() that much better? Nah. 524 */ 525 526 /* 527 * For some lo/hi registers (like perfcounters), the hi value is latched 528 * when the lo is read, so make sure to read the lo first to trigger 529 * that 530 */ 531 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 532 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 533 534 return val; 535 } 536 537 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 538 { 539 /* Why not a writeq here? Read the screed above */ 540 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 541 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 542 } 543 544 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 545 int msm_gpu_pm_resume(struct msm_gpu *gpu); 546 547 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 548 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 549 u32 id); 550 int msm_submitqueue_create(struct drm_device *drm, 551 struct msm_file_private *ctx, 552 u32 prio, u32 flags, u32 *id); 553 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 554 struct drm_msm_submitqueue_query *args); 555 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 556 void msm_submitqueue_close(struct msm_file_private *ctx); 557 558 void msm_submitqueue_destroy(struct kref *kref); 559 560 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 561 struct msm_gpu *gpu, int sysprof); 562 void __msm_file_private_destroy(struct kref *kref); 563 564 static inline void msm_file_private_put(struct msm_file_private *ctx) 565 { 566 kref_put(&ctx->ref, __msm_file_private_destroy); 567 } 568 569 static inline struct msm_file_private *msm_file_private_get( 570 struct msm_file_private *ctx) 571 { 572 kref_get(&ctx->ref); 573 return ctx; 574 } 575 576 void msm_devfreq_init(struct msm_gpu *gpu); 577 void msm_devfreq_cleanup(struct msm_gpu *gpu); 578 void msm_devfreq_resume(struct msm_gpu *gpu); 579 void msm_devfreq_suspend(struct msm_gpu *gpu); 580 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 581 void msm_devfreq_active(struct msm_gpu *gpu); 582 void msm_devfreq_idle(struct msm_gpu *gpu); 583 584 int msm_gpu_hw_init(struct msm_gpu *gpu); 585 586 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 587 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 588 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 589 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 590 591 void msm_gpu_retire(struct msm_gpu *gpu); 592 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 593 594 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 595 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 596 const char *name, struct msm_gpu_config *config); 597 598 struct msm_gem_address_space * 599 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 600 601 void msm_gpu_cleanup(struct msm_gpu *gpu); 602 603 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 604 void __init adreno_register(void); 605 void __exit adreno_unregister(void); 606 607 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 608 { 609 if (queue) 610 kref_put(&queue->ref, msm_submitqueue_destroy); 611 } 612 613 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 614 { 615 struct msm_gpu_state *state = NULL; 616 617 mutex_lock(&gpu->lock); 618 619 if (gpu->crashstate) { 620 kref_get(&gpu->crashstate->ref); 621 state = gpu->crashstate; 622 } 623 624 mutex_unlock(&gpu->lock); 625 626 return state; 627 } 628 629 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 630 { 631 mutex_lock(&gpu->lock); 632 633 if (gpu->crashstate) { 634 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 635 gpu->crashstate = NULL; 636 } 637 638 mutex_unlock(&gpu->lock); 639 } 640 641 /* 642 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 643 * support expanded privileges 644 */ 645 #define check_apriv(gpu, flags) \ 646 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 647 648 649 #endif /* __MSM_GPU_H__ */ 650