1 /* 2 * Copyright (C) 2013 Red Hat 3 * Author: Rob Clark <robdclark@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __MSM_GPU_H__ 19 #define __MSM_GPU_H__ 20 21 #include <linux/clk.h> 22 #include <linux/interconnect.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "msm_drv.h" 26 #include "msm_fence.h" 27 #include "msm_ringbuffer.h" 28 29 struct msm_gem_submit; 30 struct msm_gpu_perfcntr; 31 struct msm_gpu_state; 32 33 struct msm_gpu_config { 34 const char *ioname; 35 uint64_t va_start; 36 uint64_t va_end; 37 unsigned int nr_rings; 38 }; 39 40 /* So far, with hardware that I've seen to date, we can have: 41 * + zero, one, or two z180 2d cores 42 * + a3xx or a2xx 3d core, which share a common CP (the firmware 43 * for the CP seems to implement some different PM4 packet types 44 * but the basics of cmdstream submission are the same) 45 * 46 * Which means that the eventual complete "class" hierarchy, once 47 * support for all past and present hw is in place, becomes: 48 * + msm_gpu 49 * + adreno_gpu 50 * + a3xx_gpu 51 * + a2xx_gpu 52 * + z180_gpu 53 */ 54 struct msm_gpu_funcs { 55 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 56 int (*hw_init)(struct msm_gpu *gpu); 57 int (*pm_suspend)(struct msm_gpu *gpu); 58 int (*pm_resume)(struct msm_gpu *gpu); 59 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit, 60 struct msm_file_private *ctx); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 74 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 75 int (*gpu_state_put)(struct msm_gpu_state *state); 76 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 77 void (*gpu_set_freq)(struct msm_gpu *gpu, unsigned long freq); 78 }; 79 80 struct msm_gpu { 81 const char *name; 82 struct drm_device *dev; 83 struct platform_device *pdev; 84 const struct msm_gpu_funcs *funcs; 85 86 /* performance counters (hw & sw): */ 87 spinlock_t perf_lock; 88 bool perfcntr_active; 89 struct { 90 bool active; 91 ktime_t time; 92 } last_sample; 93 uint32_t totaltime, activetime; /* sw counters */ 94 uint32_t last_cntrs[5]; /* hw counters */ 95 const struct msm_gpu_perfcntr *perfcntrs; 96 uint32_t num_perfcntrs; 97 98 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 99 int nr_rings; 100 101 /* list of GEM active objects: */ 102 struct list_head active_list; 103 104 /* does gpu need hw_init? */ 105 bool needs_hw_init; 106 107 /* worker for handling active-list retiring: */ 108 struct work_struct retire_work; 109 110 void __iomem *mmio; 111 int irq; 112 113 struct msm_gem_address_space *aspace; 114 115 /* Power Control: */ 116 struct regulator *gpu_reg, *gpu_cx; 117 struct clk_bulk_data *grp_clks; 118 int nr_clocks; 119 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 120 uint32_t fast_rate; 121 122 struct icc_path *icc_path; 123 124 /* Hang and Inactivity Detection: 125 */ 126 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 127 128 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */ 129 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD) 130 struct timer_list hangcheck_timer; 131 struct work_struct recover_work; 132 133 struct drm_gem_object *memptrs_bo; 134 135 struct { 136 struct devfreq *devfreq; 137 u64 busy_cycles; 138 ktime_t time; 139 } devfreq; 140 141 struct msm_gpu_state *crashstate; 142 }; 143 144 /* It turns out that all targets use the same ringbuffer size */ 145 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 146 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 147 148 #define MSM_GPU_RB_CNTL_DEFAULT \ 149 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 150 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 151 152 static inline bool msm_gpu_active(struct msm_gpu *gpu) 153 { 154 int i; 155 156 for (i = 0; i < gpu->nr_rings; i++) { 157 struct msm_ringbuffer *ring = gpu->rb[i]; 158 159 if (ring->seqno > ring->memptrs->fence) 160 return true; 161 } 162 163 return false; 164 } 165 166 /* Perf-Counters: 167 * The select_reg and select_val are just there for the benefit of the child 168 * class that actually enables the perf counter.. but msm_gpu base class 169 * will handle sampling/displaying the counters. 170 */ 171 172 struct msm_gpu_perfcntr { 173 uint32_t select_reg; 174 uint32_t sample_reg; 175 uint32_t select_val; 176 const char *name; 177 }; 178 179 struct msm_gpu_submitqueue { 180 int id; 181 u32 flags; 182 u32 prio; 183 int faults; 184 struct list_head node; 185 struct kref ref; 186 }; 187 188 struct msm_gpu_state_bo { 189 u64 iova; 190 size_t size; 191 void *data; 192 bool encoded; 193 }; 194 195 struct msm_gpu_state { 196 struct kref ref; 197 struct timespec64 time; 198 199 struct { 200 u64 iova; 201 u32 fence; 202 u32 seqno; 203 u32 rptr; 204 u32 wptr; 205 void *data; 206 int data_size; 207 bool encoded; 208 } ring[MSM_GPU_MAX_RINGS]; 209 210 int nr_registers; 211 u32 *registers; 212 213 u32 rbbm_status; 214 215 char *comm; 216 char *cmd; 217 218 int nr_bos; 219 struct msm_gpu_state_bo *bos; 220 }; 221 222 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 223 { 224 msm_writel(data, gpu->mmio + (reg << 2)); 225 } 226 227 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 228 { 229 return msm_readl(gpu->mmio + (reg << 2)); 230 } 231 232 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 233 { 234 uint32_t val = gpu_read(gpu, reg); 235 236 val &= ~mask; 237 gpu_write(gpu, reg, val | or); 238 } 239 240 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 241 { 242 u64 val; 243 244 /* 245 * Why not a readq here? Two reasons: 1) many of the LO registers are 246 * not quad word aligned and 2) the GPU hardware designers have a bit 247 * of a history of putting registers where they fit, especially in 248 * spins. The longer a GPU family goes the higher the chance that 249 * we'll get burned. We could do a series of validity checks if we 250 * wanted to, but really is a readq() that much better? Nah. 251 */ 252 253 /* 254 * For some lo/hi registers (like perfcounters), the hi value is latched 255 * when the lo is read, so make sure to read the lo first to trigger 256 * that 257 */ 258 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 259 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 260 261 return val; 262 } 263 264 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 265 { 266 /* Why not a writeq here? Read the screed above */ 267 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 268 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 269 } 270 271 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 272 int msm_gpu_pm_resume(struct msm_gpu *gpu); 273 void msm_gpu_resume_devfreq(struct msm_gpu *gpu); 274 275 int msm_gpu_hw_init(struct msm_gpu *gpu); 276 277 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 278 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 279 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 280 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 281 282 void msm_gpu_retire(struct msm_gpu *gpu); 283 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit, 284 struct msm_file_private *ctx); 285 286 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 287 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 288 const char *name, struct msm_gpu_config *config); 289 290 void msm_gpu_cleanup(struct msm_gpu *gpu); 291 292 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 293 void __init adreno_register(void); 294 void __exit adreno_unregister(void); 295 296 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 297 { 298 if (queue) 299 kref_put(&queue->ref, msm_submitqueue_destroy); 300 } 301 302 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 303 { 304 struct msm_gpu_state *state = NULL; 305 306 mutex_lock(&gpu->dev->struct_mutex); 307 308 if (gpu->crashstate) { 309 kref_get(&gpu->crashstate->ref); 310 state = gpu->crashstate; 311 } 312 313 mutex_unlock(&gpu->dev->struct_mutex); 314 315 return state; 316 } 317 318 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 319 { 320 mutex_lock(&gpu->dev->struct_mutex); 321 322 if (gpu->crashstate) { 323 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 324 gpu->crashstate = NULL; 325 } 326 327 mutex_unlock(&gpu->dev->struct_mutex); 328 } 329 330 #endif /* __MSM_GPU_H__ */ 331