xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision df0e68c1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15 
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20 
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24 
25 struct msm_gpu_config {
26 	const char *ioname;
27 	unsigned int nr_rings;
28 };
29 
30 /* So far, with hardware that I've seen to date, we can have:
31  *  + zero, one, or two z180 2d cores
32  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
33  *    for the CP seems to implement some different PM4 packet types
34  *    but the basics of cmdstream submission are the same)
35  *
36  * Which means that the eventual complete "class" hierarchy, once
37  * support for all past and present hw is in place, becomes:
38  *  + msm_gpu
39  *    + adreno_gpu
40  *      + a3xx_gpu
41  *      + a2xx_gpu
42  *    + z180_gpu
43  */
44 struct msm_gpu_funcs {
45 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 	int (*hw_init)(struct msm_gpu *gpu);
47 	int (*pm_suspend)(struct msm_gpu *gpu);
48 	int (*pm_resume)(struct msm_gpu *gpu);
49 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 	irqreturn_t (*irq)(struct msm_gpu *irq);
52 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 	void (*recover)(struct msm_gpu *gpu);
54 	void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 	/* show GPU status in debugfs: */
57 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 			struct drm_printer *p);
59 	/* for generation specific debugfs: */
60 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 	int (*gpu_state_put)(struct msm_gpu_state *state);
65 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 	struct msm_gem_address_space *(*create_address_space)
68 		(struct msm_gpu *gpu, struct platform_device *pdev);
69 	struct msm_gem_address_space *(*create_private_address_space)
70 		(struct msm_gpu *gpu);
71 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73 
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 	u64 ttbr0;
77 	unsigned long iova;
78 	int flags;
79 	const char *type;
80 	const char *block;
81 };
82 
83 /**
84  * struct msm_gpu_devfreq - devfreq related state
85  */
86 struct msm_gpu_devfreq {
87 	/** devfreq: devfreq instance */
88 	struct devfreq *devfreq;
89 
90 	/**
91 	 * busy_cycles:
92 	 *
93 	 * Used by implementation of gpu->gpu_busy() to track the last
94 	 * busy counter value, for calculating elapsed busy cycles since
95 	 * last sampling period.
96 	 */
97 	u64 busy_cycles;
98 
99 	/** time: Time of last sampling period. */
100 	ktime_t time;
101 
102 	/** idle_time: Time of last transition to idle: */
103 	ktime_t idle_time;
104 
105 	/**
106 	 * idle_freq:
107 	 *
108 	 * Shadow frequency used while the GPU is idle.  From the PoV of
109 	 * the devfreq governor, we are continuing to sample busyness and
110 	 * adjust frequency while the GPU is idle, but we use this shadow
111 	 * value as the GPU is actually clamped to minimum frequency while
112 	 * it is inactive.
113 	 */
114 	unsigned long idle_freq;
115 
116 	/**
117 	 * idle_work:
118 	 *
119 	 * Used to delay clamping to idle freq on active->idle transition.
120 	 */
121 	struct msm_hrtimer_work idle_work;
122 };
123 
124 struct msm_gpu {
125 	const char *name;
126 	struct drm_device *dev;
127 	struct platform_device *pdev;
128 	const struct msm_gpu_funcs *funcs;
129 
130 	struct adreno_smmu_priv adreno_smmu;
131 
132 	/* performance counters (hw & sw): */
133 	spinlock_t perf_lock;
134 	bool perfcntr_active;
135 	struct {
136 		bool active;
137 		ktime_t time;
138 	} last_sample;
139 	uint32_t totaltime, activetime;    /* sw counters */
140 	uint32_t last_cntrs[5];            /* hw counters */
141 	const struct msm_gpu_perfcntr *perfcntrs;
142 	uint32_t num_perfcntrs;
143 
144 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
145 	int nr_rings;
146 
147 	/*
148 	 * List of GEM active objects on this gpu.  Protected by
149 	 * msm_drm_private::mm_lock
150 	 */
151 	struct list_head active_list;
152 
153 	/**
154 	 * active_submits:
155 	 *
156 	 * The number of submitted but not yet retired submits, used to
157 	 * determine transitions between active and idle.
158 	 *
159 	 * Protected by lock
160 	 */
161 	int active_submits;
162 
163 	/** lock: protects active_submits and idle/active transitions */
164 	struct mutex active_lock;
165 
166 	/* does gpu need hw_init? */
167 	bool needs_hw_init;
168 
169 	/* number of GPU hangs (for all contexts) */
170 	int global_faults;
171 
172 	void __iomem *mmio;
173 	int irq;
174 
175 	struct msm_gem_address_space *aspace;
176 
177 	/* Power Control: */
178 	struct regulator *gpu_reg, *gpu_cx;
179 	struct clk_bulk_data *grp_clks;
180 	int nr_clocks;
181 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
182 	uint32_t fast_rate;
183 
184 	/* Hang and Inactivity Detection:
185 	 */
186 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
187 
188 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
189 	struct timer_list hangcheck_timer;
190 
191 	/* Fault info for most recent iova fault: */
192 	struct msm_gpu_fault_info fault_info;
193 
194 	/* work for handling GPU ioval faults: */
195 	struct kthread_work fault_work;
196 
197 	/* work for handling GPU recovery: */
198 	struct kthread_work recover_work;
199 
200 	/* work for handling active-list retiring: */
201 	struct kthread_work retire_work;
202 
203 	/* worker for retire/recover: */
204 	struct kthread_worker *worker;
205 
206 	struct drm_gem_object *memptrs_bo;
207 
208 	struct msm_gpu_devfreq devfreq;
209 
210 	uint32_t suspend_count;
211 
212 	struct msm_gpu_state *crashstate;
213 
214 	/* Enable clamping to idle freq when inactive: */
215 	bool clamp_to_idle;
216 
217 	/* True if the hardware supports expanded apriv (a650 and newer) */
218 	bool hw_apriv;
219 
220 	struct thermal_cooling_device *cooling;
221 };
222 
223 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
224 {
225 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
226 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
227 }
228 
229 /* It turns out that all targets use the same ringbuffer size */
230 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
231 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
232 
233 #define MSM_GPU_RB_CNTL_DEFAULT \
234 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
235 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
236 
237 static inline bool msm_gpu_active(struct msm_gpu *gpu)
238 {
239 	int i;
240 
241 	for (i = 0; i < gpu->nr_rings; i++) {
242 		struct msm_ringbuffer *ring = gpu->rb[i];
243 
244 		if (ring->seqno > ring->memptrs->fence)
245 			return true;
246 	}
247 
248 	return false;
249 }
250 
251 /* Perf-Counters:
252  * The select_reg and select_val are just there for the benefit of the child
253  * class that actually enables the perf counter..  but msm_gpu base class
254  * will handle sampling/displaying the counters.
255  */
256 
257 struct msm_gpu_perfcntr {
258 	uint32_t select_reg;
259 	uint32_t sample_reg;
260 	uint32_t select_val;
261 	const char *name;
262 };
263 
264 /*
265  * The number of priority levels provided by drm gpu scheduler.  The
266  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
267  * cases, so we don't use it (no need for kernel generated jobs).
268  */
269 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
270 
271 /**
272  * struct msm_file_private - per-drm_file context
273  *
274  * @queuelock:    synchronizes access to submitqueues list
275  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
276  * @queueid:      counter incremented each time a submitqueue is created,
277  *                used to assign &msm_gpu_submitqueue.id
278  * @aspace:       the per-process GPU address-space
279  * @ref:          reference count
280  * @seqno:        unique per process seqno
281  */
282 struct msm_file_private {
283 	rwlock_t queuelock;
284 	struct list_head submitqueues;
285 	int queueid;
286 	struct msm_gem_address_space *aspace;
287 	struct kref ref;
288 	int seqno;
289 
290 	/**
291 	 * entities:
292 	 *
293 	 * Table of per-priority-level sched entities used by submitqueues
294 	 * associated with this &drm_file.  Because some userspace apps
295 	 * make assumptions about rendering from multiple gl contexts
296 	 * (of the same priority) within the process happening in FIFO
297 	 * order without requiring any fencing beyond MakeCurrent(), we
298 	 * create at most one &drm_sched_entity per-process per-priority-
299 	 * level.
300 	 */
301 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
302 };
303 
304 /**
305  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
306  *
307  * @gpu:        the gpu instance
308  * @prio:       the userspace priority level
309  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
310  * @sched_prio: [out] the gpu scheduler priority level which the userspace
311  *              priority maps to
312  *
313  * With drm/scheduler providing it's own level of prioritization, our total
314  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
315  * Each ring is associated with it's own scheduler instance.  However, our
316  * UABI is that lower numerical values are higher priority.  So mapping the
317  * single userspace priority level into ring_nr and sched_prio takes some
318  * care.  The userspace provided priority (when a submitqueue is created)
319  * is mapped to ring nr and scheduler priority as such:
320  *
321  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
322  *   sched_prio = NR_SCHED_PRIORITIES -
323  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
324  *
325  * This allows generations without preemption (nr_rings==1) to have some
326  * amount of prioritization, and provides more priority levels for gens
327  * that do have preemption.
328  */
329 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
330 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
331 {
332 	unsigned rn, sp;
333 
334 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
335 
336 	/* invert sched priority to map to higher-numeric-is-higher-
337 	 * priority convention
338 	 */
339 	sp = NR_SCHED_PRIORITIES - sp - 1;
340 
341 	if (rn >= gpu->nr_rings)
342 		return -EINVAL;
343 
344 	*ring_nr = rn;
345 	*sched_prio = sp;
346 
347 	return 0;
348 }
349 
350 /**
351  * struct msm_gpu_submitqueues - Userspace created context.
352  *
353  * A submitqueue is associated with a gl context or vk queue (or equiv)
354  * in userspace.
355  *
356  * @id:        userspace id for the submitqueue, unique within the drm_file
357  * @flags:     userspace flags for the submitqueue, specified at creation
358  *             (currently unusued)
359  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
360  *             by the submitqueue's priority
361  * @faults:    the number of GPU hangs associated with this submitqueue
362  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
363  *             which set of pgtables do submits jobs associated with the
364  *             submitqueue use)
365  * @node:      node in the context's list of submitqueues
366  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
367  *             seqno, protected by submitqueue lock
368  * @lock:      submitqueue lock
369  * @ref:       reference count
370  * @entity:    the submit job-queue
371  */
372 struct msm_gpu_submitqueue {
373 	int id;
374 	u32 flags;
375 	u32 ring_nr;
376 	int faults;
377 	struct msm_file_private *ctx;
378 	struct list_head node;
379 	struct idr fence_idr;
380 	struct mutex lock;
381 	struct kref ref;
382 	struct drm_sched_entity *entity;
383 };
384 
385 struct msm_gpu_state_bo {
386 	u64 iova;
387 	size_t size;
388 	void *data;
389 	bool encoded;
390 };
391 
392 struct msm_gpu_state {
393 	struct kref ref;
394 	struct timespec64 time;
395 
396 	struct {
397 		u64 iova;
398 		u32 fence;
399 		u32 seqno;
400 		u32 rptr;
401 		u32 wptr;
402 		void *data;
403 		int data_size;
404 		bool encoded;
405 	} ring[MSM_GPU_MAX_RINGS];
406 
407 	int nr_registers;
408 	u32 *registers;
409 
410 	u32 rbbm_status;
411 
412 	char *comm;
413 	char *cmd;
414 
415 	struct msm_gpu_fault_info fault_info;
416 
417 	int nr_bos;
418 	struct msm_gpu_state_bo *bos;
419 };
420 
421 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
422 {
423 	msm_writel(data, gpu->mmio + (reg << 2));
424 }
425 
426 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
427 {
428 	return msm_readl(gpu->mmio + (reg << 2));
429 }
430 
431 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
432 {
433 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
434 }
435 
436 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
437 {
438 	u64 val;
439 
440 	/*
441 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
442 	 * not quad word aligned and 2) the GPU hardware designers have a bit
443 	 * of a history of putting registers where they fit, especially in
444 	 * spins. The longer a GPU family goes the higher the chance that
445 	 * we'll get burned.  We could do a series of validity checks if we
446 	 * wanted to, but really is a readq() that much better? Nah.
447 	 */
448 
449 	/*
450 	 * For some lo/hi registers (like perfcounters), the hi value is latched
451 	 * when the lo is read, so make sure to read the lo first to trigger
452 	 * that
453 	 */
454 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
455 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
456 
457 	return val;
458 }
459 
460 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
461 {
462 	/* Why not a writeq here? Read the screed above */
463 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
464 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
465 }
466 
467 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
468 int msm_gpu_pm_resume(struct msm_gpu *gpu);
469 
470 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
471 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
472 		u32 id);
473 int msm_submitqueue_create(struct drm_device *drm,
474 		struct msm_file_private *ctx,
475 		u32 prio, u32 flags, u32 *id);
476 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
477 		struct drm_msm_submitqueue_query *args);
478 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
479 void msm_submitqueue_close(struct msm_file_private *ctx);
480 
481 void msm_submitqueue_destroy(struct kref *kref);
482 
483 void __msm_file_private_destroy(struct kref *kref);
484 
485 static inline void msm_file_private_put(struct msm_file_private *ctx)
486 {
487 	kref_put(&ctx->ref, __msm_file_private_destroy);
488 }
489 
490 static inline struct msm_file_private *msm_file_private_get(
491 	struct msm_file_private *ctx)
492 {
493 	kref_get(&ctx->ref);
494 	return ctx;
495 }
496 
497 void msm_devfreq_init(struct msm_gpu *gpu);
498 void msm_devfreq_cleanup(struct msm_gpu *gpu);
499 void msm_devfreq_resume(struct msm_gpu *gpu);
500 void msm_devfreq_suspend(struct msm_gpu *gpu);
501 void msm_devfreq_active(struct msm_gpu *gpu);
502 void msm_devfreq_idle(struct msm_gpu *gpu);
503 
504 int msm_gpu_hw_init(struct msm_gpu *gpu);
505 
506 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
507 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
508 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
509 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
510 
511 void msm_gpu_retire(struct msm_gpu *gpu);
512 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
513 
514 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
515 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
516 		const char *name, struct msm_gpu_config *config);
517 
518 struct msm_gem_address_space *
519 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
520 
521 void msm_gpu_cleanup(struct msm_gpu *gpu);
522 
523 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
524 void __init adreno_register(void);
525 void __exit adreno_unregister(void);
526 
527 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
528 {
529 	if (queue)
530 		kref_put(&queue->ref, msm_submitqueue_destroy);
531 }
532 
533 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
534 {
535 	struct msm_gpu_state *state = NULL;
536 
537 	mutex_lock(&gpu->dev->struct_mutex);
538 
539 	if (gpu->crashstate) {
540 		kref_get(&gpu->crashstate->ref);
541 		state = gpu->crashstate;
542 	}
543 
544 	mutex_unlock(&gpu->dev->struct_mutex);
545 
546 	return state;
547 }
548 
549 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
550 {
551 	mutex_lock(&gpu->dev->struct_mutex);
552 
553 	if (gpu->crashstate) {
554 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
555 			gpu->crashstate = NULL;
556 	}
557 
558 	mutex_unlock(&gpu->dev->struct_mutex);
559 }
560 
561 /*
562  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
563  * support expanded privileges
564  */
565 #define check_apriv(gpu, flags) \
566 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
567 
568 
569 #endif /* __MSM_GPU_H__ */
570