xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision d73b1d02)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/reset.h>
17 
18 #include "msm_drv.h"
19 #include "msm_fence.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gpu_perfcntr;
25 struct msm_gpu_state;
26 struct msm_file_private;
27 
28 struct msm_gpu_config {
29 	const char *ioname;
30 	unsigned int nr_rings;
31 };
32 
33 /* So far, with hardware that I've seen to date, we can have:
34  *  + zero, one, or two z180 2d cores
35  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
36  *    for the CP seems to implement some different PM4 packet types
37  *    but the basics of cmdstream submission are the same)
38  *
39  * Which means that the eventual complete "class" hierarchy, once
40  * support for all past and present hw is in place, becomes:
41  *  + msm_gpu
42  *    + adreno_gpu
43  *      + a3xx_gpu
44  *      + a2xx_gpu
45  *    + z180_gpu
46  */
47 struct msm_gpu_funcs {
48 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
49 			 uint32_t param, uint64_t *value, uint32_t *len);
50 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
51 			 uint32_t param, uint64_t value, uint32_t len);
52 	int (*hw_init)(struct msm_gpu *gpu);
53 	int (*pm_suspend)(struct msm_gpu *gpu);
54 	int (*pm_resume)(struct msm_gpu *gpu);
55 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
56 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
57 	irqreturn_t (*irq)(struct msm_gpu *irq);
58 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
59 	void (*recover)(struct msm_gpu *gpu);
60 	void (*destroy)(struct msm_gpu *gpu);
61 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
62 	/* show GPU status in debugfs: */
63 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
64 			struct drm_printer *p);
65 	/* for generation specific debugfs: */
66 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
67 #endif
68 	/* note: gpu_busy() can assume that we have been pm_resumed */
69 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
70 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
71 	int (*gpu_state_put)(struct msm_gpu_state *state);
72 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
73 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
74 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
75 			     bool suspended);
76 	struct msm_gem_address_space *(*create_address_space)
77 		(struct msm_gpu *gpu, struct platform_device *pdev);
78 	struct msm_gem_address_space *(*create_private_address_space)
79 		(struct msm_gpu *gpu);
80 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
81 
82 	/**
83 	 * progress: Has the GPU made progress?
84 	 *
85 	 * Return true if GPU position in cmdstream has advanced (or changed)
86 	 * since the last call.  To avoid false negatives, this should account
87 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
88 	 */
89 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
90 };
91 
92 /* Additional state for iommu faults: */
93 struct msm_gpu_fault_info {
94 	u64 ttbr0;
95 	unsigned long iova;
96 	int flags;
97 	const char *type;
98 	const char *block;
99 };
100 
101 /**
102  * struct msm_gpu_devfreq - devfreq related state
103  */
104 struct msm_gpu_devfreq {
105 	/** devfreq: devfreq instance */
106 	struct devfreq *devfreq;
107 
108 	/** lock: lock for "suspended", "busy_cycles", and "time" */
109 	struct mutex lock;
110 
111 	/**
112 	 * idle_constraint:
113 	 *
114 	 * A PM QoS constraint to limit max freq while the GPU is idle.
115 	 */
116 	struct dev_pm_qos_request idle_freq;
117 
118 	/**
119 	 * boost_constraint:
120 	 *
121 	 * A PM QoS constraint to boost min freq for a period of time
122 	 * until the boost expires.
123 	 */
124 	struct dev_pm_qos_request boost_freq;
125 
126 	/**
127 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
128 	 * cycles since last sampling period.
129 	 */
130 	u64 busy_cycles;
131 
132 	/** time: Time of last sampling period. */
133 	ktime_t time;
134 
135 	/** idle_time: Time of last transition to idle: */
136 	ktime_t idle_time;
137 
138 	struct devfreq_dev_status average_status;
139 
140 	/**
141 	 * idle_work:
142 	 *
143 	 * Used to delay clamping to idle freq on active->idle transition.
144 	 */
145 	struct msm_hrtimer_work idle_work;
146 
147 	/**
148 	 * boost_work:
149 	 *
150 	 * Used to reset the boost_constraint after the boost period has
151 	 * elapsed
152 	 */
153 	struct msm_hrtimer_work boost_work;
154 
155 	/** suspended: tracks if we're suspended */
156 	bool suspended;
157 };
158 
159 struct msm_gpu {
160 	const char *name;
161 	struct drm_device *dev;
162 	struct platform_device *pdev;
163 	const struct msm_gpu_funcs *funcs;
164 
165 	struct adreno_smmu_priv adreno_smmu;
166 
167 	/* performance counters (hw & sw): */
168 	spinlock_t perf_lock;
169 	bool perfcntr_active;
170 	struct {
171 		bool active;
172 		ktime_t time;
173 	} last_sample;
174 	uint32_t totaltime, activetime;    /* sw counters */
175 	uint32_t last_cntrs[5];            /* hw counters */
176 	const struct msm_gpu_perfcntr *perfcntrs;
177 	uint32_t num_perfcntrs;
178 
179 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
180 	int nr_rings;
181 
182 	/**
183 	 * sysprof_active:
184 	 *
185 	 * The count of contexts that have enabled system profiling.
186 	 */
187 	refcount_t sysprof_active;
188 
189 	/**
190 	 * cur_ctx_seqno:
191 	 *
192 	 * The ctx->seqno value of the last context to submit rendering,
193 	 * and the one with current pgtables installed (for generations
194 	 * that support per-context pgtables).  Tracked by seqno rather
195 	 * than pointer value to avoid dangling pointers, and cases where
196 	 * a ctx can be freed and a new one created with the same address.
197 	 */
198 	int cur_ctx_seqno;
199 
200 	/**
201 	 * lock:
202 	 *
203 	 * General lock for serializing all the gpu things.
204 	 *
205 	 * TODO move to per-ring locking where feasible (ie. submit/retire
206 	 * path, etc)
207 	 */
208 	struct mutex lock;
209 
210 	/**
211 	 * active_submits:
212 	 *
213 	 * The number of submitted but not yet retired submits, used to
214 	 * determine transitions between active and idle.
215 	 *
216 	 * Protected by active_lock
217 	 */
218 	int active_submits;
219 
220 	/** lock: protects active_submits and idle/active transitions */
221 	struct mutex active_lock;
222 
223 	/* does gpu need hw_init? */
224 	bool needs_hw_init;
225 
226 	/**
227 	 * global_faults: number of GPU hangs not attributed to a particular
228 	 * address space
229 	 */
230 	int global_faults;
231 
232 	void __iomem *mmio;
233 	int irq;
234 
235 	struct msm_gem_address_space *aspace;
236 
237 	/* Power Control: */
238 	struct regulator *gpu_reg, *gpu_cx;
239 	struct clk_bulk_data *grp_clks;
240 	int nr_clocks;
241 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
242 	uint32_t fast_rate;
243 
244 	/* Hang and Inactivity Detection:
245 	 */
246 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
247 
248 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
249 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
250 	struct timer_list hangcheck_timer;
251 
252 	/* Fault info for most recent iova fault: */
253 	struct msm_gpu_fault_info fault_info;
254 
255 	/* work for handling GPU ioval faults: */
256 	struct kthread_work fault_work;
257 
258 	/* work for handling GPU recovery: */
259 	struct kthread_work recover_work;
260 
261 	/** retire_event: notified when submits are retired: */
262 	wait_queue_head_t retire_event;
263 
264 	/* work for handling active-list retiring: */
265 	struct kthread_work retire_work;
266 
267 	/* worker for retire/recover: */
268 	struct kthread_worker *worker;
269 
270 	struct drm_gem_object *memptrs_bo;
271 
272 	struct msm_gpu_devfreq devfreq;
273 
274 	uint32_t suspend_count;
275 
276 	struct msm_gpu_state *crashstate;
277 
278 	/* Enable clamping to idle freq when inactive: */
279 	bool clamp_to_idle;
280 
281 	/* True if the hardware supports expanded apriv (a650 and newer) */
282 	bool hw_apriv;
283 
284 	struct thermal_cooling_device *cooling;
285 
286 	/* To poll for cx gdsc collapse during gpu recovery */
287 	struct reset_control *cx_collapse;
288 };
289 
290 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
291 {
292 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
293 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
294 }
295 
296 /* It turns out that all targets use the same ringbuffer size */
297 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
298 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
299 
300 #define MSM_GPU_RB_CNTL_DEFAULT \
301 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
302 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
303 
304 static inline bool msm_gpu_active(struct msm_gpu *gpu)
305 {
306 	int i;
307 
308 	for (i = 0; i < gpu->nr_rings; i++) {
309 		struct msm_ringbuffer *ring = gpu->rb[i];
310 
311 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
312 			return true;
313 	}
314 
315 	return false;
316 }
317 
318 /* Perf-Counters:
319  * The select_reg and select_val are just there for the benefit of the child
320  * class that actually enables the perf counter..  but msm_gpu base class
321  * will handle sampling/displaying the counters.
322  */
323 
324 struct msm_gpu_perfcntr {
325 	uint32_t select_reg;
326 	uint32_t sample_reg;
327 	uint32_t select_val;
328 	const char *name;
329 };
330 
331 /*
332  * The number of priority levels provided by drm gpu scheduler.  The
333  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
334  * cases, so we don't use it (no need for kernel generated jobs).
335  */
336 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
337 
338 /**
339  * struct msm_file_private - per-drm_file context
340  *
341  * @queuelock:    synchronizes access to submitqueues list
342  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
343  * @queueid:      counter incremented each time a submitqueue is created,
344  *                used to assign &msm_gpu_submitqueue.id
345  * @aspace:       the per-process GPU address-space
346  * @ref:          reference count
347  * @seqno:        unique per process seqno
348  */
349 struct msm_file_private {
350 	rwlock_t queuelock;
351 	struct list_head submitqueues;
352 	int queueid;
353 	struct msm_gem_address_space *aspace;
354 	struct kref ref;
355 	int seqno;
356 
357 	/**
358 	 * sysprof:
359 	 *
360 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
361 	 * intended to be used by system profiling tools like Mesa's
362 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
363 	 *
364 	 * Setting a value of 1 will preserve performance counters across
365 	 * context switches.  Setting a value of 2 will in addition
366 	 * suppress suspend.  (Performance counters lose state across
367 	 * power collapse, which is undesirable for profiling in some
368 	 * cases.)
369 	 *
370 	 * The value automatically reverts to zero when the drm device
371 	 * file is closed.
372 	 */
373 	int sysprof;
374 
375 	/** comm: Overridden task comm, see MSM_PARAM_COMM */
376 	char *comm;
377 
378 	/** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */
379 	char *cmdline;
380 
381 	/**
382 	 * elapsed:
383 	 *
384 	 * The total (cumulative) elapsed time GPU was busy with rendering
385 	 * from this context in ns.
386 	 */
387 	uint64_t elapsed_ns;
388 
389 	/**
390 	 * cycles:
391 	 *
392 	 * The total (cumulative) GPU cycles elapsed attributed to this
393 	 * context.
394 	 */
395 	uint64_t cycles;
396 
397 	/**
398 	 * entities:
399 	 *
400 	 * Table of per-priority-level sched entities used by submitqueues
401 	 * associated with this &drm_file.  Because some userspace apps
402 	 * make assumptions about rendering from multiple gl contexts
403 	 * (of the same priority) within the process happening in FIFO
404 	 * order without requiring any fencing beyond MakeCurrent(), we
405 	 * create at most one &drm_sched_entity per-process per-priority-
406 	 * level.
407 	 */
408 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
409 };
410 
411 /**
412  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
413  *
414  * @gpu:        the gpu instance
415  * @prio:       the userspace priority level
416  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
417  * @sched_prio: [out] the gpu scheduler priority level which the userspace
418  *              priority maps to
419  *
420  * With drm/scheduler providing it's own level of prioritization, our total
421  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
422  * Each ring is associated with it's own scheduler instance.  However, our
423  * UABI is that lower numerical values are higher priority.  So mapping the
424  * single userspace priority level into ring_nr and sched_prio takes some
425  * care.  The userspace provided priority (when a submitqueue is created)
426  * is mapped to ring nr and scheduler priority as such:
427  *
428  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
429  *   sched_prio = NR_SCHED_PRIORITIES -
430  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
431  *
432  * This allows generations without preemption (nr_rings==1) to have some
433  * amount of prioritization, and provides more priority levels for gens
434  * that do have preemption.
435  */
436 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
437 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
438 {
439 	unsigned rn, sp;
440 
441 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
442 
443 	/* invert sched priority to map to higher-numeric-is-higher-
444 	 * priority convention
445 	 */
446 	sp = NR_SCHED_PRIORITIES - sp - 1;
447 
448 	if (rn >= gpu->nr_rings)
449 		return -EINVAL;
450 
451 	*ring_nr = rn;
452 	*sched_prio = sp;
453 
454 	return 0;
455 }
456 
457 /**
458  * struct msm_gpu_submitqueues - Userspace created context.
459  *
460  * A submitqueue is associated with a gl context or vk queue (or equiv)
461  * in userspace.
462  *
463  * @id:        userspace id for the submitqueue, unique within the drm_file
464  * @flags:     userspace flags for the submitqueue, specified at creation
465  *             (currently unusued)
466  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
467  *             by the submitqueue's priority
468  * @faults:    the number of GPU hangs associated with this submitqueue
469  * @last_fence: the sequence number of the last allocated fence (for error
470  *             checking)
471  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
472  *             which set of pgtables do submits jobs associated with the
473  *             submitqueue use)
474  * @node:      node in the context's list of submitqueues
475  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
476  *             seqno, protected by submitqueue lock
477  * @idr_lock:  for serializing access to fence_idr
478  * @lock:      submitqueue lock for serializing submits on a queue
479  * @ref:       reference count
480  * @entity:    the submit job-queue
481  */
482 struct msm_gpu_submitqueue {
483 	int id;
484 	u32 flags;
485 	u32 ring_nr;
486 	int faults;
487 	uint32_t last_fence;
488 	struct msm_file_private *ctx;
489 	struct list_head node;
490 	struct idr fence_idr;
491 	struct mutex idr_lock;
492 	struct mutex lock;
493 	struct kref ref;
494 	struct drm_sched_entity *entity;
495 };
496 
497 struct msm_gpu_state_bo {
498 	u64 iova;
499 	size_t size;
500 	void *data;
501 	bool encoded;
502 	char name[32];
503 };
504 
505 struct msm_gpu_state {
506 	struct kref ref;
507 	struct timespec64 time;
508 
509 	struct {
510 		u64 iova;
511 		u32 fence;
512 		u32 seqno;
513 		u32 rptr;
514 		u32 wptr;
515 		void *data;
516 		int data_size;
517 		bool encoded;
518 	} ring[MSM_GPU_MAX_RINGS];
519 
520 	int nr_registers;
521 	u32 *registers;
522 
523 	u32 rbbm_status;
524 
525 	char *comm;
526 	char *cmd;
527 
528 	struct msm_gpu_fault_info fault_info;
529 
530 	int nr_bos;
531 	struct msm_gpu_state_bo *bos;
532 };
533 
534 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
535 {
536 	msm_writel(data, gpu->mmio + (reg << 2));
537 }
538 
539 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
540 {
541 	return msm_readl(gpu->mmio + (reg << 2));
542 }
543 
544 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
545 {
546 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
547 }
548 
549 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
550 {
551 	u64 val;
552 
553 	/*
554 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
555 	 * not quad word aligned and 2) the GPU hardware designers have a bit
556 	 * of a history of putting registers where they fit, especially in
557 	 * spins. The longer a GPU family goes the higher the chance that
558 	 * we'll get burned.  We could do a series of validity checks if we
559 	 * wanted to, but really is a readq() that much better? Nah.
560 	 */
561 
562 	/*
563 	 * For some lo/hi registers (like perfcounters), the hi value is latched
564 	 * when the lo is read, so make sure to read the lo first to trigger
565 	 * that
566 	 */
567 	val = (u64) msm_readl(gpu->mmio + (reg << 2));
568 	val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32);
569 
570 	return val;
571 }
572 
573 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
574 {
575 	/* Why not a writeq here? Read the screed above */
576 	msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2));
577 	msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
578 }
579 
580 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
581 int msm_gpu_pm_resume(struct msm_gpu *gpu);
582 
583 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
584 			 struct drm_printer *p);
585 
586 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
587 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
588 		u32 id);
589 int msm_submitqueue_create(struct drm_device *drm,
590 		struct msm_file_private *ctx,
591 		u32 prio, u32 flags, u32 *id);
592 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
593 		struct drm_msm_submitqueue_query *args);
594 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
595 void msm_submitqueue_close(struct msm_file_private *ctx);
596 
597 void msm_submitqueue_destroy(struct kref *kref);
598 
599 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
600 				 struct msm_gpu *gpu, int sysprof);
601 void __msm_file_private_destroy(struct kref *kref);
602 
603 static inline void msm_file_private_put(struct msm_file_private *ctx)
604 {
605 	kref_put(&ctx->ref, __msm_file_private_destroy);
606 }
607 
608 static inline struct msm_file_private *msm_file_private_get(
609 	struct msm_file_private *ctx)
610 {
611 	kref_get(&ctx->ref);
612 	return ctx;
613 }
614 
615 void msm_devfreq_init(struct msm_gpu *gpu);
616 void msm_devfreq_cleanup(struct msm_gpu *gpu);
617 void msm_devfreq_resume(struct msm_gpu *gpu);
618 void msm_devfreq_suspend(struct msm_gpu *gpu);
619 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
620 void msm_devfreq_active(struct msm_gpu *gpu);
621 void msm_devfreq_idle(struct msm_gpu *gpu);
622 
623 int msm_gpu_hw_init(struct msm_gpu *gpu);
624 
625 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
626 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
627 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
628 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
629 
630 void msm_gpu_retire(struct msm_gpu *gpu);
631 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
632 
633 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
634 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
635 		const char *name, struct msm_gpu_config *config);
636 
637 struct msm_gem_address_space *
638 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
639 
640 void msm_gpu_cleanup(struct msm_gpu *gpu);
641 
642 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
643 void __init adreno_register(void);
644 void __exit adreno_unregister(void);
645 
646 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
647 {
648 	if (queue)
649 		kref_put(&queue->ref, msm_submitqueue_destroy);
650 }
651 
652 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
653 {
654 	struct msm_gpu_state *state = NULL;
655 
656 	mutex_lock(&gpu->lock);
657 
658 	if (gpu->crashstate) {
659 		kref_get(&gpu->crashstate->ref);
660 		state = gpu->crashstate;
661 	}
662 
663 	mutex_unlock(&gpu->lock);
664 
665 	return state;
666 }
667 
668 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
669 {
670 	mutex_lock(&gpu->lock);
671 
672 	if (gpu->crashstate) {
673 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
674 			gpu->crashstate = NULL;
675 	}
676 
677 	mutex_unlock(&gpu->lock);
678 }
679 
680 /*
681  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
682  * support expanded privileges
683  */
684 #define check_apriv(gpu, flags) \
685 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
686 
687 
688 #endif /* __MSM_GPU_H__ */
689