xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision c8ec3743)
1 /*
2  * Copyright (C) 2013 Red Hat
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __MSM_GPU_H__
19 #define __MSM_GPU_H__
20 
21 #include <linux/clk.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include "msm_drv.h"
25 #include "msm_fence.h"
26 #include "msm_ringbuffer.h"
27 
28 struct msm_gem_submit;
29 struct msm_gpu_perfcntr;
30 struct msm_gpu_state;
31 
32 struct msm_gpu_config {
33 	const char *ioname;
34 	uint64_t va_start;
35 	uint64_t va_end;
36 	unsigned int nr_rings;
37 };
38 
39 /* So far, with hardware that I've seen to date, we can have:
40  *  + zero, one, or two z180 2d cores
41  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
42  *    for the CP seems to implement some different PM4 packet types
43  *    but the basics of cmdstream submission are the same)
44  *
45  * Which means that the eventual complete "class" hierarchy, once
46  * support for all past and present hw is in place, becomes:
47  *  + msm_gpu
48  *    + adreno_gpu
49  *      + a3xx_gpu
50  *      + a2xx_gpu
51  *    + z180_gpu
52  */
53 struct msm_gpu_funcs {
54 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
55 	int (*hw_init)(struct msm_gpu *gpu);
56 	int (*pm_suspend)(struct msm_gpu *gpu);
57 	int (*pm_resume)(struct msm_gpu *gpu);
58 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
59 			struct msm_file_private *ctx);
60 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
61 	irqreturn_t (*irq)(struct msm_gpu *irq);
62 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
63 	void (*recover)(struct msm_gpu *gpu);
64 	void (*destroy)(struct msm_gpu *gpu);
65 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
66 	/* show GPU status in debugfs: */
67 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
68 			struct drm_printer *p);
69 	/* for generation specific debugfs: */
70 	int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
71 #endif
72 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
73 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
74 	int (*gpu_state_put)(struct msm_gpu_state *state);
75 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
76 	void (*gpu_set_freq)(struct msm_gpu *gpu, unsigned long freq);
77 };
78 
79 struct msm_gpu {
80 	const char *name;
81 	struct drm_device *dev;
82 	struct platform_device *pdev;
83 	const struct msm_gpu_funcs *funcs;
84 
85 	/* performance counters (hw & sw): */
86 	spinlock_t perf_lock;
87 	bool perfcntr_active;
88 	struct {
89 		bool active;
90 		ktime_t time;
91 	} last_sample;
92 	uint32_t totaltime, activetime;    /* sw counters */
93 	uint32_t last_cntrs[5];            /* hw counters */
94 	const struct msm_gpu_perfcntr *perfcntrs;
95 	uint32_t num_perfcntrs;
96 
97 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
98 	int nr_rings;
99 
100 	/* list of GEM active objects: */
101 	struct list_head active_list;
102 
103 	/* does gpu need hw_init? */
104 	bool needs_hw_init;
105 
106 	/* worker for handling active-list retiring: */
107 	struct work_struct retire_work;
108 
109 	void __iomem *mmio;
110 	int irq;
111 
112 	struct msm_gem_address_space *aspace;
113 
114 	/* Power Control: */
115 	struct regulator *gpu_reg, *gpu_cx;
116 	struct clk_bulk_data *grp_clks;
117 	int nr_clocks;
118 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
119 	uint32_t fast_rate;
120 
121 	/* Hang and Inactivity Detection:
122 	 */
123 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
124 
125 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
126 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
127 	struct timer_list hangcheck_timer;
128 	struct work_struct recover_work;
129 
130 	struct drm_gem_object *memptrs_bo;
131 
132 	struct {
133 		struct devfreq *devfreq;
134 		u64 busy_cycles;
135 		ktime_t time;
136 	} devfreq;
137 
138 	struct msm_gpu_state *crashstate;
139 };
140 
141 /* It turns out that all targets use the same ringbuffer size */
142 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
143 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
144 
145 #define MSM_GPU_RB_CNTL_DEFAULT \
146 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
147 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
148 
149 static inline bool msm_gpu_active(struct msm_gpu *gpu)
150 {
151 	int i;
152 
153 	for (i = 0; i < gpu->nr_rings; i++) {
154 		struct msm_ringbuffer *ring = gpu->rb[i];
155 
156 		if (ring->seqno > ring->memptrs->fence)
157 			return true;
158 	}
159 
160 	return false;
161 }
162 
163 /* Perf-Counters:
164  * The select_reg and select_val are just there for the benefit of the child
165  * class that actually enables the perf counter..  but msm_gpu base class
166  * will handle sampling/displaying the counters.
167  */
168 
169 struct msm_gpu_perfcntr {
170 	uint32_t select_reg;
171 	uint32_t sample_reg;
172 	uint32_t select_val;
173 	const char *name;
174 };
175 
176 struct msm_gpu_submitqueue {
177 	int id;
178 	u32 flags;
179 	u32 prio;
180 	int faults;
181 	struct list_head node;
182 	struct kref ref;
183 };
184 
185 struct msm_gpu_state_bo {
186 	u64 iova;
187 	size_t size;
188 	void *data;
189 	bool encoded;
190 };
191 
192 struct msm_gpu_state {
193 	struct kref ref;
194 	struct timespec64 time;
195 
196 	struct {
197 		u64 iova;
198 		u32 fence;
199 		u32 seqno;
200 		u32 rptr;
201 		u32 wptr;
202 		void *data;
203 		int data_size;
204 		bool encoded;
205 	} ring[MSM_GPU_MAX_RINGS];
206 
207 	int nr_registers;
208 	u32 *registers;
209 
210 	u32 rbbm_status;
211 
212 	char *comm;
213 	char *cmd;
214 
215 	int nr_bos;
216 	struct msm_gpu_state_bo *bos;
217 };
218 
219 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
220 {
221 	msm_writel(data, gpu->mmio + (reg << 2));
222 }
223 
224 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
225 {
226 	return msm_readl(gpu->mmio + (reg << 2));
227 }
228 
229 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
230 {
231 	uint32_t val = gpu_read(gpu, reg);
232 
233 	val &= ~mask;
234 	gpu_write(gpu, reg, val | or);
235 }
236 
237 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
238 {
239 	u64 val;
240 
241 	/*
242 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
243 	 * not quad word aligned and 2) the GPU hardware designers have a bit
244 	 * of a history of putting registers where they fit, especially in
245 	 * spins. The longer a GPU family goes the higher the chance that
246 	 * we'll get burned.  We could do a series of validity checks if we
247 	 * wanted to, but really is a readq() that much better? Nah.
248 	 */
249 
250 	/*
251 	 * For some lo/hi registers (like perfcounters), the hi value is latched
252 	 * when the lo is read, so make sure to read the lo first to trigger
253 	 * that
254 	 */
255 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
256 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
257 
258 	return val;
259 }
260 
261 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
262 {
263 	/* Why not a writeq here? Read the screed above */
264 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
265 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
266 }
267 
268 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
269 int msm_gpu_pm_resume(struct msm_gpu *gpu);
270 void msm_gpu_resume_devfreq(struct msm_gpu *gpu);
271 
272 int msm_gpu_hw_init(struct msm_gpu *gpu);
273 
274 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
275 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
276 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
277 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
278 
279 void msm_gpu_retire(struct msm_gpu *gpu);
280 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
281 		struct msm_file_private *ctx);
282 
283 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
284 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
285 		const char *name, struct msm_gpu_config *config);
286 
287 void msm_gpu_cleanup(struct msm_gpu *gpu);
288 
289 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
290 void __init adreno_register(void);
291 void __exit adreno_unregister(void);
292 
293 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
294 {
295 	if (queue)
296 		kref_put(&queue->ref, msm_submitqueue_destroy);
297 }
298 
299 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
300 {
301 	struct msm_gpu_state *state = NULL;
302 
303 	mutex_lock(&gpu->dev->struct_mutex);
304 
305 	if (gpu->crashstate) {
306 		kref_get(&gpu->crashstate->ref);
307 		state = gpu->crashstate;
308 	}
309 
310 	mutex_unlock(&gpu->dev->struct_mutex);
311 
312 	return state;
313 }
314 
315 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
316 {
317 	mutex_lock(&gpu->dev->struct_mutex);
318 
319 	if (gpu->crashstate) {
320 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
321 			gpu->crashstate = NULL;
322 	}
323 
324 	mutex_unlock(&gpu->dev->struct_mutex);
325 }
326 
327 #endif /* __MSM_GPU_H__ */
328