1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/interconnect.h> 13 #include <linux/pm_opp.h> 14 #include <linux/regulator/consumer.h> 15 16 #include "msm_drv.h" 17 #include "msm_fence.h" 18 #include "msm_ringbuffer.h" 19 #include "msm_gem.h" 20 21 struct msm_gem_submit; 22 struct msm_gpu_perfcntr; 23 struct msm_gpu_state; 24 25 struct msm_gpu_config { 26 const char *ioname; 27 unsigned int nr_rings; 28 }; 29 30 /* So far, with hardware that I've seen to date, we can have: 31 * + zero, one, or two z180 2d cores 32 * + a3xx or a2xx 3d core, which share a common CP (the firmware 33 * for the CP seems to implement some different PM4 packet types 34 * but the basics of cmdstream submission are the same) 35 * 36 * Which means that the eventual complete "class" hierarchy, once 37 * support for all past and present hw is in place, becomes: 38 * + msm_gpu 39 * + adreno_gpu 40 * + a3xx_gpu 41 * + a2xx_gpu 42 * + z180_gpu 43 */ 44 struct msm_gpu_funcs { 45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 46 int (*hw_init)(struct msm_gpu *gpu); 47 int (*pm_suspend)(struct msm_gpu *gpu); 48 int (*pm_resume)(struct msm_gpu *gpu); 49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 51 irqreturn_t (*irq)(struct msm_gpu *irq); 52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 53 void (*recover)(struct msm_gpu *gpu); 54 void (*destroy)(struct msm_gpu *gpu); 55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 56 /* show GPU status in debugfs: */ 57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 58 struct drm_printer *p); 59 /* for generation specific debugfs: */ 60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 61 #endif 62 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 64 int (*gpu_state_put)(struct msm_gpu_state *state); 65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 67 struct msm_gem_address_space *(*create_address_space) 68 (struct msm_gpu *gpu, struct platform_device *pdev); 69 struct msm_gem_address_space *(*create_private_address_space) 70 (struct msm_gpu *gpu); 71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 72 }; 73 74 /* Additional state for iommu faults: */ 75 struct msm_gpu_fault_info { 76 u64 ttbr0; 77 unsigned long iova; 78 int flags; 79 const char *type; 80 const char *block; 81 }; 82 83 /** 84 * struct msm_gpu_devfreq - devfreq related state 85 */ 86 struct msm_gpu_devfreq { 87 /** devfreq: devfreq instance */ 88 struct devfreq *devfreq; 89 90 /** 91 * busy_cycles: 92 * 93 * Used by implementation of gpu->gpu_busy() to track the last 94 * busy counter value, for calculating elapsed busy cycles since 95 * last sampling period. 96 */ 97 u64 busy_cycles; 98 99 /** time: Time of last sampling period. */ 100 ktime_t time; 101 102 /** idle_time: Time of last transition to idle: */ 103 ktime_t idle_time; 104 105 /** 106 * idle_freq: 107 * 108 * Shadow frequency used while the GPU is idle. From the PoV of 109 * the devfreq governor, we are continuing to sample busyness and 110 * adjust frequency while the GPU is idle, but we use this shadow 111 * value as the GPU is actually clamped to minimum frequency while 112 * it is inactive. 113 */ 114 unsigned long idle_freq; 115 }; 116 117 struct msm_gpu { 118 const char *name; 119 struct drm_device *dev; 120 struct platform_device *pdev; 121 const struct msm_gpu_funcs *funcs; 122 123 struct adreno_smmu_priv adreno_smmu; 124 125 /* performance counters (hw & sw): */ 126 spinlock_t perf_lock; 127 bool perfcntr_active; 128 struct { 129 bool active; 130 ktime_t time; 131 } last_sample; 132 uint32_t totaltime, activetime; /* sw counters */ 133 uint32_t last_cntrs[5]; /* hw counters */ 134 const struct msm_gpu_perfcntr *perfcntrs; 135 uint32_t num_perfcntrs; 136 137 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 138 int nr_rings; 139 140 /* 141 * List of GEM active objects on this gpu. Protected by 142 * msm_drm_private::mm_lock 143 */ 144 struct list_head active_list; 145 146 /** 147 * active_submits: 148 * 149 * The number of submitted but not yet retired submits, used to 150 * determine transitions between active and idle. 151 * 152 * Protected by lock 153 */ 154 int active_submits; 155 156 /** lock: protects active_submits and idle/active transitions */ 157 struct mutex active_lock; 158 159 /* does gpu need hw_init? */ 160 bool needs_hw_init; 161 162 /* number of GPU hangs (for all contexts) */ 163 int global_faults; 164 165 void __iomem *mmio; 166 int irq; 167 168 struct msm_gem_address_space *aspace; 169 170 /* Power Control: */ 171 struct regulator *gpu_reg, *gpu_cx; 172 struct clk_bulk_data *grp_clks; 173 int nr_clocks; 174 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 175 uint32_t fast_rate; 176 177 /* Hang and Inactivity Detection: 178 */ 179 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 180 181 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 182 struct timer_list hangcheck_timer; 183 184 /* Fault info for most recent iova fault: */ 185 struct msm_gpu_fault_info fault_info; 186 187 /* work for handling GPU ioval faults: */ 188 struct kthread_work fault_work; 189 190 /* work for handling GPU recovery: */ 191 struct kthread_work recover_work; 192 193 /* work for handling active-list retiring: */ 194 struct kthread_work retire_work; 195 196 /* worker for retire/recover: */ 197 struct kthread_worker *worker; 198 199 struct drm_gem_object *memptrs_bo; 200 201 struct msm_gpu_devfreq devfreq; 202 203 uint32_t suspend_count; 204 205 struct msm_gpu_state *crashstate; 206 /* True if the hardware supports expanded apriv (a650 and newer) */ 207 bool hw_apriv; 208 209 struct thermal_cooling_device *cooling; 210 }; 211 212 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 213 { 214 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 215 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 216 } 217 218 /* It turns out that all targets use the same ringbuffer size */ 219 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 220 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 221 222 #define MSM_GPU_RB_CNTL_DEFAULT \ 223 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 224 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 225 226 static inline bool msm_gpu_active(struct msm_gpu *gpu) 227 { 228 int i; 229 230 for (i = 0; i < gpu->nr_rings; i++) { 231 struct msm_ringbuffer *ring = gpu->rb[i]; 232 233 if (ring->seqno > ring->memptrs->fence) 234 return true; 235 } 236 237 return false; 238 } 239 240 /* Perf-Counters: 241 * The select_reg and select_val are just there for the benefit of the child 242 * class that actually enables the perf counter.. but msm_gpu base class 243 * will handle sampling/displaying the counters. 244 */ 245 246 struct msm_gpu_perfcntr { 247 uint32_t select_reg; 248 uint32_t sample_reg; 249 uint32_t select_val; 250 const char *name; 251 }; 252 253 /* 254 * The number of priority levels provided by drm gpu scheduler. The 255 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 256 * cases, so we don't use it (no need for kernel generated jobs). 257 */ 258 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 259 260 /** 261 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 262 * 263 * @gpu: the gpu instance 264 * @prio: the userspace priority level 265 * @ring_nr: [out] the ringbuffer the userspace priority maps to 266 * @sched_prio: [out] the gpu scheduler priority level which the userspace 267 * priority maps to 268 * 269 * With drm/scheduler providing it's own level of prioritization, our total 270 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 271 * Each ring is associated with it's own scheduler instance. However, our 272 * UABI is that lower numerical values are higher priority. So mapping the 273 * single userspace priority level into ring_nr and sched_prio takes some 274 * care. The userspace provided priority (when a submitqueue is created) 275 * is mapped to ring nr and scheduler priority as such: 276 * 277 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 278 * sched_prio = NR_SCHED_PRIORITIES - 279 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 280 * 281 * This allows generations without preemption (nr_rings==1) to have some 282 * amount of prioritization, and provides more priority levels for gens 283 * that do have preemption. 284 */ 285 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 286 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 287 { 288 unsigned rn, sp; 289 290 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 291 292 /* invert sched priority to map to higher-numeric-is-higher- 293 * priority convention 294 */ 295 sp = NR_SCHED_PRIORITIES - sp - 1; 296 297 if (rn >= gpu->nr_rings) 298 return -EINVAL; 299 300 *ring_nr = rn; 301 *sched_prio = sp; 302 303 return 0; 304 } 305 306 /** 307 * A submitqueue is associated with a gl context or vk queue (or equiv) 308 * in userspace. 309 * 310 * @id: userspace id for the submitqueue, unique within the drm_file 311 * @flags: userspace flags for the submitqueue, specified at creation 312 * (currently unusued) 313 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 314 * by the submitqueue's priority 315 * @faults: the number of GPU hangs associated with this submitqueue 316 * @ctx: the per-drm_file context associated with the submitqueue (ie. 317 * which set of pgtables do submits jobs associated with the 318 * submitqueue use) 319 * @node: node in the context's list of submitqueues 320 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 321 * seqno, protected by submitqueue lock 322 * @lock: submitqueue lock 323 * @ref: reference count 324 * @entity: the submit job-queue 325 */ 326 struct msm_gpu_submitqueue { 327 int id; 328 u32 flags; 329 u32 ring_nr; 330 int faults; 331 struct msm_file_private *ctx; 332 struct list_head node; 333 struct idr fence_idr; 334 struct mutex lock; 335 struct kref ref; 336 struct drm_sched_entity entity; 337 }; 338 339 struct msm_gpu_state_bo { 340 u64 iova; 341 size_t size; 342 void *data; 343 bool encoded; 344 }; 345 346 struct msm_gpu_state { 347 struct kref ref; 348 struct timespec64 time; 349 350 struct { 351 u64 iova; 352 u32 fence; 353 u32 seqno; 354 u32 rptr; 355 u32 wptr; 356 void *data; 357 int data_size; 358 bool encoded; 359 } ring[MSM_GPU_MAX_RINGS]; 360 361 int nr_registers; 362 u32 *registers; 363 364 u32 rbbm_status; 365 366 char *comm; 367 char *cmd; 368 369 struct msm_gpu_fault_info fault_info; 370 371 int nr_bos; 372 struct msm_gpu_state_bo *bos; 373 }; 374 375 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 376 { 377 msm_writel(data, gpu->mmio + (reg << 2)); 378 } 379 380 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 381 { 382 return msm_readl(gpu->mmio + (reg << 2)); 383 } 384 385 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 386 { 387 msm_rmw(gpu->mmio + (reg << 2), mask, or); 388 } 389 390 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 391 { 392 u64 val; 393 394 /* 395 * Why not a readq here? Two reasons: 1) many of the LO registers are 396 * not quad word aligned and 2) the GPU hardware designers have a bit 397 * of a history of putting registers where they fit, especially in 398 * spins. The longer a GPU family goes the higher the chance that 399 * we'll get burned. We could do a series of validity checks if we 400 * wanted to, but really is a readq() that much better? Nah. 401 */ 402 403 /* 404 * For some lo/hi registers (like perfcounters), the hi value is latched 405 * when the lo is read, so make sure to read the lo first to trigger 406 * that 407 */ 408 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 409 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 410 411 return val; 412 } 413 414 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 415 { 416 /* Why not a writeq here? Read the screed above */ 417 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 418 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 419 } 420 421 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 422 int msm_gpu_pm_resume(struct msm_gpu *gpu); 423 424 void msm_devfreq_init(struct msm_gpu *gpu); 425 void msm_devfreq_cleanup(struct msm_gpu *gpu); 426 void msm_devfreq_resume(struct msm_gpu *gpu); 427 void msm_devfreq_suspend(struct msm_gpu *gpu); 428 void msm_devfreq_active(struct msm_gpu *gpu); 429 void msm_devfreq_idle(struct msm_gpu *gpu); 430 431 int msm_gpu_hw_init(struct msm_gpu *gpu); 432 433 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 434 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 435 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 436 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 437 438 void msm_gpu_retire(struct msm_gpu *gpu); 439 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 440 441 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 442 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 443 const char *name, struct msm_gpu_config *config); 444 445 struct msm_gem_address_space * 446 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 447 448 void msm_gpu_cleanup(struct msm_gpu *gpu); 449 450 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 451 void __init adreno_register(void); 452 void __exit adreno_unregister(void); 453 454 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 455 { 456 if (queue) 457 kref_put(&queue->ref, msm_submitqueue_destroy); 458 } 459 460 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 461 { 462 struct msm_gpu_state *state = NULL; 463 464 mutex_lock(&gpu->dev->struct_mutex); 465 466 if (gpu->crashstate) { 467 kref_get(&gpu->crashstate->ref); 468 state = gpu->crashstate; 469 } 470 471 mutex_unlock(&gpu->dev->struct_mutex); 472 473 return state; 474 } 475 476 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 477 { 478 mutex_lock(&gpu->dev->struct_mutex); 479 480 if (gpu->crashstate) { 481 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 482 gpu->crashstate = NULL; 483 } 484 485 mutex_unlock(&gpu->dev->struct_mutex); 486 } 487 488 /* 489 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 490 * support expanded privileges 491 */ 492 #define check_apriv(gpu, flags) \ 493 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 494 495 496 #endif /* __MSM_GPU_H__ */ 497