xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * Copyright (C) 2013 Red Hat
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __MSM_GPU_H__
19 #define __MSM_GPU_H__
20 
21 #include <linux/clk.h>
22 #include <linux/interconnect.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "msm_drv.h"
26 #include "msm_fence.h"
27 #include "msm_ringbuffer.h"
28 
29 struct msm_gem_submit;
30 struct msm_gpu_perfcntr;
31 struct msm_gpu_state;
32 
33 struct msm_gpu_config {
34 	const char *ioname;
35 	uint64_t va_start;
36 	uint64_t va_end;
37 	unsigned int nr_rings;
38 };
39 
40 /* So far, with hardware that I've seen to date, we can have:
41  *  + zero, one, or two z180 2d cores
42  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
43  *    for the CP seems to implement some different PM4 packet types
44  *    but the basics of cmdstream submission are the same)
45  *
46  * Which means that the eventual complete "class" hierarchy, once
47  * support for all past and present hw is in place, becomes:
48  *  + msm_gpu
49  *    + adreno_gpu
50  *      + a3xx_gpu
51  *      + a2xx_gpu
52  *    + z180_gpu
53  */
54 struct msm_gpu_funcs {
55 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
56 	int (*hw_init)(struct msm_gpu *gpu);
57 	int (*pm_suspend)(struct msm_gpu *gpu);
58 	int (*pm_resume)(struct msm_gpu *gpu);
59 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
60 			struct msm_file_private *ctx);
61 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 	irqreturn_t (*irq)(struct msm_gpu *irq);
63 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 	void (*recover)(struct msm_gpu *gpu);
65 	void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 	/* show GPU status in debugfs: */
68 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 			struct drm_printer *p);
70 	/* for generation specific debugfs: */
71 	int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
74 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
75 	int (*gpu_state_put)(struct msm_gpu_state *state);
76 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
77 	void (*gpu_set_freq)(struct msm_gpu *gpu, unsigned long freq);
78 };
79 
80 struct msm_gpu {
81 	const char *name;
82 	struct drm_device *dev;
83 	struct platform_device *pdev;
84 	const struct msm_gpu_funcs *funcs;
85 
86 	/* performance counters (hw & sw): */
87 	spinlock_t perf_lock;
88 	bool perfcntr_active;
89 	struct {
90 		bool active;
91 		ktime_t time;
92 	} last_sample;
93 	uint32_t totaltime, activetime;    /* sw counters */
94 	uint32_t last_cntrs[5];            /* hw counters */
95 	const struct msm_gpu_perfcntr *perfcntrs;
96 	uint32_t num_perfcntrs;
97 
98 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
99 	int nr_rings;
100 
101 	/* list of GEM active objects: */
102 	struct list_head active_list;
103 
104 	/* does gpu need hw_init? */
105 	bool needs_hw_init;
106 
107 	/* number of GPU hangs (for all contexts) */
108 	int global_faults;
109 
110 	/* worker for handling active-list retiring: */
111 	struct work_struct retire_work;
112 
113 	void __iomem *mmio;
114 	int irq;
115 
116 	struct msm_gem_address_space *aspace;
117 
118 	/* Power Control: */
119 	struct regulator *gpu_reg, *gpu_cx;
120 	struct clk_bulk_data *grp_clks;
121 	int nr_clocks;
122 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
123 	uint32_t fast_rate;
124 
125 	struct icc_path *icc_path;
126 
127 	/* Hang and Inactivity Detection:
128 	 */
129 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
130 
131 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
132 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
133 	struct timer_list hangcheck_timer;
134 	struct work_struct recover_work;
135 
136 	struct drm_gem_object *memptrs_bo;
137 
138 	struct {
139 		struct devfreq *devfreq;
140 		u64 busy_cycles;
141 		ktime_t time;
142 	} devfreq;
143 
144 	struct msm_gpu_state *crashstate;
145 };
146 
147 /* It turns out that all targets use the same ringbuffer size */
148 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
149 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
150 
151 #define MSM_GPU_RB_CNTL_DEFAULT \
152 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
153 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
154 
155 static inline bool msm_gpu_active(struct msm_gpu *gpu)
156 {
157 	int i;
158 
159 	for (i = 0; i < gpu->nr_rings; i++) {
160 		struct msm_ringbuffer *ring = gpu->rb[i];
161 
162 		if (ring->seqno > ring->memptrs->fence)
163 			return true;
164 	}
165 
166 	return false;
167 }
168 
169 /* Perf-Counters:
170  * The select_reg and select_val are just there for the benefit of the child
171  * class that actually enables the perf counter..  but msm_gpu base class
172  * will handle sampling/displaying the counters.
173  */
174 
175 struct msm_gpu_perfcntr {
176 	uint32_t select_reg;
177 	uint32_t sample_reg;
178 	uint32_t select_val;
179 	const char *name;
180 };
181 
182 struct msm_gpu_submitqueue {
183 	int id;
184 	u32 flags;
185 	u32 prio;
186 	int faults;
187 	struct list_head node;
188 	struct kref ref;
189 };
190 
191 struct msm_gpu_state_bo {
192 	u64 iova;
193 	size_t size;
194 	void *data;
195 	bool encoded;
196 };
197 
198 struct msm_gpu_state {
199 	struct kref ref;
200 	struct timespec64 time;
201 
202 	struct {
203 		u64 iova;
204 		u32 fence;
205 		u32 seqno;
206 		u32 rptr;
207 		u32 wptr;
208 		void *data;
209 		int data_size;
210 		bool encoded;
211 	} ring[MSM_GPU_MAX_RINGS];
212 
213 	int nr_registers;
214 	u32 *registers;
215 
216 	u32 rbbm_status;
217 
218 	char *comm;
219 	char *cmd;
220 
221 	int nr_bos;
222 	struct msm_gpu_state_bo *bos;
223 };
224 
225 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
226 {
227 	msm_writel(data, gpu->mmio + (reg << 2));
228 }
229 
230 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
231 {
232 	return msm_readl(gpu->mmio + (reg << 2));
233 }
234 
235 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
236 {
237 	uint32_t val = gpu_read(gpu, reg);
238 
239 	val &= ~mask;
240 	gpu_write(gpu, reg, val | or);
241 }
242 
243 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
244 {
245 	u64 val;
246 
247 	/*
248 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
249 	 * not quad word aligned and 2) the GPU hardware designers have a bit
250 	 * of a history of putting registers where they fit, especially in
251 	 * spins. The longer a GPU family goes the higher the chance that
252 	 * we'll get burned.  We could do a series of validity checks if we
253 	 * wanted to, but really is a readq() that much better? Nah.
254 	 */
255 
256 	/*
257 	 * For some lo/hi registers (like perfcounters), the hi value is latched
258 	 * when the lo is read, so make sure to read the lo first to trigger
259 	 * that
260 	 */
261 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
262 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
263 
264 	return val;
265 }
266 
267 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
268 {
269 	/* Why not a writeq here? Read the screed above */
270 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
271 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
272 }
273 
274 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
275 int msm_gpu_pm_resume(struct msm_gpu *gpu);
276 void msm_gpu_resume_devfreq(struct msm_gpu *gpu);
277 
278 int msm_gpu_hw_init(struct msm_gpu *gpu);
279 
280 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
281 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
282 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
283 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
284 
285 void msm_gpu_retire(struct msm_gpu *gpu);
286 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
287 		struct msm_file_private *ctx);
288 
289 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
290 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
291 		const char *name, struct msm_gpu_config *config);
292 
293 void msm_gpu_cleanup(struct msm_gpu *gpu);
294 
295 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
296 void __init adreno_register(void);
297 void __exit adreno_unregister(void);
298 
299 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
300 {
301 	if (queue)
302 		kref_put(&queue->ref, msm_submitqueue_destroy);
303 }
304 
305 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
306 {
307 	struct msm_gpu_state *state = NULL;
308 
309 	mutex_lock(&gpu->dev->struct_mutex);
310 
311 	if (gpu->crashstate) {
312 		kref_get(&gpu->crashstate->ref);
313 		state = gpu->crashstate;
314 	}
315 
316 	mutex_unlock(&gpu->dev->struct_mutex);
317 
318 	return state;
319 }
320 
321 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
322 {
323 	mutex_lock(&gpu->dev->struct_mutex);
324 
325 	if (gpu->crashstate) {
326 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
327 			gpu->crashstate = NULL;
328 	}
329 
330 	mutex_unlock(&gpu->dev->struct_mutex);
331 }
332 
333 #endif /* __MSM_GPU_H__ */
334