xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15 
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20 
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24 
25 struct msm_gpu_config {
26 	const char *ioname;
27 	unsigned int nr_rings;
28 };
29 
30 /* So far, with hardware that I've seen to date, we can have:
31  *  + zero, one, or two z180 2d cores
32  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
33  *    for the CP seems to implement some different PM4 packet types
34  *    but the basics of cmdstream submission are the same)
35  *
36  * Which means that the eventual complete "class" hierarchy, once
37  * support for all past and present hw is in place, becomes:
38  *  + msm_gpu
39  *    + adreno_gpu
40  *      + a3xx_gpu
41  *      + a2xx_gpu
42  *    + z180_gpu
43  */
44 struct msm_gpu_funcs {
45 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 	int (*hw_init)(struct msm_gpu *gpu);
47 	int (*pm_suspend)(struct msm_gpu *gpu);
48 	int (*pm_resume)(struct msm_gpu *gpu);
49 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 	irqreturn_t (*irq)(struct msm_gpu *irq);
52 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 	void (*recover)(struct msm_gpu *gpu);
54 	void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 	/* show GPU status in debugfs: */
57 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 			struct drm_printer *p);
59 	/* for generation specific debugfs: */
60 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 	int (*gpu_state_put)(struct msm_gpu_state *state);
65 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 	struct msm_gem_address_space *(*create_address_space)
68 		(struct msm_gpu *gpu, struct platform_device *pdev);
69 	struct msm_gem_address_space *(*create_private_address_space)
70 		(struct msm_gpu *gpu);
71 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73 
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 	u64 ttbr0;
77 	unsigned long iova;
78 	int flags;
79 	const char *type;
80 	const char *block;
81 };
82 
83 /**
84  * struct msm_gpu_devfreq - devfreq related state
85  */
86 struct msm_gpu_devfreq {
87 	/** devfreq: devfreq instance */
88 	struct devfreq *devfreq;
89 
90 	/**
91 	 * busy_cycles:
92 	 *
93 	 * Used by implementation of gpu->gpu_busy() to track the last
94 	 * busy counter value, for calculating elapsed busy cycles since
95 	 * last sampling period.
96 	 */
97 	u64 busy_cycles;
98 
99 	/** time: Time of last sampling period. */
100 	ktime_t time;
101 
102 	/** idle_time: Time of last transition to idle: */
103 	ktime_t idle_time;
104 
105 	/**
106 	 * idle_freq:
107 	 *
108 	 * Shadow frequency used while the GPU is idle.  From the PoV of
109 	 * the devfreq governor, we are continuing to sample busyness and
110 	 * adjust frequency while the GPU is idle, but we use this shadow
111 	 * value as the GPU is actually clamped to minimum frequency while
112 	 * it is inactive.
113 	 */
114 	unsigned long idle_freq;
115 
116 	/**
117 	 * idle_work:
118 	 *
119 	 * Used to delay clamping to idle freq on active->idle transition.
120 	 */
121 	struct msm_hrtimer_work idle_work;
122 };
123 
124 struct msm_gpu {
125 	const char *name;
126 	struct drm_device *dev;
127 	struct platform_device *pdev;
128 	const struct msm_gpu_funcs *funcs;
129 
130 	struct adreno_smmu_priv adreno_smmu;
131 
132 	/* performance counters (hw & sw): */
133 	spinlock_t perf_lock;
134 	bool perfcntr_active;
135 	struct {
136 		bool active;
137 		ktime_t time;
138 	} last_sample;
139 	uint32_t totaltime, activetime;    /* sw counters */
140 	uint32_t last_cntrs[5];            /* hw counters */
141 	const struct msm_gpu_perfcntr *perfcntrs;
142 	uint32_t num_perfcntrs;
143 
144 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
145 	int nr_rings;
146 
147 	/*
148 	 * List of GEM active objects on this gpu.  Protected by
149 	 * msm_drm_private::mm_lock
150 	 */
151 	struct list_head active_list;
152 
153 	/**
154 	 * active_submits:
155 	 *
156 	 * The number of submitted but not yet retired submits, used to
157 	 * determine transitions between active and idle.
158 	 *
159 	 * Protected by lock
160 	 */
161 	int active_submits;
162 
163 	/** lock: protects active_submits and idle/active transitions */
164 	struct mutex active_lock;
165 
166 	/* does gpu need hw_init? */
167 	bool needs_hw_init;
168 
169 	/* number of GPU hangs (for all contexts) */
170 	int global_faults;
171 
172 	void __iomem *mmio;
173 	int irq;
174 
175 	struct msm_gem_address_space *aspace;
176 
177 	/* Power Control: */
178 	struct regulator *gpu_reg, *gpu_cx;
179 	struct clk_bulk_data *grp_clks;
180 	int nr_clocks;
181 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
182 	uint32_t fast_rate;
183 
184 	/* Hang and Inactivity Detection:
185 	 */
186 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
187 
188 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
189 	struct timer_list hangcheck_timer;
190 
191 	/* Fault info for most recent iova fault: */
192 	struct msm_gpu_fault_info fault_info;
193 
194 	/* work for handling GPU ioval faults: */
195 	struct kthread_work fault_work;
196 
197 	/* work for handling GPU recovery: */
198 	struct kthread_work recover_work;
199 
200 	/* work for handling active-list retiring: */
201 	struct kthread_work retire_work;
202 
203 	/* worker for retire/recover: */
204 	struct kthread_worker *worker;
205 
206 	struct drm_gem_object *memptrs_bo;
207 
208 	struct msm_gpu_devfreq devfreq;
209 
210 	uint32_t suspend_count;
211 
212 	struct msm_gpu_state *crashstate;
213 
214 	/* Enable clamping to idle freq when inactive: */
215 	bool clamp_to_idle;
216 
217 	/* True if the hardware supports expanded apriv (a650 and newer) */
218 	bool hw_apriv;
219 
220 	struct thermal_cooling_device *cooling;
221 };
222 
223 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
224 {
225 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
226 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
227 }
228 
229 /* It turns out that all targets use the same ringbuffer size */
230 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
231 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
232 
233 #define MSM_GPU_RB_CNTL_DEFAULT \
234 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
235 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
236 
237 static inline bool msm_gpu_active(struct msm_gpu *gpu)
238 {
239 	int i;
240 
241 	for (i = 0; i < gpu->nr_rings; i++) {
242 		struct msm_ringbuffer *ring = gpu->rb[i];
243 
244 		if (ring->seqno > ring->memptrs->fence)
245 			return true;
246 	}
247 
248 	return false;
249 }
250 
251 /* Perf-Counters:
252  * The select_reg and select_val are just there for the benefit of the child
253  * class that actually enables the perf counter..  but msm_gpu base class
254  * will handle sampling/displaying the counters.
255  */
256 
257 struct msm_gpu_perfcntr {
258 	uint32_t select_reg;
259 	uint32_t sample_reg;
260 	uint32_t select_val;
261 	const char *name;
262 };
263 
264 /*
265  * The number of priority levels provided by drm gpu scheduler.  The
266  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
267  * cases, so we don't use it (no need for kernel generated jobs).
268  */
269 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
270 
271 /**
272  * struct msm_file_private - per-drm_file context
273  *
274  * @queuelock:    synchronizes access to submitqueues list
275  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
276  * @queueid:      counter incremented each time a submitqueue is created,
277  *                used to assign &msm_gpu_submitqueue.id
278  * @aspace:       the per-process GPU address-space
279  * @ref:          reference count
280  * @seqno:        unique per process seqno
281  */
282 struct msm_file_private {
283 	rwlock_t queuelock;
284 	struct list_head submitqueues;
285 	int queueid;
286 	struct msm_gem_address_space *aspace;
287 	struct kref ref;
288 	int seqno;
289 
290 	/**
291 	 * entities:
292 	 *
293 	 * Table of per-priority-level sched entities used by submitqueues
294 	 * associated with this &drm_file.  Because some userspace apps
295 	 * make assumptions about rendering from multiple gl contexts
296 	 * (of the same priority) within the process happening in FIFO
297 	 * order without requiring any fencing beyond MakeCurrent(), we
298 	 * create at most one &drm_sched_entity per-process per-priority-
299 	 * level.
300 	 */
301 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
302 };
303 
304 /**
305  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
306  *
307  * @gpu:        the gpu instance
308  * @prio:       the userspace priority level
309  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
310  * @sched_prio: [out] the gpu scheduler priority level which the userspace
311  *              priority maps to
312  *
313  * With drm/scheduler providing it's own level of prioritization, our total
314  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
315  * Each ring is associated with it's own scheduler instance.  However, our
316  * UABI is that lower numerical values are higher priority.  So mapping the
317  * single userspace priority level into ring_nr and sched_prio takes some
318  * care.  The userspace provided priority (when a submitqueue is created)
319  * is mapped to ring nr and scheduler priority as such:
320  *
321  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
322  *   sched_prio = NR_SCHED_PRIORITIES -
323  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
324  *
325  * This allows generations without preemption (nr_rings==1) to have some
326  * amount of prioritization, and provides more priority levels for gens
327  * that do have preemption.
328  */
329 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
330 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
331 {
332 	unsigned rn, sp;
333 
334 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
335 
336 	/* invert sched priority to map to higher-numeric-is-higher-
337 	 * priority convention
338 	 */
339 	sp = NR_SCHED_PRIORITIES - sp - 1;
340 
341 	if (rn >= gpu->nr_rings)
342 		return -EINVAL;
343 
344 	*ring_nr = rn;
345 	*sched_prio = sp;
346 
347 	return 0;
348 }
349 
350 /**
351  * struct msm_gpu_submitqueues - Userspace created context.
352  *
353  * A submitqueue is associated with a gl context or vk queue (or equiv)
354  * in userspace.
355  *
356  * @id:        userspace id for the submitqueue, unique within the drm_file
357  * @flags:     userspace flags for the submitqueue, specified at creation
358  *             (currently unusued)
359  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
360  *             by the submitqueue's priority
361  * @faults:    the number of GPU hangs associated with this submitqueue
362  * @last_fence: the sequence number of the last allocated fence (for error
363  *             checking)
364  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
365  *             which set of pgtables do submits jobs associated with the
366  *             submitqueue use)
367  * @node:      node in the context's list of submitqueues
368  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
369  *             seqno, protected by submitqueue lock
370  * @lock:      submitqueue lock
371  * @ref:       reference count
372  * @entity:    the submit job-queue
373  */
374 struct msm_gpu_submitqueue {
375 	int id;
376 	u32 flags;
377 	u32 ring_nr;
378 	int faults;
379 	uint32_t last_fence;
380 	struct msm_file_private *ctx;
381 	struct list_head node;
382 	struct idr fence_idr;
383 	struct mutex lock;
384 	struct kref ref;
385 	struct drm_sched_entity *entity;
386 };
387 
388 struct msm_gpu_state_bo {
389 	u64 iova;
390 	size_t size;
391 	void *data;
392 	bool encoded;
393 };
394 
395 struct msm_gpu_state {
396 	struct kref ref;
397 	struct timespec64 time;
398 
399 	struct {
400 		u64 iova;
401 		u32 fence;
402 		u32 seqno;
403 		u32 rptr;
404 		u32 wptr;
405 		void *data;
406 		int data_size;
407 		bool encoded;
408 	} ring[MSM_GPU_MAX_RINGS];
409 
410 	int nr_registers;
411 	u32 *registers;
412 
413 	u32 rbbm_status;
414 
415 	char *comm;
416 	char *cmd;
417 
418 	struct msm_gpu_fault_info fault_info;
419 
420 	int nr_bos;
421 	struct msm_gpu_state_bo *bos;
422 };
423 
424 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
425 {
426 	msm_writel(data, gpu->mmio + (reg << 2));
427 }
428 
429 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
430 {
431 	return msm_readl(gpu->mmio + (reg << 2));
432 }
433 
434 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
435 {
436 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
437 }
438 
439 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
440 {
441 	u64 val;
442 
443 	/*
444 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
445 	 * not quad word aligned and 2) the GPU hardware designers have a bit
446 	 * of a history of putting registers where they fit, especially in
447 	 * spins. The longer a GPU family goes the higher the chance that
448 	 * we'll get burned.  We could do a series of validity checks if we
449 	 * wanted to, but really is a readq() that much better? Nah.
450 	 */
451 
452 	/*
453 	 * For some lo/hi registers (like perfcounters), the hi value is latched
454 	 * when the lo is read, so make sure to read the lo first to trigger
455 	 * that
456 	 */
457 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
458 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
459 
460 	return val;
461 }
462 
463 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
464 {
465 	/* Why not a writeq here? Read the screed above */
466 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
467 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
468 }
469 
470 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
471 int msm_gpu_pm_resume(struct msm_gpu *gpu);
472 
473 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
474 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
475 		u32 id);
476 int msm_submitqueue_create(struct drm_device *drm,
477 		struct msm_file_private *ctx,
478 		u32 prio, u32 flags, u32 *id);
479 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
480 		struct drm_msm_submitqueue_query *args);
481 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
482 void msm_submitqueue_close(struct msm_file_private *ctx);
483 
484 void msm_submitqueue_destroy(struct kref *kref);
485 
486 void __msm_file_private_destroy(struct kref *kref);
487 
488 static inline void msm_file_private_put(struct msm_file_private *ctx)
489 {
490 	kref_put(&ctx->ref, __msm_file_private_destroy);
491 }
492 
493 static inline struct msm_file_private *msm_file_private_get(
494 	struct msm_file_private *ctx)
495 {
496 	kref_get(&ctx->ref);
497 	return ctx;
498 }
499 
500 void msm_devfreq_init(struct msm_gpu *gpu);
501 void msm_devfreq_cleanup(struct msm_gpu *gpu);
502 void msm_devfreq_resume(struct msm_gpu *gpu);
503 void msm_devfreq_suspend(struct msm_gpu *gpu);
504 void msm_devfreq_active(struct msm_gpu *gpu);
505 void msm_devfreq_idle(struct msm_gpu *gpu);
506 
507 int msm_gpu_hw_init(struct msm_gpu *gpu);
508 
509 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
510 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
511 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
512 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
513 
514 void msm_gpu_retire(struct msm_gpu *gpu);
515 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
516 
517 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
518 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
519 		const char *name, struct msm_gpu_config *config);
520 
521 struct msm_gem_address_space *
522 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
523 
524 void msm_gpu_cleanup(struct msm_gpu *gpu);
525 
526 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
527 void __init adreno_register(void);
528 void __exit adreno_unregister(void);
529 
530 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
531 {
532 	if (queue)
533 		kref_put(&queue->ref, msm_submitqueue_destroy);
534 }
535 
536 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
537 {
538 	struct msm_gpu_state *state = NULL;
539 
540 	mutex_lock(&gpu->dev->struct_mutex);
541 
542 	if (gpu->crashstate) {
543 		kref_get(&gpu->crashstate->ref);
544 		state = gpu->crashstate;
545 	}
546 
547 	mutex_unlock(&gpu->dev->struct_mutex);
548 
549 	return state;
550 }
551 
552 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
553 {
554 	mutex_lock(&gpu->dev->struct_mutex);
555 
556 	if (gpu->crashstate) {
557 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
558 			gpu->crashstate = NULL;
559 	}
560 
561 	mutex_unlock(&gpu->dev->struct_mutex);
562 }
563 
564 /*
565  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
566  * support expanded privileges
567  */
568 #define check_apriv(gpu, flags) \
569 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
570 
571 
572 #endif /* __MSM_GPU_H__ */
573